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Abstract

This thesis extends the Cubic Plus Association (CPA) equation of state (EoS) to handle
mixtures containing ions from fully dissociated salts. The CPA EoS has during the past 18
years been applied to thermodynamic modeling of a wide range of industrially important
chemicals, mainly in relation to the oil- and gas sector. One of the strengths of the CPA EoS
is that it reduces to the Soave Redlich Kwong (SRK) cubic EoS in the absence of associat-
ing compounds and is therefore compatible with existing tools for oil characterization. In a
similar fasion, the electrolyte CPA (e-CPA) EoS reduces to the CPA EoS in the absence of
electrolytes, making it possible to extend the applicability of the CPA EoS while retaining
backwards compatibility and resuing the parameters for non-electrolyte systems .

There are many challenges related to thermodynamic modeling of mixtures containing elec-
trolytes, and many different approaches to the development of an electrolyte EoS have been
suggested by scientists in the field. However, most of these approaches are focusing on aque-
ous solutions and cannot easily be extended to handle mixed solvents. Furthermore, the
approaches suggested in current literature have rarely been applied to all types of thermo-
dynamic equilibrium calculations relevant to electrolyte solutions.

This project has aimed to determine the best recipe to deliver a complete thermodynamic
model capable of handling electrolytes in mixed solvents and at a wide range of temperature
and pressure. Different terms describing the electrostatic interactions have been compared
and it was concluded that the differences between the Debye-Hückel and the "mean spherical
approximation" models are negligible. A term accounting for the Gibbs energy of hydration
(such as the Born term) must be included in order to provide sufficient driving forces for
electrolytes towards the most polar phase.

The static permittivity of the mixture was found to be the most important property; yet
it was shown that the empirical models suggested by literature could lead to unphysical
behavior of the equation of state. A new theoretical model was developed to extend the
framework for modeling of the static permittivity to hydrogen-bonding compounds and salts.
The model relates the geometrical configuration of hydrogen-bonding dipolar molecules to
the Kirkwood g-factor using the Wertheim association model that is included with modern
EoS such as CPA or SAFT (Statistical Associating Fluid Theory). This new model was
shown to give excellent predictions of the static permittivity of mixtures over wide ranges of
temperature, pressure, and composition and thereby generalizes the handling of electrolytes
in mixed solvents in an electrolyte EoS.

The CPA EoS was extended with a Debye-Hückel and a Born term to account for the
electrostatics along with the new model for the static permittivity. This new e-CPA EoS
was parameterized against osmotic coefficient, density, and mean ionic activity coefficient
data of pure salts and validated against salt mixture data. The model was then applied to
predict:

• the solubility of light gases, hydrocarbons, and aromatics in aqueous mixtures and
mixed solvents

• solid-liquid equilibrium in aqueous salt mixtures and mixed solvents

• gas hydrate formation pressures of methane with salts in water+methanol

• liquid-liquid and liquid-liquid-liquid equilibrium with water-propan-1-ol-NaCl-octane
solutions

It was demonstrated that the model has a good potential for applications in relation to e.g.
flow assurance during the production of natural gas. The parameterization of electrolyte
EoS is of high importance and more work is needed in order to obtain good ion-specific
parameters that include interaction parameters with gases and relevant chemicals.
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Resumé

I denne afhandling udvides Cubic Plus Association (CPA) tilstandsligningen til at hånd-
tere blandinger med ioner fra fuldt dissocierede salte. CPA tilstandsligningen har gennem de
sidste 18 år blevet anvendt til termodynamisk modellering af en række industrielt vigtige ke-
mikalier, hovedsageligt i relation to olie- og gas produktion. Hvis en blanding ikke indeholder
komponenter, der kan skabe hydrogen-bindinger vil CPA reducere til Soave-Redlich-Kwong
(SRK) tilstandsligningen, hvilket muliggør at man kan anvende en række eksisterende værk-
tøjer til eksempelvis oliekarakterisering. På samme hvis vil elektrolyt CPA (e-CPA) reducere
til CPA tilstandsligningen når der ikke er ioner til stede, hvilket gør det muligt at udvide
anvendelserne for CPA tilstandsligningen samtidig med at e-CPA er bagud kompatibel og
kan anvende eksisterende parametre for klassiske systemer uden elektrolytter.

Der er mange udfordringer i forbindelse med den termodynamiske beskrivelse af blandin-
ger med elektrolytter og forskere indenfor feltet har foreslået adskillige fremgangsmåder til
udviklingen af en tilstandsligning for elektrolytter. Dog har de fleste grupper fokuseret på
modellering af vandige opløsninger og deres fremgangsmåder kan ikke nemt blive udvidet til
at håndtere blandede solventer. Ydermere er de publicerede fremgangsmåder ofte kun blevet
afprøvet på få typer af termodynamiske ligevægtsberegninger med relevans saltopløsninger.

Dette projekt har søgt at klargøre den bedste opskrift på en komplet termodynamisk model,
der kan håndtere elektrolytter i blandede solventer som funktion af temperatur og tryk.
Der blev udført en sammenligning af forskellige modeller til beskrivelse de elektrostatiske
interaktioner, og dette viste at der kun var ubetydelige forskelle mellem Debye-Hückel og
"mean spherical approximation"modellerne. Derudover kræver en elektrolyt tilstandsligning
et bidrag såsom Born modellen til beskrivelse af hydrationsenergien, da dette bidrag er an-
svarlig for at give ionerne en tilstrækkelig drivkraft mod den mest polære fase.

Den vigtigste egenskab for beskrivelse af elektrostatiske interaktioner er den statiske per-
mittivitet (eller dielektriske konstant) af blandingen. Dog kan de empiriske modeller, der
foreslåes i litteraturen føre til ufysisk opførsel af tilstandsligningen. Det teoretiske grundlag
til forudsigelsen af den statiske permittivitet blev med udviklingen af en ny model udvidet
til at håndtere blandinger med tendens til at skabe hydrogen-bindinger samt blandinger
indeholdende salte. Modellen relaterer den geometriske konfiguration af dipolære hydrogen-
bindende molekyler til Kirkwood’s g-factor ved brug af Wertheim’s associations-model, der
anvendes i mange moderne tilstandsligninger såsom CPA eller SAFT (Statistical Associating
Fluid Theory). Den nye model giver gode forudsigelser af den statiske permittivitet i blan-
dinger som funktion af temperatur, tryk, og sammensætning og generaliserer håndteringen
af elektrolytter i blandede solventer med en elektrolyt tilstandsligning.

CPA tilstandsligningen blev dernæst udvidet til at tage højde for de elektrostatiske in-
teraktioner ved brug af Debye-Hückel og Born modellerne samt den nye model for den
statiske permittivitet. Denne nye e-CPA tilstandsligning blev parameteriseret ved brug af
osmotiske koefficienter, densiteter samt middelionaktivitetskoefficienter for blandinger med
enkelt-salte og valideret op imod data for blandede salte. Denne model blev dernæst anvendt
til at forudsige:

• opløseligheden af gasser, alkaner, samt aromatiske stoffer i saltopløsninger i vand og
blandede solventer

• opløseligheden af salte i vandige opløsninger og blandede solventer

• trykket for dannelse af methan’s type I gashydrat i blandinger med vand, methanol,
samt NaCl

• væske-væske og væske-væske-væske ligevægt for vand, propan-1-ol, NaCl med octane

Den nye model har udvist et godt potentiale for anvendelsen til modellering af blandinger
relateret til produktion af naturgas. Parameteriseringen af tilstandsligningen spiller dog en
stor rolle, og yderligere arbejde er nødvendigt for at kunne bestemme de optimale interak-
tionsparameter mellem ioner og vand, gasser, samt andre relevante kemikalier.
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0 Activity coefficient of solvent in the McMillan-Mayer framework

γm± Mean molal activcity coefficient of salt based on the molality scale.

γij The angle between the two dipole moments as shown in Figure 5.2

κ−1 Debye length , see Eq. (1.2) [m]

λ Wavelength of light [m]

λij Ion-ion interaction as a function of the ionic strength
[
m3/mol

]
μ′

0,j The dipole moment of molecules surrounding the central dipole [C · m]

μi Chemical potential of component i [J/mol]

μi,0 Dipole moment of component i in vacuum [C · m]

μw,0 Dipole moment of water in vacuum μw,0 = 8.33 · 10−30C · m [C · m]

νi The NRTL/Huron-Vidal volume parameter for component i at infinite pressure.
[
m3/mol

]
ω Angular frequency [rev/s]

V 0 Solvent molar volume
[
m3/mol

]
ψi Electrical potential around component i , see Eq. (4.4)

ρ Molar density
[
mol/m3

]
ρc Critical density

[
mol/m3

]
ρi Molar density of component i

[
mol/m3

]
ρw Density of water , see Eq. (4.41)

[
g/cm3

]
σ Direct current conductivity [S/m]

σi Hard-sphere diameter of component i
[
Å
]

τ Characteristic dipole relaxation time [s]

θij Rotation angle between hydrogen bonds in different shells. See Figure 5.3 p. 85.

εwr Static permittivity of liquid water at saturation conditions

εA The Adelman static permittivity from statistical mechanics , see Eq. (4.85)

εW The Wertheim static permittivity from statistical mechanics , see Eq. (4.84)

ε∞ Permittivity at infinite frequency, typically replaced by square of the refractive index n2

ε∗
d Complex permittivity (frequency dependent dielectric response)

εr Relative static permittivity (or dielectric constant)
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List of Physical Constants

εs Relative static permittivity of solvent in the presence of salts

εs,0 Relative static permittivity of solvent in the absence of salts

εsolute Relative static permittivity of a solute compound

ϕi Internal C-O-H angle. See Figure 5.2 p. 84.

gE,∞ Excess Gibbs energy at infinite pressure. [kJ/mol]

a(T ) Van der Waals attractive energy parameter of the mixture , see Eq. (3.4)

[
Pa · m6

mol2

]

A Debye-Hückel A coefficient , see Eq. (1.3)
[
(kg/mol)1/2

]
Aassoc Total Helmholtz energy from association [J/mol]

Ahyd Helmholtz energy from hydrogen bonding [J/mol]

Ahyd Helmholtz energy from ion association [J/mol]

Ae Helmholtz free energy from electrostatics. [J/mol]

Ar Residual Helmholtz energy [J/mol]

Add Helmholtz energy of dipole-dipole interaction in the non-primitive MSA [J/mol]

ADH Helmholtz energy from the Debye-Hückel model [J/mol]

Aid Helmholtz energy of ion-dipole interaction in the non-primitive MSA [J/mol]

Aii Helmholtz energy of ion-ion interaction in the non-primitive MSA [J/mol]

AMSA Helmholtz free energy from the mean spherical approximation (MSA) [J/mol]

ai Activity of component i

aw Water activity xwγw.

b0 Co-volume parameter of the mixture , see Eq. (3.3)
[
m3/mol

]
Ba Extended Debye-Hückel Ba coefficient , see Eq. (1.3)

[
(kg/mol)1/2

]
c(r12) Direct correlation function between molecule 1 and 2

C Debye-Hückel C coefficient for the Hückel equation , see Eq. (1.3) [kg/mol]

Ci Concentration of component i in molality [mol/L]

ci Charge density of component i
[
C/m3

]
Cop Conventional aqueous standard state heat capacity [J/mol/K]

c1i Pure component temperature dependence parameter for Soave’s α(T )-function

d2
0 Dipole density in non-primitive MSA , see Eq. (4.74)

d2
2 Charge density in non-primitive MSA , see Eq. (4.74)

di Min. distance of approach for component i
[
Å
]
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List of Physical Constants

E(n, V ) Ion correction factor for static permittivity , see Eq. (4.40)

EMSA Internal energy of the mean spherical approximation (MSA) [J/mol]

EA Electron affinity [eV]

F Reduced residual Helmholtz energy F = Ar/RT

g(ρ) The radial distribution function at contact

g(r12) Pair correlation function between molecule 1 and 2 g(r12) = 1 + h(r12)

GE Excess Gibbs free energy of a mixture [J/mol]

GLR Gibbs free energy from long-range interactions [J/mol]

GMR Gibbs free energy from middle-range interactions [J/mol]

GSR Gibbs free energy from short-range interactions [J/mol]

gi Kirkwood g-factor of component i

h(r12) Indirect correlation function between molecule 1 and 2

Im Molality-based ionic strength [mol/kg]

IE Ionization energy [eV]

kSi Setschenow salting out constant for component i for salt s [L/mol]

KB Bjerrum equilibrium constant for ion pairing , see Eq. (4.49)

KE Ebeling equilibrium constant for ion pairing , see Eq. (4.50)

Ki Partition coefficient of molecule i between phase 1 and 2, Ki = x
(1)
i /x

(2)
i

lB Characteristic Bjerrum length for ion pairing , see Eq. (4.45) [m]

Mi Moles of the sites of type i [mol]

mi Molality of component i [mol/kg]

mS Molality of salt [mol/kg]

n The refractive index

ni Molar amount of component i [mol]

nw Molar amount of water [mol]

Nij Number of molecules of type i around ion j

P Pressure [Pa]

P e Electrostatic pressure P e = −
(
∂Ae

∂V

)
T,n

Pc Critical pressure [Pa]

Pi Probability of first shell around central molecule i, Pi =
∑
j∈S

Pij

P ki Probability of shell k around central molecule i
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List of Physical Constants

rBorn Born radius. [m]

rij Distance between component i and j [m]

rion Ion radius (e.g. as observed from crystallography). [m]

S0
i Solubility of component i in the salt-free solution [mol/kg]

So Conventional aqueous standard state entropy at 25◦C, 1 bar [J/mol]

Si Solubility of component i with salts [mol/kg]

T Temperature [K]

T0 Reference temperature T0 = 273.15K [K]

Tc,i Critical temperature of component i

V Total volume
[
m3
]

v Molar volume
[
m3/mol

]
ve Stoichiometric coefficient of the electrons in the half-cell reactions

vAiBj
Association volume calculated using Eq. (3.14) or Eq. (3.15)

[
m3/mol

]
wij Potential of average force exerted between molecule i and j [J]

xi Mole fraction of molecule i

xapp
i Apparent mole fraction xappi = ei/eT

xw Mole fraction of water in mixture

XAi
Fraction of site A on component i not bonded to any other component

zi Charge of component i

zij Coordination number of molecule j around a central molecule i
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Chapter 1

Introduction to the Research Area

1.1 Industrial Needs and Challenges

Complex mixtures of non-polar, polar, ionic, and hydrogen-bonding components are fundamen-
tal to life, govern geochemical processes that occur over millions of years, and are encountered in
most chemical processes such as acid gas cleaning, waste-water treatment, energy storage in bat-
teries, desalination, fractional crystallization, extractive distillation, as well as bio-separations
[1, 2]. Chemical engineers need knowledge of the physical properties of chemical compounds in
mixtures and of the partition coefficients in multi-phase systems over wide ranges of temper-
atures and pressures in order to accurately design and optimize production of chemicals and
energy [1–3]. This knowledge requires obtaining high-quality experimental data at different
conditions, combined with accurate, predictive thermodynamic models that can represent the
phase behavior and thermal properties of the fluid [1, 3–8].

In a recent study [3] by the Working Party of Thermodynamic and Transport Properties of the
European Federation of Chemical Engineers (EFCE)), a questionnaire concerning the industrial
needs within thermodynamics and transport properties was forwarded to and answered by key
technical staff from 28 different companies from the oil and gas, chemical, and pharmaceuti-
cal/biotechnology sector. One key topic in the questionnaire was concerned about electrolyte
solutions and the answers revealed that all industries recognized that:

The predictive capabilities of thermodynamic models for electrolyte mixtures lag years behind
their non-electrolyte counterparts and there is an industry-wide consensus that new predictive
(rather than correlative) models are strongly needed. The models must be able to handle
all types of phase behavior (VLE/LLE/SLE) and thermal properties of electrolytes in mixed
solvents with hydrocarbons over extensive temperature and pressure ranges.

1.1.1 Electrolytes in the Oil and Gas Industry

In the oil and gas industry, the presence of salts will generally cause a salting out of hydrocarbons
from the brine (thereby reducing the solubility compared to pure water), and furthermore,
the presence of electrolytes may enhance the inhibitory effect of methanol and glycol on the
formation of gas hydrates in natural gas pipelines [1]. It is well-known that the waterflood
recovery can be affected by the chemistry of the injected brine and it has been argued that a
low-salinity brine can enhance recovery of sandstone rocks [9]. Aggressive species (such as CO2

and H2S) may cause corrosion of tubing and lead to an environmental disaster with a potential
for immense economic impact [10]. The situation becomes even more complex when corrosion
processes occur under a layer of scale, wax, and asphaltene as shown in Figure 1.1. Salts also

2
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1.1.1. Electrolytes in the Oil and Gas Industry

Figure 1.1: Typical production problems related to electrolytes - corrosion may occur under a layer of
asphaltene, wax, and scale (adapted from Crabtree (1999) [11]).

become an economic and operational hazard when they precipitate inside the tubing, processing
equipment or near the wellbore [11]. Salts are known to precipitate in the following situations
[12]:

• When a water-flood brine containing sulfate is mixed with the formation water leads to
precipitation of sulfate scales (typically BaSO4, CaSO4, CaSO4 · 2 H2O, or SrSO4).

• When a sudden reduction in the pressure and/or increase in temperature causes deposition
of carbonate salts (most commonly CaCO3).

• When a dry gas stream is mixed with a brine stream causing evaporation of water it
induces a super-saturation of salts and leads to the formation of e.g. solid NaCl.

The focus of the industry is therefore to plan ahead and select suitable strategies and materials
that can assist in managing scale formation and corrosion from the reservoir e.g. by injecting
a low-sulfate brine and by squeezing scale inhibitors in the reservoir to prevent scaling in the
vicinity of the wellbore areas [11, 12].

As the oil exploration moves towards reservoirs with higher temperatures and pressures than
before, the existing models become less reliable and experimental data increasingly scarse. A
better fundamental understanding of electrolyte solutions is therefore crucial for predicting
operation limits and putting in adequate safety measures in the harsh conditions offered by the
new HPHT reservoirs.

The following sections will provide an introduction to the behavior of mixtures containing
electrolytes and provide an overview of the current thermodynamic models for electrolyte solu-
tions and their deficiencies. Finally, an overview of the scientific work performed in this PhD

Page 3 of 270

26



1.2. Behavior of Mixtures Containing Electrolytes

to harmonize the modeling approaches for electrolyte equations of state is provided.

1.2 Behavior of Mixtures Containing Electrolytes

The complex behavior of mixtures containing electrolytes have caught the attention of scientists
and engineers for hundreds of years and despite advances in our understanding of electrolyte
solutions, there are still many unanswered questions in relation to thermodynamic models for
electrolytes. Figure 1.2 and 1.3 shows some examples of the typical behaviour in mixtures con-
taining salt.
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Figure 1.2: Effect of NaCl concentration at 25◦C on mean ionic activity coefficient γm
± , water activity

aw, and osmotic coefficient Φ (left) [2]. Effect of different salts on the freezing point of
water as a consequence of the reduced water activity (right) [13].

Salts will generally reduce the activity of water, causing e.g. a reduction in the freezing point
and the vapor pressure. The apparent molar volume or heat capacity of the solution can be
observed to either increase or decrease depending on the ions in the solution, due to the effect
the ions have on the structure of the solvent (e.g. through the formation of solvation shells
surrounding the ions). As demonstrated in Figure 1.4, the observed effect depends greatly on
the solvent and temperature and shows far from trivial behavior in heat capacity near room
temperature.

The maximum in the apparent molal heat capacity of salts near room temperature was ex-
plained by Cobble and Murray (1981) [19] by considering two different dominating effects at
high and low temperatures and at infinite dilution:(

∂Co
p

∂T

)
> 0 The fluid structure (especially the primary and secondary hydration shell of ions) dom-

inates the properties at infinite dilution. The properties are affected by the structure
of the solvent and explained by the unequal hydration of anions and cations, as well as
structure-making (kosmotropic) and structure-breaking (chaotropic) ions.(

∂Co
p

∂T

)
< 0 The region depends only on the electrical field around the ion and on the relative static

permittivity εr (or dielectric constant) of the solvent. As εr is reduced, the electrical field
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1.2. Behavior of Mixtures Containing Electrolytes
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Figure 1.3: Apparent molar volume as a function of the square root of the ionic strength Im =
0.5
∑

imiz
2
i (left) and heat capacity (right) of selected aqueous salt solutions [13].
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Figure 1.4: Apparent molal volume of NaBr at 25◦C in methanol (MeOH), ethanol (EtOH), ethylene
glycol (MEG), dimethylformamide (DMF), and water [13–18] (left). The temperature
dependence of the heat capacity at infinite dilution of selected salts (right) (from [19]).

extends longer into the fluid. In this region, the fluid can be considered as a continuum
of hydration surrounding the ions.

The concept of structure-making and structure-breaking ions has long been used to explain the
Hofmeister effect [20, 21]. The effect was first observed by Hofmeister (1888) and Lewith (1888)
who reported a great variation in the amount of salt that would cause precipitation of aque-
ous proteins. Depending on the combination of two ions, the solubility would either decrease
(salting out) or increase (salting in) the protein solubility compared to pure water following the
Hofmeister series shown in Figure 1.5.
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1.3. Thermodynamic Modeling of Electrolytes

Kosmotropic
(Salting out)
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(Salting in)

F–
≈SO2–

4 > HPO2–
4

> CH3COO– > Cl– > Br– > I– > CNS–

(CH
3
)

4
N+ (CH

3
)

2
NH+

2 > NH+
4 > K+ > Na+> Cs+ > Li+ > Mg2+ > Ca2+ > Ba2+

Figure 1.5: The Hofmeister series of ions show how ions increase the solubility of proteins. The same
series also affect other properties, such as the surface tension of water-salt and the viscosity.

In a comprehensive literature review of more than 1000 articles dealing with the ion-specific
effects, Collins and Washabaugh (1985) [20] concluded that the Hofmeister effects are important
above moderate ionic strength (>0.1M), that they are dominated by the anions, and that they
are approximately additive. The Hofmeister sequence (or the reverse sequence) has a tendency
to reappear in colloidal and interfacial science when investigating other properties such as the
surface tension of aqueous solutions [22].

While the structural aspects are related to the short-range interactions of ions with the solvent
[21], charged species will also interact over longer ranges through Coloumb’s inverse-square root
law given by Eq. (1.1):

F =
e2zizj

4πεrε0r2
ij

(1.1)

In Eq. (1.1), zi is the charge of ion i and rij the distance between the two ions. The force
between the ions increases as the relative static permittivity εr drops. Figure 1.6 shows some
characteristic behavior of εr with temperature, solvent, and ion concentration.
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Figure 1.6: Temperature and compositional dependence of the static permittivity for different solvents
(left)[23] (MeOH = methanol, EtOH = ethanol, MEG = ethylene glycol). Reduction in
the static permittivity at 25◦C for different salts [24, 25].

1.3 Thermodynamic Modeling of Electrolytes

The theoretical foundation explaining the observed behavior of salts has been attributed to
Debye and Hückel [26]. Debye and Hückel [26] derived a model for the excess chemical potential
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1.3. Thermodynamic Modeling of Electrolytes

due to electrostatic interactions by solving the linearized Poisson-Boltzmann equation. Whereas
the electrical field ψi(r) around a single ion is determined by Eq. (1.1) at infinite dilution, Figure
1.7 (left) shows how the presence of other ions affects the electrical field in the Debye-Hückel
model depending on the characteristic Debye-length given by Eq. (1.2).

κ−1 =

√√√√ εrkBT∑
i
e2ρiz

2
j

(1.2)

Debye and Hückel [26, 27] derived an expression for the mean ionic activity coefficient which
is often presented as shown in Eq. (1.3) [2]:

ln γm± = lnxw − |zizj| A
√
Im

1 +Ba
√
Im

+ CIm (1.3)

In Eq. (1.3), the constants A, B, and C depend on the density, static permittivity, and temper-
ature of the fluid and m indicates that it uses the molality concentration scale. A comparison
of the mean ionic activity coefficient of HCl with different versions of the activity coefficient are
shown in Figure 1.7 (right), in which the Debye-Hückel limiting law (DHL) has Ba = C = 0,
and the Extended Debye-Hückel (DHE) has C = 0, whereas the Hückel equation also includes
Ba and C.
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Figure 1.7: Debye screening of the Coulomb potential near ions with the inverse, reduced Debye length
of an ion with diameter σ (left). Application of the Debye-Hückel activity coefficient models
(Eq. (1.3)) to the activity coefficient of HCl [2]. DHL = Debye-Hückel limiting law, DHE =
Extended Debye-Hückel law including the Ba parameter, and the Hückel model including
the Ba and C parameter.

From Figure 1.7 it is evident that the limiting law can only represent the activity coefficients
at low concentrations (<0.001M), and higher concentrations therefore requires the use of ex-
tended versions of the Debye-Hückel equation. Many researchers have since investigated how to
represent activity coefficients of concentrated solutions. Bjerrum (1926) justified the use of the
linearized Poisson-Boltzmann equation at even higher concentrations, as they will provide an
explicit correction of the mean-field potential approximation used in the Debye-Hückel equation.
Bjerrum (1926) [28] suggested to handle ions that are in close contact; separated by 0-2 solvent
molecules ion pairs (see Figure 1.8).
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1.3. Thermodynamic Modeling of Electrolytes

Figure 1.8: Different types of ion pairs; A contact ion pair (CIP) (left), A solvent-separated ion pair
(SIP) (middle), and a fully solvated ion pair (SSIP) (right).

Ion pairs are neutral compounds that effectively reduce the ionic strength of the mixture, and
they may be investigated through various experimental methods including the conductometry
and dielectric relaxation spectroscopy [29–33].

Robinson and Stokes [34] presented a full version of the
Debye-Hückel model useful for mixed solvents (DHF) and
proposed that a proper treatment of electrolyte solutions
would require a civilised model, that would account for
the local structure; e.g. steric hindrances, ion-ion as-
sociation, and the solvation of ions as shown in Figure 1.9.

Alternative empirical treatments of the activity co-
efficients of strong electrolyte solutions were introduced
by Meissner [35, 36] and Bromley [37], while Pitzer [38]
improved the Debye-Hückel equation in a form known as
Pitzer-Debye-Hückel (PDH) and introduced a virial exp-

Figure 1.9: Ion hydration

ression to account for specific (medium-range) ion-ion interactions not included in the Debye-
Hückel term:

GEvirial
RT

=
1
nw

∑
i

∑
j

ninjλij(I) (1.4)

Where the virial coefficient Bij is a function of the ionic strength containing possibly many
temperature dependent parameters [39–42]. The functional form of the Pitzer model makes it
very versatile and has ever since been a workhorse in correlation of the experimental data and
applied to e.g. calculation of scaling in the oil and gas industry [43].

Figure 1.7 also shows another interesting aspect of models for electrolyte solutions. While
normal compounds typically use the symmetrical activity coefficient γ = 1 in the pure liquid,
the Debye-Hückel equation (and similar activity coefficient models) provide an unsymmetrical
activity coefficient (where γ∗

± = 1 in infinite dilution). Electrolyte solutions are typically de-
scribed using the unsymmetrical activity coefficient, which is adequate for describing chemical
equilibrium and solid-liquid equilibrium from a single liquid phase (typically water). However,
if the Debye-Hückel model is naïvely applied to predict the distribution of Na2SO4 between
water and iso-propanol, the model falls short as it only accounts for the interaction energy
between ions. Figure 1.10 shows how the introduction of the solubility of Na2SO4 is affected in
a mixed solvent - at higher concentrations, the two liquid phases will split into two phases with
ε

(1)
r > ε

(2)
r and the ions show a significant preference for the most polar phase.

In order for a model to reproduce Fig. 1.10, the thermodynamic model must account for
the interactions with the solvent. One approach suggested by Born [45] is a continuum model
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1.3.1. Insights from Statistical Thermodynamics and Molecular Simulation
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Figure 1.10: Solubility of salts in mixed solvents at 20 ◦C (left) (PrOH = propanol, BuOH = bu-
tanol) (left) and distribution of compounds in the Na2SO4-H2O-1-propanol system at salt
saturation (right). Data from [44].

for the Gibbs energy of solvation as a simple function of the static permittivity and an effective
cavity diameter di. The Born equation can be used to estimate the Gibbs energy of transfer
between solvent (1) and (2) using Eq. (1.5) [41, 45, 46]:

Δ1→2
tr G =

NAe
2

4πε0

∑
i

niz
2
i

di

(
1

ε
(2)
r

− 1

ε
(1)
r

)
(1.5)

Where ε0 is the vacuum permittivity, ni is the number of moles of component i. By including
the change in Gibbs energy of solvation, either through the Born-model or through other terms
for the ion-solvent interactions, the thermodynamic models may also handle the distribution of
salts between two polar phases [41].

1.3.1 Insights from Statistical Thermodynamics and Molecular Simulation

A significant effort has been made to understand the fundamentals of electrolyte mixtures
through statistical thermodynamics, that provides a theoretical link between the macroscopic
behavior of fluids with a microscopic description of intermolecular potentials via integral equa-
tion theory, requiring a solution of the Ornstein-Zernike (OZ) equation given by Eq. (1.6).

h(r12) = c(r12) + ρ

∫
d(�r3)c(r13)(r23) (1.6)

The indirect correlation function h(r12) is related to the
radial distribution function g(r12) = 1+h(r12), which de-
scibes the ratio of the local density g(r)ρ compared to the
bulk density ρ. By relating the direct correlation function
c(r12) = βφ(r12) (where β = (kBT )−1) and through the
use of a closure equation, Eq. (1.6) may be solved for a
known intermolecular potenatial φ(r12).

Figure 1.11: Schematic of g(r).
Blum (1975) [47, 48] presented an analytical solution to mixtures containing electrolytes known

Page 9 of 270

32



1.3.1. Insights from Statistical Thermodynamics and Molecular Simulation

as the mean spherical approximation, which has since received considerable attention from
the scientific community. For instance, the binding MSA [49–51] extends the MSA model to
handle the formation of ion pairs, which will effectively reduce the ionic strength of the solution.

The hypernetted chain closure (HNC) for the Ornstein-Zernike equation enables a more de-
tailed description of the interactions between solvents and ions than the MSA, but as it relies
on heavy computations it is considered impractical as an engineering thermodynamic model for
electrolytes [52]. Still the HNC or computer simulations using Monte Carlo (MC) or Molecular
Dynamics (MD) have provided new insight in the structure of electrolytes solutions including
the role of charge and size asymmetry as well as ion-ion and ion-solvent association [53–57] (see
Figures 1.12-1.13).

One advantage of the modern approach is that computer simulations may e.g. be validated
through comparison of the calculated correlation functions to neutron or X-ray scattering data
[58]. Integral equation theories based on the same intermolecular potentials (such as the MSA)
can then be compared to and validated against results from molecular simulation, creating the
foundations for a systematic procedure to improve the models for electrostatic interactions [52].
This approach can also be used to validate first-principles models based on the solution of the
Poisson-Boltzmann equation; Fisher and Levin [53] (1993) have shown that a model based on
the full Debye-Hückel solution coupled with ion-pairing and an additional term for the (ion
pair)-ion interactions yields good agreement with computer simulations (and in many cases
better than MSA [54]). Boström (2005) [59] compared the numerical solution of the non-linear
Poisson-Boltzmann equation to the HNC and Monte Carlo simulations to determine the radial
distribution of ions near a protein (macro-ion) and showed that similar results were obtained
from all three approaches.

Figure 1.12: Radial distribution function of Cl–

around Na+ indicating the presence
of both contact ion pairs and solvent-
separated ion pairs (for NaCl, there
are two times more solvent-separated
ion pairs than contact ion pairs)
(adopted from [60])

Figure 1.13: Gibbs free energy of hydration
with the Born model and as cal-
culated by molecular dynamics
simulation with the SPC wa-
ter with ions as Lennard-Jones
spheres, showing an asymmetry
in the hydration free energy of
anions and cations [61].

The most noticable development from the statistical mechanical treatment of electrolyte so-
lutions has been the so-called non-primitive MSA model [62–64] that treats all dipole-dipole,
dipole-ion, and ion-ion interactions explicitely through a perturbation theory. Where the Debye-
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1.4. State-of the art: Activity Coefficient Models for Electrolyte Mixtures

Hückel, Born and MSA are so-called primitive models that treat the solvent implicitly, thus
requires knowledge of the static permittivity to obtain effective interaction potentials. The
non-primitive model calculates this as an output from the model, making it a radically different
approach from the primitive models. The non-primitive MSA is significantly more complicated
than the primitive models, and must be solved numerically, but it provides an attractive ap-
proach to handling electrolyte mixtures, as it provides a self-consistent approach to calculating
the electrostatic interactions as well as the static permittivity.

Liu (2002) [65] developed a low-density expansion of the non-primitive MSA and showed that
when the Wertheim model [66] is used to determine the effective static permittivity, the ion-
ion interaction energy from the non-primitive MSA is equivalent to the primitive MSA at low
concentrations and that the ion-dipole interactions bears close resemblance of the Born-term.
This insight enabled Liu (2005) [67] to develop a simpler model inspired by the non-primitive
solution using the effective static permittivity of the fluid from the Wertheim equation. This
builds on the work of Adelman (1976) [68, 69], who showed that the Ornstein-Zernike equation
may be reformulated in terms of effective interaction potentials, requiring the formulation of
an effective solvent+solute dependent static permittivity that is used to calculate the effective
pair potentials ceffij (rij).

1.4 State-of the art: Activity Coefficient Models for

Electrolyte Mixtures

While the previous section presented some of the fundamentals of electrolyte thermodynamics,
this section focuses on the work-horse of the chemical industry in relation to thermodynamic
models for electrolyte systems. These models are based on the concept of describing different
contributions to the excess Gibbs energy, and typically consists of explicit terms to handle the
short-range, intermediate-range and long-range interactions in the fluid given by Eq. (1.7):

GE = GSR +GMR +GLR (1.7)

The most widely used activity coefficient models and their capabilities are presented in Table
1.1 [70].

Common to all activity coefficient models in Table 1.1 is that they are based on the extension
of a local composition term (modified NRTL or UNIQUAC) with a model for the electrostatic
energy. The models require a large amount of interaction parameters to be estimated against all
known experimental data, and the parameters are generally not transferable outside the regime
where they were estimated and have little physical significance [70].

To further complicate matters, the standard state properties of electrolytes are not well-established
for many salts and intermediate species making it necessary to infer standard state properties
from other experimental data (e.g. heat of dilution, speciation, or apparent molal heat capacity)
[2].

Accurate thermodynamic models also require knowledge of the chemical speciation in the mix-
ture. However, even for a seamingly simple compound as boric acid H3BO3(aq), Wang (2013)
[42] defined no less than five ionic species (B(OH)–

4, B2O(OH)–
5, B3O3(OH)–

4, B4O5(OH)2–
4 ,

B5O6(OH)3–
6 ) and two uncharged species (HBO2(aq), B2O3(aq)) to succesfully represent the

experimental data in aqeuous mixtures with H+, Li+, Na+, Ca2+, Mg2+, OH–, requiring si-
multaneous or step-wise regression of more than 140 parameters (standard state, UNIQUAC,
and interaction parameters) up to 300◦C. Thomsen [78] modeled a similar system up to 200◦C.
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1.5. Towards the Electrolyte Equation of State

Model Electrolyte NRTL
[71, 72]

OLI Mixed Sol-
vent Electrolyte
[39–42, 73]

Extended UNIQUAC
[2, 74, 75]

Non-electrostatic term Modified NRTL [71] UNIQUAC [76] +
2nd virial term [38]

UNIQUAC [76]

Electrostatic term Modified Pitzer-
Debye-Hückel [72, 77]
and Born [45]

Modified Pitzer-
Debye-Hückel [39, 77]

Extended Debye-
Hückel [26]

Parameters 2-4 per binary (on ion
pair basis)

3 per binary 4 per molecule, 2 per
binary

Availability Aspen Plus / Proper-
ties

Aspen Plus /
HYSYS, Honeywell
UniSim, gPROMS,
Pro/II

Excel and Aspen Plus

Table 1.1: Overview of the most widely used models for electrolyte solutions and their applications. All
models are capable of handling VLE, LLE, SLE, thermal properties, and combined physical
and chemical equilibrium in mixed solvents allowing the application to a wide range of
problems.

Thomsen [78] also included the SO2–
4 and K+ ions but used a fewer number of borate-species

(H3BO3 (aq), BO–
2, B4O2–

7 ), which meant that only 75 parameters had to be determined. As
different data were included in the two analyses, the two approaches are not directly compara-
ble, but just shows that the speciation plays an important role in modeling of electrolyte systems.

In all cases, when sufficient experimental data is available to optimize the parameters for a
given system of interest, the models represent an effective and important engineering tool for
the design and optimization of processes. But the choice of intermediate species and fitted
parameters is an expert task that requires thorough investigation of the experimental data and
of the standard state properties available for these systems.

Lin et al. (2010) [70] compared the models in Table 1.1 by defining ten simple test systems; an
aqueous mixture with up to three salts out of NaCl, Na2SO4, MgCl2, KNO3, K2SO4, MgSO4,
MgNO3, and a mixed-solvent system with water, ethanol, and NaCl. Using the standard pa-
rameters (i.e. without refitting of the parameters to the sub-systems) Lin compared the model
predictions of VLE and SLE against experimental data at temperatures from -22-110◦C. While
the models would generally give reasonable results for the boiling point pressure (VLE), the
models would sometimes lead to precipitation of incorrect solid phases and result in wrong spe-
ciation. The Extended UNIQUAC performed best in the case of mixed solvent solutions even
at high concentrations, despite that the electrostatic model (Extended Debye-Hückel) assumes
that the solvent is pure water and does not use the Born term for the Gibbs energy of transfer,
indicating that the interaction parameters of the UNIQUAC model can be used to compen-
sate for the alternative representation of electrostatic interactions. It is questionable that these
correlation models can give accurate predictions in regions with limited data, such as at high
temperatures or pressures and the work by Lin et al. [70] justifies looking into the fundamentals
of thermodynamic modeling of electrolyte solutions.

1.5 Towards the Electrolyte Equation of State

Over the past 30 years, great advances have been made in the development of thermodynamic
models for hydrogen bonding mixtures through the Statistical Associating Fluid Theory (SAFT)
[79], based on the Wertheim first order (TPT1) perturbation theory [80]. This has given rise to
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a long list of SAFT-based models of which the most widely used [1] are the Perturbed Chain
SAFT (PC-SAFT)[81] and the Cubic Plus Association (CPA)[82], that calculate contributions
to the total residual Helmholtz energy of a fluid through a perturbation theory, that is based
on a mathematical model for specific interactions in the fluid. Several groups have worked on
introducing models for electrolyte mixtures in these equations of state in an attempt to develop
a single framework for describing the thermodynamic properties of mixtures of non-polar, polar,
associating, and ionic compounds or even polymers in the quest towards a universal thermo-
dynamic model [1, 83]. Figure 1.14 shows how an equation of state would include some of
the different complex phenomena occuring in electrolyte solutions, as described in the previous
sections.

Figure 1.14: Contributions to an electrolyte Equation of State.

An overview of the electrolyte EoS published in literature are shown in Table 1.2 and an
overview of the parameters, correlations, and predictions are shown in Table 1.3. Table 1.3
shows what properties are used in a correlation, and the ones that are predicted. GE is a collec-
tion of mean ionic activity coefficients, γ∗m

± , osmotic coefficients Φ, water activity aw, saturated

vapor pressure Psat, and water freezing point depression. kS = limcs→0

[
c−1
s log10

φ̂∞
i,s

φ̂∞
i,w

]
is the

Setchenow constant that defines the salting out of a solute.

1.6 Critical Review of Literature on Electrolyte EoS

While all models in Table 1.2 have succesfully been able to correlate activity coefficients, so
far none of the models have been applied to all possible types of experimental data. Each of
the colored columns of Table 1.2 raises new questions that must be answered to harmonize the
approach to development of electrolyte EoS.

How should electrostatic interactions be modeled?

The models for electrolyte mixtures can be categorized into three fundamental approaches:

• Primitive models assume that the static permittivity is equal to that of the solvent. A
correlation of the static permittivity at the saturation line of water with temperature is
typically applied in activity coefficient models [26, 38, 71, 73, 75, 147], and this approach
has also been adopted in many cases of equation of state modeling [84–87, 89–95, 109,
110, 112, 114–118, 121, 128–131, 133, 139, 141] as well as in molecular simulation [148].
These models may also include empirical terms to take into account the effect of salts on
the mixture permittivity.

• Non-primitive models use the coupling of all the electrostatic interactions (ion-ion,
ion-dipole, dipole-dipole) and do not need to include models for the static permittivity
[52, 67, 138].
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• Civilized models are non-primitive models that take into account steric effects, ion
hydration and ion-ion association [34, 149]. They have not yet been used within an
equation of state.

The difference between the primitive and
non-primitive model is illustrated in Figure
1.15. The primitive models have the simplest
functional form and seek to use interaction
parameters and the static permittivity of the
solvent to model the structural effects. The
models become increasingly complex when
going towards the civilized model where all
electrostatic interactions (short and long-range)
must be taken into account.

It is not uncommon to refer to the Debye-
Hückel limiting law (DHL) which is only valid
at infinite dilution [52, 85–89, 110–112, 114] as
an argument for choosing the MSA model.

Figure 1.15: Sketch of the primitive and non-
primitive approach to model-
ing of electrolytes. Primitive
models include the effect of the
solvent implicitly through the
static permittivity εr.

It is arguably an unfair comparison to compare the infinite dilution limit of the Debye-Hückel
against a full version of the MSA model. It should also be noted that the MSA model and the
Debye-Hückel have the same limiting law behavior [85, 114].

Should activity coefficients be converted from the McMillan-Mayer to the Lewis-

Randall framework?

Some groups state that since the primitive models developed with an assumption of an im-
plicit solvent (in the McMillan-Mayer framework) and the physical part of the equation of state
is developed by handling all species explicitly (the Lewis-Randall framework), it is necessary
to make a conversion between the two frameworks [109, 114] and that this is not needed for
non-primitive models [52, 67]. Most EOS developed from primitive models do not discuss the
conversion between the frameworks, except for Radosz et al. [121–127] and Haghtalab et al.
[136, 137] who state that the differences are negligible after parameterization.

What is the importance of ion-solvent association?

Some of the later work on e-EoS development have included ion-solvent and ion-ion association
implemented using the Wertheim framework that was originally developed for highly directional
forces (e.g. hydrogen bonds) [67, 109, 133, 138, 139]. The model allows specifying N association
sites on a given molecule, and determines the fraction of site A on molecule i XAi

that is not
associated to any other molecule by solving Eq. (1.8):

1
XAi

= 1 +
∑
j

ρj
∑
Bj

XBj
ΔAiBj

, ΔAiBj
= κAiBj

gij(σij)σ
3
ij

(
exp(εAiBj

/kBT ) − 1
)

(1.8)

Where the cross-diameter σij = 0.5 (σi + σj) and ΔAiBj
is the association equilibrium constant

between site A on molecule i and site B on molecule j. ΔAiBj
may be evaluated using the ra-

dial distribution function at contact gij(σij) of the reference system (typically the hard sphere).
In order to reduce the number of fitted parameters, authors define the association sites and
association strength κAiBj

as shown in Table 1.4. However, as evident from Eq. (1.8), the
balance between κAiBj

and εAiBj
defines the temperature dependence. Most models are only

investigated over a narrow range of temperatures, and only Rozmus et al. [139] attempted to
correlate the temperature dependence over wide ranges of temperatures with a single parameter
(but did not obtain a good correspondence with activity coefficients at higher temperatures).
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Source κAiBj
Number of association sites on ions

Li+ Na+ K+ Cs+ Cl– Br– I–

Wu et al [109] 0.001 - 10 - - 14 - -
Lee and Kim [133] 0.001 8 8 8 - 7 7 7
Z. Liu et al. [67] 0.001 7 7 7 10 9 10 12

Y. Liu et al. [132] 0.03 8 8 8 - 6 6 6
Herzog et al. [138] 0.03 4 4 3 2 0 0 0
Rozmus et al. [139] 0.0356 7 7 7 7 6 6 6

Table 1.4: No. of association sites on selected ions as proposed by different authors and the fixed
association strength proposed by the authors.

Wu and Prausnitz [109] used a 2nd order polynomial in temperature to correlate εAiBj
over

wide temperature ranges and were in that case able to get reasonable correspondence with the
activity coefficients even above 150◦C. It remains an unsolved question whether including an
association model is really an improvement, and does not only add new parameters.

What is the importance of ion-ion association?

Ion-ion association has been treated through essentially a mass-action approach (chemical equi-
librium) by Sadowski et al. [117], and so it requires additional knowledge of the equilibrium
constant; however, from statistical mechanics it is known that the equilibrium constant depends
not only on temperature, but also on the static permittivity of the medium [53, 54, 56, 57]. So
far, the approaches for ion-ion association developed for e-EoS have not been validated against
molecular simulation or other experimental data (e.g. conductivity, Raman or dielectric spec-
troscopy). While Rozmus et al. (2013) [139] included the concept of ion-ion association, they
did not account for the effect that ion pairs will have on the electrostatics (i.e. decreasing the
ionic strength).

Should the model include an explicit term for the Gibbs energy of solvation?

Some researchers include a Born term or a non-primitive ion-dipole term to determine the
Gibbs energy of solvation [52, 67, 84, 86–88, 92, 109, 113, 114, 128, 129, 138–141], but only
Myers et al. [114] and Herzog et al. [138] have made comparisons to the Gibbs energy of solva-
tion/Gibbs energy of transfer between solvents to validate the approach. Furthermore, none of
these groups have presented speciation in a liquid-liquid equilibrium and only Simon (1991) [92]
has attempted to model the solid-liquid equilibrium with a mixed solvent with an EoS that also
includes the Born model. Inchekel [129] showed that when the model for the static permittivity
takes into account the reduction caused by the presence of ions, the Born term provides an
opposite contribution to the activity coefficient of NaCl; but due to the empirical nature of the
model for the static permittivity it is not possible to say whether this should be considered to
be an actual physical effect or purely mathematical consequence of the investigated model.

How should the static permittivity be modeled? And does it even matter?

The theoretical background of the static permittivity [150–155] suggests a dependence on tem-
perature, volume, and composition, that will have the following general characteristical behav-
ior:

• Increasing the volume will reduce εr

• Increasing the amount of polar compounds will increase εr

• Increasing the temperature will reduce εr
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The non-primitive models [52, 67, 138] include the above physical behavior through the cou-
pling of ion-ion, ion-dipole and dipole-dipole interactions and do not use the static permittivity;
rather it can be obtained as an output from the model. Z. Liu et al. [65, 67] showed that
the low-density expansion of the non-primitive MSA is similar to the MSA coupled with the
dielectric calculated from the Wertheim (1971) theory [66], whereas Zhao et al. (2007) noted
that the Adelman [68, 69, 156–158] static permittivity is needed when ions are present, and
Adelman (1976) [68, 69] showed the similarity between replacing the explicit solvent-solute in-
teractions with an effective static permittivity of the mixture that included contributions from
both solvent and solutes in the case of electrolyte models.

In the case of primitive models, the choice of the model for the static permittivity should also
be able to represent the basic physical behavior of εr to assure a correct physical behavior of the
electrostatics. While some authors have attempted to model the static permittivity from a more
fundamental perspective [84, 90, 92, 155], most have relied on empirical correlations without
presenting evidence for how their choices affect the behavior of the model. Some have used
empirical correlations that are functions of the density of water ρw = nw/V [114, 128, 129, 139]
which should result in a correct physical behavior, but most have actually neglected the vol-
umetric dependence by using a correlation of the static permittivity of water as a function of
temperature at the saturation line. The compositional dependence is also often ignored unlesss
the model is applied to mixed solvents. Besides a comparison of how well the activity coefficients
of NaCl could be matched when using two empirical models for static permittivity performed
by the Inchekel (2008) [129], little efforts have been made to show the importance of the static
permittivity and determine what functional form would lead to a correct physical description
of the electrostatic interactions.

Should the model use salt or ion-specific parameters?

The properties of aqueous solutions is heavily dominated by the anion and as evident from
the Hofmeister series shown in Figure 1.5, fluorides and sulfates are expected to have signif-
icantly different behavior in comparison to chlorides, bromides and iodides. While the ion-
specific effects are a well-established scientific fact, an ion-based parameterization of equations
of state requires simultaneous regression of many salts to many different properties. While
ion-specific parameters are generally most widely used a substantial number of researchers have
decided to use salt-specific parameters and Radosz et al. have even used a combination of salt-
and ion-specific parameters [121–127]. Many authors who derived ion-specific parameters have
only looked at the behavior of halides with [138, 139] or without F– [67, 84, 89, 90, 93, 109–
112, 122, 129, 131, 134, 136] and not larger molecules such as sulfate or nitrate. Some authors
have determined so-called ion-specific parameters (Raatschen et al. [84], Wu et al. [109]),
despite only investigating a single salt, and Pazuki et al. [134] re-estimated ion-specific pa-
rameters for each salt (without considering the transferability). A simple degree of freedom
analysis makes it doubtful that these ion-specific parameters can be used seamlessly with other
salts. While the ion-specific approach is more fundamental, the salt-specific approach also has
advantages in terms of making the parameterization significantly simpler, as each salt can be
parameterized individually.

What data should be used in the regression of parameters?

The majority of models are fitted to data representing the excess Gibbs energy (GE) based on
activity coefficients of solvent or solute. The mean ionic activity coefficient, γm± can only be
measured for certain species through specialized electrochemical cells (e.g. the Harned cell for
HCl), that also provide a means to determine the standard state Gibbs energy of formation
[2]. The vast majority of experimental data has therefore been obtained using indirect meth-
ods that determine the activity of the solvent, rather than of the ions. In aqueous solutions
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containing non-volatile electrolyte the water activity is available through measurements of the
freezing point depression, boiling point elevation, vapor pressures (either through a static or a
dynamic method), or isopiestic measurements that measures the vapor pressure relative to a
reference system with known water activity [2]. The mean ionic activity coefficients can then
be related to the activity of water through the osmotic coefficient Φ = xw

1−xw
ln (xwγw) and the

Gibbs-Duhem equation [2]:

ln γm± = Φ − 1 +

mi∫
0

Φ − 1
m

dm (1.9)

Any (consistent) thermodynamic model that captures the osmotic coefficient will therefore also
capture the mean ionic activity coefficient (and vice versa). Table 1.3 summarizes the meth-
ods used in literature to estimate parameters for electrolyte systems. While there is a large
variation, most authors will use properties related to the mean ionic activity coefficient or the
water activity (e.g. osmotic coefficient, water activity, freezing point depression, vapor pressure
etc.). While the two properties are related through the Gibbs-Duhem equation, several authors
[116, 121] note that the mean ionic activity coefficient is more sensitive to the parameters and
should therefore be included in the regression.

How can the temperature dependence be captured by the model?

Prediction of the temperature dependence, or at least a proper behavior of the EoS is desirable.
As shown in Figure 1.16, the activity coefficient data is only weakly temperature dependent
in the region from 25-100◦C, and validation in this region does not automatically mean that
the EoS can be used to extrapolate beyond this interval. Furthermore, Figure 1.16 shows that
the saturated vapor pressure is not a good indicator for the correspondence with the mean
ionic activity coefficient (and especially not in a logarithmic plot). In order to validate the
temperature-dependence of the model, it is preferable to compare the temperature dependence
of the activity coefficients directly. Still, several groups have presented results for e.g. gas
solubility, VLE, or LLE at higher temperatures without validating the activity coefficients [84–
91, 93]. In order to describe the behavior at elevated temperatures, a large number of effective
temperature-dependent parameters were correlated by Myers et al. [114], Radosz et al. [121–
127], Haghighi et al. [130, 131] and Lee and Kim [133]. While this will improve the correlation
of the experimental data, it does not provide insight into what fundamental changes must hap-
pen to the EoS to provide predictive powers. In terms of predictions, Herzog et al [138] and
Sadowski et al. [116] both fitted the activity coefficients at 25◦C and predicted the tempera-
ture dependence of the vapor pressure up to ca. 70◦C. But the only models that attempt to
predict or correlate the behavior at high temperatures (>100◦C) without introducing empirical
T-dependent parameters are Rozmus et al. [139], and Zuber et al. [140, 141], of which only
Rozmus et al. actually present the results at high temperatures (see Figure 1.16).

Which parameters can be predicted?

Many groups have investigated how parameters may be predicted from physical knowledge of
the system. Several groups [67, 85, 89, 91, 94, 109–112] have predicted the size of ions (σ)
through data collections of the crystal radii (e.g. Pauling radii). Unfortunately, the size pa-
rameter is also of great importance to the calculation of the density/apparent molar volume of
mixtures. While most groups do not report the correspondence of liquid densities, relatively
poor correspondence was reported by Galindo et al. (1999) [110] and Rozmus et al. [139]. One
exception to this rule is Liu et al. (2005) [67] who was able to get reasonable predictions of
the density at 25◦C as shown in Figure 1.17. The groups that include the ion diameter in the
parameter fitting but do not include volumetric data in the regression generally fail to predict
the apparent molar volume [86, 113, 114, 138].
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Figure 1.16: Temperature dependence of saturated vapor pressure P over aqueous KCl solutions (left)
and mean ionic activity coefficients (MIAC) of NaCl (right). Both from Rozmus et al.
[139].

.

Based on the results shown in literature, it is believed that using the crystal radii gener-
ally does not guarantee good correspondence with the liquid densities. The models that fit
the ion diameter and include volumetric data in the parameter regression will typically ob-
tain a reasonable agreement with both density and activity coefficients [115, 116, 118, 121–
125, 128, 129, 132, 140, 141]. It is however problematic that most authors compare to the liquid
densities rather than the apparent molar volume or the change in density relative to the pure
fluid, since the main contribution originates from water and a comparison to the total density
will therefore hide a large deviation in the apparent molar volume.

Whereas the molecular-based models typically use the diameter σ directly in the repusive/attractive
terms, models that are based on cubic EoS will require calculation of the co-volume parameter
b0 which is related to the ion diameter using Eq. (1.10).

b0 =
2
3
NAπσ

3 (1.10)

Figure 1.17: Predicted densities from Z. Liu et al. [67] (left) and Galindo et al. [110] (right)
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Myers et al. (2002) [114] and Lin et al. (2007) [128] did not use the relationship between ion size
and b0 and both parameters independently, resulting in unphysical or undiscernible parameter
trends.

Several groups [84, 86, 89, 90, 109, 110, 139] use Eq. (1.11) to determine the dispersive en-
ergy from the ion diameter σ, the polarizability α0, and the number of electrons ne, originating
from dispersion theory by Mavroyannis and Stephen [159]:

εi
kB

= 386
√
nei

(
αi

4πε0

)1.5 (σi
2

)−6

(1.11)

Note that the dispersive energy of H+ cannot be estimated using Eq. (1.11) equations as it
does not possess any electrons; it is therefore fixed to 105K in the work by Jin/Donohue [86].
Zuo and Guo (1991) [91] related Eq. (1.11) to the attractive energy parameter a0 of the cubic
Patel-Teja EoS using Eq. (1.12) (with f = 6):

a0 = 2.57012πεN2
Aσ

3f (1.12)

Simon et al. [92] proposed an alternative method for getting the cubic EoS parameters for the
monatomic ions, by adopting the Tc, Pc, and ω parameters from the noble gas at the same
period in the periodic table (e.g. Ne for Li+), while for NH+

4 he adopted the values of NH3.

Wu et al. (1998) [109] noted that the London B-coefficient B = 4εσ6 is independent of the
volume of the ion and therefore only depends on the polarizability. Wu et al. (1998) [109] used
a correlation of the critical volume εvc against the London B-coefficient B = 4εσ6 of different
compounds to determine the critical volume of the ion, from which he estimated a0 and b0 for
the Peng-Robinson EoS (but only for Na+ and Cl–). The effective diameter was then calculated
from the co-volume parameter. In many cases the contributions from dispersion between ions
has been defined as zero and only ion-solvent contributions are included.

Another approach to reduce the number of estimated parameters is used by Harvey et al.
(1989) [89, 90], Zuo and Guo (1991) [91], and Aasberg-Petersen (1991), who obtained ion-
solute interaction coefficients through Setschenow (salting-out) constants at 25◦C and used
them to (succesfully) calculate salting-out at elevated temperatures. Aasberg-Petersen (1991)
furthermore fixed the ion-solvent interaction parameter is determined from the vapor pressure
depression of a 1 molal solution at 100◦C.

For engineering equations of state, it is desirable to have parameters that can be related to
measurable properties that are available in data collections. This reduces the work-load on
parameterization heavily, and thus the productivity of the engineers, if the model provides well-
enough predictions. However, such experimental data only exists for salts and is therefore not
easily applicable in the case of ion-specific approaches.

Mixed Solvents

Despite the many publications within e-EoS, only a surprisingly small fraction has been used to
model electrolytes in mixed solvents. All models have used correlations to represent the static
permittivity of the mixed solvent (see Figure 1.18 (left)), but only Simon et al. (1991) [92]
have succesfully predicted the solubility of NaCl in water-ethanol mixtures without fitting addi-
tional parameters. Raatschen et al. (1987) [84] and Furst et al. (2002) [95] essentially obtained
ternary parameters by fitting different ion-ion interaction parameters in water and methanol,
and used volumetric mixing rules (based on salt-free mole fractions) to convert between the
two. Sadowski et al. [118, 120] fitted the ion-solvent dispersion energy parameter for each ion-
solvent pair and an effective (solvated) ion diameter of the ion (used in the electrostatic term)
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1.7. Summary
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Figure 1.18: Static permittivity in mixed solvents at 25◦C (MeOH at 20◦C) (left) (data from [23]).
Solubility and species in the mixed-salt system containing KCl and NaCl (taken from
Radosz et al (2005) [122]).

to activity coefficients and liquid densities. For mixtures of water-alcohol, Sadowski et al. used
a mixing rule based on the salt-free mole fraction to determine the ion size in a mixed solvent.
The model by Gmehling et al. [96–108] has been used to correlate activity coefficients, and
solubility of salts in other solvents (including mixtures). However, their approach rely on an
excess Gibbs mixing rule with an activity coefficient model containing a series of temperature-
dependent empirical interaction parameters, thus inheriting the advantages and disadvantages
from the existing approaches to model electrolytes using the activity coefficient models shown
in Table 1.1.

Mixed Salts

Various types of data is available for mixed salt solutions, and if the parameters have been
obtained from e.g. activity coefficients of the pure salts, mixed salt data can serve as a platform
for validation of the paramters. About half of the authors [88, 94, 110, 113, 114, 116, 121–
125, 128, 130, 133, 160] predict either osmotic coefficients, vapor pressures, or solid-liquid equi-
librium in solutions containing mixtures with 2-4 salts, indicating that most of approaches can
be transferred to mixed salt solutions (see Figure 1.18).

1.7 Summary

Many different physical phenomena are occuring simultaneously in electrolyte mixtures, and
the modeling of these effects is still challenging. The bottom line is that even today, engineers
have limited choices of thermodynamic models that handle salts.

As ion-specific effects are ubiquitous in electrolyte solutions, it is important that thermody-
namic models are based on ion-specific approaches. This is however inherently difficult, as the
effect of a single ion cannot be studied individually due to the charge balance constraint, and the
fact that the ions are derived from neutral salt compounds. A thermodynamic model should be
able to predict the temperature dependence using a limited number of adjustable parameters.
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1.7. Summary

There are many unanswered questions regarding how an equation of state should be developed
to take into account the electrostatic interactions. Furthermore, since most studies have been
concerned with the properties of aqueous solutions near room temperature, it still remains a
challenge to develop a model that accurately predicts the properties and ion-specific effects in
other solvents than water, and it often becomes a correlation exercise where additional param-
eters are included to counteract model deficiencies, such as the lack of an ion-solvent term to
take into account Gibbs energy of solvation or the use of correlations for the static permittivity
that does not include correct physical trends. The only model that has been able to predict salt
solubility in a mixed solvent without fitting additional parameters is from Simon et al. (1991)
[92]) and thus demonstrates that the feasibility of a more fundamental approach to modeling of
the static permittivity (as opposed to correlative methods).

The critical review has also shown that there exists a variety of modeling approaches in the field
of electrolyte EoS, suggesting a need to revisit the fundamentals of electrolyte thermodynamics
during the course of the PhD to determine a fundamentally correct and practical approach to
modeling of electrolyte mixtures with modern equations of state.
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Chapter 2

Scope of this Research

While the thermodynamic modeling of mixtures containing electrolytes has received significant
interest from many research groups worldwide, Table 1.2 and 1.3 illustrated that the research
directions have not become harmonized. A systematic effort is needed to provide answers to the
many question posed by the critical review of the current literature on electrolyte EoS shown
in Section 1.6. Without such an understanding, it is doubtful that the field will become harmo-
nized and be able to provide the industry with a new set of tools, capable of handling all types
of phase behavior in electrolyte mixtures.

During this work, recommendations on how to deal with the questions posed in Section 1.6
will be provided. The columns in 1.2 therefore serves as a recipe for the initial investigations
done towards developing a new equation of state based on the Cubic Plus Association EoS. In
this work, the fundamentals of modeling of electrolyte systems will be investigated to shed light
on the following key questions:

• How should electrostatic interactions be modeled?

• How should the static permittivity be modeled? And does it even matter?

• Should activity coefficients be converted from the McMillan-Mayer to the Lewis-Randall
framework?

• Should the model include an explicit term for the Gibbs energy of solvation?

• What is the importance of ion-solvent and ion-ion association in an electrolyte EoS?

This knowledge will then be used to derive an extension to the Cubic Plus Association to describe
mixtures of fully dissociated salts, and predict the solubility of light gases and hydrocarbons as
well as the effect of salts on hydrate formation temperatures. This extension (herein known as
e-CPA) will be developed as an engineering tool that can be integrated in commercial process
simulators. We will provide recommendations on how this EoS should be further developed to
tackle all types of experimental data shown in Table 1.2.

2.1 Thesis Structure

The structure of the thesis and the focus areas of different chapters is summarized below:

• Chapter 3: The Cubic Plus Association Equation of State

– Introduction of the CPA model

– Application of CPA to non-standard properties (apparent molar volume and heat
capacity) for water and ethylene glycol
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2.2. Overview of Research Activities

• Chapter 4: Theory of Electrolyte Solutions

– Comparison of the Debye-Hückel and Mean Spherical Approximation Theories for
Electrolyte Solutions (published in Ind. Eng. Chem. Res. (2012), 51, 5353-5363
[161]).

– The role of the Gibbs energy of solvation in electrolyte EoS

– Insights from molecular simulation in relation to ion-ion association and complex
formation

– Choice of the modeling framework - primitive, non-primitive, or civilized models and
the conversion between McMillan-Mayer and Lewis-Randall frameworks

– Perspectives on the role of standard states in the modeling of electrolyte solutions

• Chapter 5: Modeling of the Static Permittivity of Complex Fluids

– The background for modeling of the static permittivity

– The concept of the static permittivity in electrolyte EoS

– Modeling of Dielectric Properties of Complex Fluids with an Equation of State (pub-
lished in J. Phys. Chem. B. (2013), 117, 3389-3397) [162]

– Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of
State (published in J. Phys. Chem. B. (2013), 117, 10523-10533) [163]

• Chapter 6: Model Development

– Development of the electrolyte CPA model

– Model structure and computational aspects

– Parameterization and validation

• Chapter 7: Results and Discussion

– Emphasis on predictions of the thermodynamic properties and phase equilibrium
calculations, including:

∗ Pressure and temperature dependence of mean ionic activity coefficients

∗ SLE - Prediction of solid-liquid equilibrium in mixed salts and mixed solvents

∗ VLE - Prediction of solubility of light gases, hydrocarbons, and aromatics in
single salt aqueous solutions and mixed solvents

∗ Gas hydrate formation pressure in single salt aqueous and mixed solvent mixtures

∗ LLSE- Prediction of mutual solubilities in water-propan-1-ol-NaCl and solubility
limit

∗ LLLSE - Prediction of mutual solubilities in water-propan-1-ol-octane-NaCl sys-
tem

– Discussion and future work.

2.2 Overview of Research Activities

The study has been developed through four major phases:

• Investigations on the fundamentals of electrolyte thermodynamics (2010-2011) [161]

– Comparison of the Debye-Hückel and MSA models

– Investigation on the importance of the model for the static permittivity
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2.2. Overview of Research Activities

– Investigation on the role of the Born term

• Development of a predictive model for the static permittivity (2011-2013) [162, 163]

– Literature survey on the static permittivity of non-electrolyte mixtures

– Literature survey on the static permittivity containing electrolytes

– Model development and comparison to experimental data

• Revisiting fundamentals (2013-2014)

– Investigation on the role of standard state properties of electrolytes

– Investigation on volumetric properties for electrolytes

– Literature survey on ion-ion association

– Relationship to results from molecular simulation and statistical mechanics

– Harmonizing discourses and providing recommendations for future research direc-
tions

• Putting the pieces together - development of an engineering equation of state for elec-
trolytes (2013-2014)

– Extension of Electrolyte Database at CERE [13] with static permittivity s of salts,
new volumetric data, and performing quality assurance of existing thermal, SLE,
VLE, and thermodynamic data.

– Implementation of thermodynamic models in FORTRAN code

– Model development and parameter estimation

– Application to VLE, LLE, and SLE

The project was supervised by Prof. G. M. Kontogeorgis and Asc. Prof. K. Thomsen at the
Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineer-
ing, Technical University of Denmark. Research results have continuously been presented and
debated with researchers affiliated with the center, and with external collaborators from indus-
try and academia.

The research topics have been investigated through a combination of literature surveys, data col-
lection, and thermodynamic modeling. The results have been summarized in papers published
in internationally recognized journals and presented at international conferences. A complete
list of the attended conferences and publications is available in Appendix A.1-A.2. An external
stay at Linde AG in September 2013 lead to additional insights in the industrial needs in elec-
trolyte models, while a visit to Rice University in November 2013 the conclusions of the PhD
study and it’s implications for future theoretical research directions were discussed with other
researchers in the field.

Throughout the PhD study, a dual position as Software Manager (25% of the time) has en-
abled a close collaboration with industrial partners and provided a unique opportunity to learn
about applications of research in the field of chemical engineering thermodynamics. The main
results from this work has been the:

• Development of CAPE-OPEN and Aspen Plus User Model for the Cubic Plus Association
and Extended UNIQUAC models

• Development of generic library for exposing thermodynamic models and unit operations
to process simulators through CAPE-OPEN
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2.2. Overview of Research Activities

• Development of packages for performing thermodynamic modeling and parameterization
using MATLAB

• Consultancy and short projects with industry (e.g. Linde AG, Gassnova, Shell, Statoil,
BP, Chevron)

• Interactions with the CAPE-OPEN Laboratories Network (CO-LaN) e.g. through mem-
bership of the special interest group for thermodynamic models (ThermoSIG)

Finally, my time as the Chairman of the Society of Petroleum Engineers student chapter (2011-
2012) has helped me to gain new insights on the multi-disciplinary approaches used in oil and
gas industry to tackle industrial problems. A list of the courses followed during the PhD study
are available in Appendix A.3 and a list of the teaching activities are available in Appendix A.4.
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Chapter 3

The Cubic Plus Association

Equation of State

The cubic equations of state derived from the van der Waals equation of state have long been
the workhorse of the oil- and gas industry [1] and many tools have been developed based on
cubic EoS to e.g. describe the physical properties of mixtures of ill-defined oils and condensates.
The most widely used formulations are the Soave-Redlich-Kwong (SRK) [164] and the Peng-
Robinson (PR) [165] provide an excellent representation of the phase equilibrium properties
of hydrocarbon mixtures. While the cubic EoS have been continuously improved through the
introduction of advanced mixing rules based on the excess energy, their deficiencies are widely
recognized when it comes to predicting mixtures containing both non-polar, polar and associ-
ating molecules [1].

During the past 30 years, significant advances have been made in the description of com-
plex chemicals that display intermolecular association and hydrogen bonding. The statistical
mechanical treatment of short-range directional forces (hydrogen bonding) was initially formu-
lated in four papers by Wertheim (1984,1986) [80, 166–168] through the use of cluster expansions
(graph theory). In the late 1980s, Chapman, Jackson, Radosz and Gubbins [79, 169–171] intro-
duced a version of the Wertheim theory in the first formulation of the Statistical Associating
Fluid Theory, and thereby showed how the statistical mechanical treatment by Wertheim could
be readily used within the framework of thermodynamic models. In 1996, Kontogeorgis and
co-workers [82] presented the first formulation of the Cubic Plus Association (CPA) EoS, which
combines the cubic equations of state with the association theory from Wertheim. As the CPA
EoS reduces to the SRK EoS in the absence of association, it is compatible with existing meth-
ods for e.g. characterization of oils and condensates and determine the EoS parameters from
critical temperature Tc, pressure Pc, and acentric factor ω.

In this chapter the Cubic Plus Association (CPA) equation of state is introduced and an investi-
gation on how it performs for phase equilibrium, volumetric properties, and thermal properties
in mixtures of water with ethylene glycol is presented.

3.1 The Cubic Plus Association Equation of State

The CPA[1, 82, 172] equation of state (EoS) consists of the Soave-Redlich-Kwong (SRK)[164]
cubic EoS with the Wertheim association theory[80] as formulated by the Statistically Associated
Fluid Theory (SAFT)[79] to account for association of hydrogen bonding components. The
model has been used to calculate phase equilibrium and liquid densities for many complex
mixtures, especially in relation to the phase equilibrium of water, oil, natural gas and chemicals.
The model was derived through perturbation of the residual Helmholtz energy of the SRK EoS
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3.1. The Cubic Plus Association Equation of State

to also contain a contribution from association as shown in Eq. (3.1):

ArCPA = ArSRK +ArAssociation (3.1)

The pressure equation of CPA is calculated from Eq. (3.2):

P (T, v,x) = −
(
∂A/RT

∂V

)
T,n

=
RT

v − b0
− a (T )
v (v + b0)

− 1
2
RT

v

(
1 + ρ

∂ ln g
∂ρ

)∑
i

xi
∑
Ai

(1 −XAi
)

(3.2)

P [Pa] Pressure
T [K] Temperature
b0

[
m3/mol

]
Co-volume parameter of the mixture , see Eq. (3.3)

a(T )

[
Pa · m6

mol2

]
Van der Waals attractive energy parameter of the mixture , see Eq.
(3.4)

xi Mole fraction of molecule i
v

[
m3/mol

]
Molar volume

ρ
[
mol/m3

]
Molar density

XAi
Fraction of site A on component i not bonded to any other component

g(ρ) The radial distribution function at contact

The mixture co-volume is calculated from the van der Waals one fluid mixing rule[1] found
in Eq. (3.3):

b =
∑
i

∑
j

xixj

(
bi + bj

2

)
(1 − lij) (3.3)

In the case where lij = 0, Eq. (3.3) reduces to a simple linear mixing rule. The mixture attractive
parameter a(T ) is normally calculated from the van der Waals one fluid mixing rules[1] shown
in Eq. (3.4):

a (T ) =
∑
i

∑
j

xixj

√
ai (T ) aj (T ) (1 − kij) (3.4)

Where the pure component attractive parameter ai(T ) is calculated from Eq. (3.5):

ai (T ) = ΓiRibi
(
1 + c1i

(
1 −

√
Tr
))2

(3.5)

Γi [K] Reduced attractive energy parameter
c1i Pure component temperature dependence parameter for Soave’s α(T )-

function
Tc,i Critical temperature of component i

The kij parameter follows the temperature-dependence shown in Eq. (3.6). The tempera-
ture dependence can be used for correlation purposes over wide temperature ranges, but it is
generally assumed T-independent.

kij = α+ βT + γT−1 (3.6)

The Cubic equations of state may also use excess Gibbs mixing rules for the attractive energy
parameter. The Huron-Vidal/NRTL infinite pressure mixing rule has previously been applied
to model mixtures with acetic acid [173], and offers an additional flexibility that helps to let the
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3.1. The Cubic Plus Association Equation of State

CPA EoS accurately correlate binary interactions in complex mixtures. From the limit of the
excess Gibbs energy at infinite pressure, Huron and Vidal [174] derived the mixing rule shown
in Eq. (3.7) for the SRK EoS:

a

b
=
∑
i

xi
ai
bi

− gE,∞

ln 2
(3.7)

gE,∞ [kJ/mol] Excess Gibbs energy at infinite pressure.

Huron and Vidal [174] introduced the modified form of the NRTL activity coefficient model
shown in Eq. (3.8)

gE,∞

RT
=
∑
i

xi

∑
j
xjνj exp

(
−αjiΔUji

RT

)
ΔUji

RT∑
j
xjνj exp

(
−αjiΔUji

RT

) (3.8)

νi
[
m3/mol

]
The NRTL/Huron-Vidal volume parameter for component i at infinite
pressure.

αij The NRTL non-randomness parameter
ΔUij [J/mol] Change in interaction energy between like and unlike interactions

ΔUij = gji − gii

In Eq. (3.8), xiνi is the corrected volume fraction of molecule i at infinite pressure and this
is different from the original NRTL formulation as it corrects the local volume fractions. νi is
typically set to the co-volume parameter bi from the EoS. Note that the Huron-Vidal/NRTL
mixing rule reduces to the classical van der Waals one-fluid mixing rule when the following
parameters are used:

αji = 0 Uii =
ai
bi
h (1) Uji =

(
2ai
bi

− aji
bj

)
h (1)

ΔUji = Uji − Uii =

(
ai
bi

− aji
bj

)
ln 2 aij =

√
aiaj (1 − kij)

Generally, the CPA uses the parameters Γ = a/Rb , b, and c1 for the physical part and the
association strength β and association energy ε/kB for hydrogen bonding. The site fractions
are determined by solving Eq. (3.9) using the association strength ΔAiBj

between site A on
molecule i and site B on molecule j.

1
XAi

= 1 +
1
v

∑
j

xj
∑
Bj

XBj
ΔAiBj

(3.9)

ΔAiBj
= g (ρ) vAiBj

[
exp

(
εAiBj

kBT

)
− 1
]

(3.10)

ΔAiBj

[
m3/mol

]
The association strength between site A on molecule i and site B on
molecule j, calculated using (3.10).

vAiBj

[
m3/mol

]
Association volume calculated using Eq. (3.14) or Eq. (3.15)

εAiBj
[J] Association energy calculated using Eq. (3.13)

The radial distribution function in CPA g(ρ) is calculated from Eq. (3.11):

g (ρ) = (1 − 1.9η)−1 (3.11)
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3.1. The Cubic Plus Association Equation of State

In which the packing factor in CPA is give by η = b/4v. For a pure component, the site fractions
XA are related to the monomer fraction through Eq. (3.12):

X1 =
∏
Ai

XAi
(3.12)

In order to set up the association equilibrium constant ΔAiBj
, Huang and Radosz [175] proposed

to use association schemes based on the lone pairs of molecules as summarized in Table 3.1 for
alcohols and water. The cross-association between associating molecules such as water and

Species Formula Scheme Species Formula Scheme

Alcohol 3B Glycols 4C

Alcohol 2B Benzene

One negative

Water 4C Ether

solvation site

Table 3.1: Examples of pure component association schemes.

ethylene glycol in CPA is modeled by using the near Elliott combining rule (Eq. (3.13) and
Eq. (3.14))1 or the CR-1 combining rule (Eq. (3.13) and Eq. (3.15)) for the cross-association
energy and volume.

εAiBj
=
εAi

+ εBj

2
(3.13)

vAiBj
=
√
βAi

βBj
bibj (3.14)

vAiBj
=
√
βAi

βBj

(
bi + bj

2

)
(1 − lij) (3.15)

The association constants between an associating compound i (e.g. water) a non-self-associating
compound i , such as ethers or aromatic compounds and an associating compound such as water
are obtained by fitting βij and determining εij = εi/2 [1]. Both βij and εij can be fitted to
improve the temperature dependence of the cross-association (as is e.g. done for water-CO2.
However, it is generally preferred to use as few binary parameters as possible.

Given a pressure and a temperature, Eq. (3.2) is solved for the volume root V of the desired
phase. Phase equilibrium is subsequently determined from the fugacity coefficients calculated
using the EoS.

1The original Elliott combining rule is ΔAiBj =
√

ΔAiBiΔAjBj where ΔAiBi
is the association constant

between two sites on the same molecule i calculated with Eq. (3.10).
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3.1.1. Applications Beyond Excess Properties and Phase Equilibrium

In the case of non-associating compounds, the pure compound parameters Γi, bi, c1i are ad-
justed to match to vapour pressure and liquid density. For associating compounds, the first step
is to decide on an association scheme and then include association energy ε/kB and strength
β in addition to the three other parameters in the fitting procedure. For certain classes of
compounds (e.g. alcohols), the association parameters are reused. For aromatic compounds, it
is also possible to reuse the solvation parameters from other aromatic compounds.

3.1.1 Applications Beyond Excess Properties and Phase Equilibrium

The binary parameters are correlated to vapor-liquid or liquid-liquid equilibrium data of bi-
nary mixtures, and these parameters are then used to predict the behavior of multi-component
mixtures. The following section contains a case study on how well the CPA EoS predicts other
properties, such as excess volume and excess enthalpy, as these properties are also important
when developing an extensible framework for modeling of electrolyte mixtures with chemical
equilibrium or solid-liquid equilibrium. While the main purpose of the EoS is to obtain good
correspondence for the phase equilibrium properties, it must be realized that the activity coef-
ficient models used for handling electrolyte systems are typically parameterized to all types of
data. It is therefore interesting to determine how well the CPA equation of state reproduces the
fluid properties, to evaluate whether the proiperties can be included in the parameterization of
electrolyte systems.

3.1.1.1 Calculation of Excess Properties

The excess volume can be calculated from the total mixture volume v and pure component
volumes vi using Eq. (3.16), which are both calculated from the equation of state:

vE = v −
∑
i

xivi (3.16)

The thermal properties of pure compounds and mixtures with an equation of state can be
calculated from Eq. (3.17):

H (T, P,n) = H id +Hr (3.17)

The ideal gas enthalpy of the mixture is calculated from Eq. (3.18)

H id =
∑
i

xiH
id
i (3.18)

Where the ideal gas enthalpy of a pure compound is calculated from Eq. (3.19):

H id
i = H id

i,ref +
∫ T

Tref

Cidp,idT (3.19)

The residual contributions are obtained from the temperature fugacity coefficients given by Eq.
(3.20):

Hr

RT
= −T

∑
i

xi

(
∂ ln ϕ̂i
∂T

)
V,n

(3.20)

The heat capacity is calculated from Eq. (3.21)

Cp =
∑
i

xiC
id
p,i + Crp (3.21)
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3.1.1. Applications Beyond Excess Properties and Phase Equilibrium

The ideal gas heat capacity is obtained from the DIPPR correlation shown in Eq. (3.22):

Cip,id = Ai +Bi

(
Ci

T

sinh Ci

T

)
+Di

(
Ei

T

sinh Ei

T

)
(3.22)

The residual heat capacity Crp can be obtained from the reduced residual Helmholtz energy
F = Ar/RT using Eq. (3.23):

Cp
R

= −1 − 1
nT

⎡
⎣T 2

(
∂2F

∂T 2

)
V,n

+ 2T
(
∂F

∂T

)
V,n

+
T

R

(
∂V

∂P

)(
∂P

∂T

)2
⎤
⎦ (3.23)

The excess thermal properties are determined from the change relative to the pure components
assuming an ideal mixture as shown in Eq. (3.24):

HE (T, P,n) = H −
∑
i

xiHi

= −RT 2
∑
i

xi

[(
∂ ln ϕ̂i
∂T

)
P,n

−
(
∂ ln ϕ̂oi
∂T

)
P,n

]

= −T
∑
i

xi

(
∂ ln γoi
∂T

)
V,n

(3.24)

Where the heat capacity is obtained from the temperature derivative of Eq. (3.24). The activity
coefficients γi are calculated from the difference of the pure compont standard state fugacity
coefficients φ̂oi shown in Eq. (3.25):

ln γi = ln ϕ̂i − ln ϕ̂oi (3.25)

In the case of regular compounds, such as water or ethylene glycol, the pure compound is used
as the standard state. Ions, however, use the rational unsymmetrical standard state, i.e. at
ln ϕ̂oi denotes the standard state at infinite dilution in water.

3.1.1.2 Case Study: Water and Ethylene Glycol

The pure component parameters for water and ethylene glycol taken from previous work by
Kontogeorgis et al. and summarized in Table 3.2:

Tc Pc ω Γ b0 c1 Association 1000 × β εAB/kB
[K] [bar] [K] [cm3/mol] scheme [K]

H2O 647.13 220.55 0.3449 1017.34 14.515 0.67359 4C 69.2 2003.25
MEG 720 77 0.4868 2531.71 51.4 0.6744 4C 14.1 2375.75

Table 3.2: Pure fluid parameters for water and ethylene glycol

The deviations from properties from freezing point and up to 200◦C compared to the most
recent correlations in the DIPPR database are presented in Table 3.3. Note that the heat of

RAD [%] Psat ρliq ΔHvap Cp,liq

H2O 0.793 0.93 1.522 6.154
MEG 1.263 1.605 0.29 6.068

Table 3.3: Relative deviations from DIPPR correlations[176] from 0-200◦C.
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vaporization are related to the vapor pressures using Eq. (3.26):

lnP sat = −ΔvapH

RT
+ C (3.26)

Where C is a constant of integration. The deviations in the heat of vaporization are therefore a
different representation of the deviations in the vapor pressures and vice versa. While the devi-
ations in the saturated vapor pressure, liquid density, and heat of vaporization are acceptable,
the deviation in the heat capacity is not - and certainly not when the temperature-dependence
of the deviations are as high as shown in Figure 3.1-3.2.

Figure 3.1: Pure component properties for water with CPA at the saturation line. The model was
parameterized against the vapour pressure and liquid density, and the heat of vaporization
and heat capacity was predicted.

It is considered infeasible to attempt correlating the heat capacity along with the EoS as the
functional form of the CPA model is too simple to capture the non-monotonic behavior of com-
plex chemicals. Since the CPA EoS does not predict the thermal properties of the liquid phase
(especially water) to a high enough accuracy, a different approach must be used in order to
include properties such as enthalpy of dilution and apparent molal heat capacity in parameter-
ization. A separate model can then be used for the standard state properties and the EoS can
be used to calculate the deviation from this standard state.

3.1.1.3 Case Study: Water-Ethylene Glycol Mixture

For the binary mixture of water-ethylene glycol, the CPA parameters were published in De-
rawi et al.[177]. The results obtained with the published parameters are defined as Case 1.
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Figure 3.2: Pure component properties for ethylene glycol with CPA at the saturation line. The model
was parameterized against the vapour pressure and liquid density, and the heat of vapor-
ization and heat capacity was predicted.

A summary of the results for different cases is shown in Table 3.4. It was observed that the
default parameters gave good correspondence with VLE and excess enthalpy, but that the cor-
respondence with excess volume was less satisfactory and showed in fact the opposite trends
(see Figure 3.3). While the excess volume is only a small part of the total volume (typically
less than 1%), as it could be a sign of the current parameters giving a misrepresentation of the
physical interactions in the system.

RAD[%] kij lij Combining Cp,liq Excess Hliq Excess Vliq Excess VLE
rule Cp,liq Hliq Vliq

Case A 0 0 Elliott 12.70% 0.40% 0.23% 170% 1.60% 259% Bad
Case B 0 0 CR-1 12.90% 0.50% 0.20% 145% 1.60% 255% Bad
Case 1 -0.115 0 Elliott 12.60% 0.30% 0.05% 36% 1.20% 199% Good
Case 2 -0.05 0.0368 Elliott 12.70% 0.40% 0.07% 49% 0.10% 28.50% Good
Case 3 -0.05 0 CR-1 12.80% 0.40% 0.12% 87% 1.40% 220% OK
Case 4 0 0.0368 CR-1 12.90% 0.60% 0.12% 84% 0.20% 41% OK

Table 3.4: Results for water-ethylene glycol mixtures with CPA for different mixing rule parameters
and combining rules (CR) for the cross-association from 0-200◦C.

Figure 3.3 shows the correspondence of the CPA with the excess volume and a calculation
of the free volume with and without fitting the lij . Note that the free volume decreases indi-
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cating a less structured fluid in the mixtures of the two - this is well in line with the expected
behavior. Figure 3.3 shows that with an lij it is possible to remedy some of the defects of the

Figure 3.3: Excess molar volume (left) and free volume (V-b) calculated by the CPA EoS in Case 1
and Case 2 (see Table 3.4) at 25 ◦C and 1 atm.

model. Furthermore, the kij needed to correlate the VLE was significantly reduced (from −0.115
to −0.05, indicating improved predictions when the volume data and change in fluid structure
was taken into account). The apparent molar volumes shown in Figure 3.4, shows that there are
the structural changes occurring in the fluid that leads to a reduction in the volume required
for a water molecule. This may be attributed to changes in the hydrogen bond network, but
this effect is not included in the Case 1 (published) CPA parameters. Figure 3.4 shows that
without using an lij = 0, CPA predicts the opposite trend in apparent molar volume. This can
be remedied by using an lij obtained from the volumetric data. It was observed that the other
binary parameter, kij and βij, cannot be adjusted to capture the excess volume satisfactorily
without also losing other properties.

Table 3.4 also shows that the correspondence with excess enthalpy is slightly worse (but this
only constitutes less than a half percent of the total enthalpy). Representative results for ther-
mal properties and VLE are shown in Figures 3.5-3.7. Note that the CR-1 mixing rule (Case
3 and 4) does not perform so well for this mixture in terms of VLE as shown in Figure 3.8:
Using an lij modifies both the volumetric properties and the combinatorial part of the activity
coefficient, and has previously been shown to work well for highly unsymmetrical mixtures [179].
The dangers of using both an lij and a kij is that even with a cubic EoS the combination of
these two interaction parameters can correlate many binary systems[180]; however, this success
is not necessarily due to proper representation of the physics. Therefore, if an lij and kij is used
to correlate a system, it is important to require considerable improvements over fitting only one
of the parameters. When the lij that gives good correspondence with excess volumes is used for
the water-MEG system, it reduced the absolute value of the binary interaction parameter kij,
meaning that the predictions were improved. A more general investigation should be performed
to see if the inclusion of an lij fitted to excess volume data would also improve predictions in
other systems with considerable excess volume, such as mixtures of water with alcohols, ketones,
and organic acids.
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Figure 3.4: Apparent molar volume of water and ethylene glycol with CPA and comparison to experi-
mental data[178] for Case 1 and 2 (see Table 3.4) at 25◦C and 1 atm.

Figure 3.5: Total (left) and excess (right) heat capacities of the water-ethylene glycol mixture calculated
by the CPA EoS in Case 1 and Case 2 (see Table 3.4) at 1 atm.

3.2 Summary

The Cubic Plus Association equation of state was presented in its complete form with the
classical van der Waals one-fluid mixing rules and the Huron-Vidal/NRTL mixing rule. It
was shown that the classical mixing rules are really a special case of the NRTL/Huron-Vidal
mixing rules. The CPA EoS was applied to model mixtures of water and ethylene glycol to
demonstrate the importance of selection of the combining rules for the association term. The
investigation furthermore showed that while the EoS provides fair agreement with total volume
and VLE, it does not accurately capture excess properties such as excess enthalpy, volume, or
heat capacity. Furthermore, it was shown that the liquid heat capacities of pure water and
ethylene glycol could not be accurately predicted from the ideal gas reference state, indicating
that it is necessary to use the liquid standard state when precision is required for the thermal
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Figure 3.6: Excess enthalpy of water-ethylene glycol mixture at 25◦C and 1 atm for Case 1 and 2 (see
Table 3.4).

Figure 3.7: T-x,y (left) and P-x,y (right) diagrams for the vapor-liquid equilibrium of water and ethy-
lene glycol for Case 1 and 2 (see Table 3.4).

properties (e.g. in relation to equipment design). Finally, it was shown how predictions of the
VLE could be improved by fixing an lij to excess or apparent molar volumes for this particular
system, but more work would be needed to show the generality of this approach.
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Figure 3.8: T-x,y (left) and P-x,y (right) diagram of the vapor-liquid equilibrium of water and ethylene
glycol with Elliott (Case 1) or CR-1 (Case 3) (see Table 3.4).
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Chapter 4

Theory of Electrolyte Solutions

From the literature review in the Chapter 1 it was demonstrated that there are several different
interpretations of the background of electrolyte thermodynamics and conflicting opinions on
how an electrolyte equation of state should be developed. A set of research questions were
identified in order to harmonize the approach to developing electrolyte EoS. This chapter will
systematically investigate the research questions and develop recommendations on how an en-
gineering electrolyte EoS should be constructed.

The first sections deal with the primitive models for electrolyte mixtures. The Debye-Hückel
equation and the mean spherical approximation are compared and the importance of the relative
static permittivity εr (or dielectric constant) for the primitive models for electrolytes is high-
lighted. This work was published in Ind. Eng. Chem. Res. (2012), 51, 5353-5363 [161] and has
been shortened to avoid repetition of the previous chapters. A short follow-up to the conclusions
from this article is presented to demonstrate how the primitive models for electrolyte solutions
could be improved by insights from molecular simulation and ion-ion association. Furthermore,
the background for the Born model is investigated to show the importance of the Gibbs energy
of hydration in electrolyte models. It will also be demonstrated how the Debye-Hückel and the
Born equation can both be derived through a simple charging procedure. Additionally, it is
suggested that the complete electrolyte equation of state offers new opportunities for modeling
and prediction of the standard state properties based on the ideal gas state, which can help to
simplify the treatment of systems with complex chemical speciation.

Following up on the discussion of primitive models, the relationship between the primitive
and non-primitive models for electrolyte solutions is demonstrated. From a statistical mechani-
cal perspective, these models are intrinsically linked through the static permittivity which must
be calculated from a physically based model that takes into account interactions between all
compounds in the mixture. Based on this evidence and a comparison with the non-primitive
models, it is suggested that it becomes unnecessary to convert from the McMillan-Mayer to the
Lewis-Randall framework in an electrolyte EoS when a physically realistic model is used for the
static permittivity.

4.1 Modeling of Electrostatic Interactions

As illustrated in Chapter 3, equations of state may be formulated in terms of the residual
Helmholtz energy using the perturbation theory where the total Helmholtz energy is written as
the sum of different contributions. Eq. (4.1) shows how the electrostatic interactions can be
included in CPA:

Ar = ASRK +AAssociation +AElectrostatics (4.1)
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The derivative of each model for the Helmholtz energy will provide a contribution to the pres-
sure/volume, chemical potential, and thermal properties of the mixture. Still, as illustrated in
the introduction chapter, the literature on electrolyte equations of state do not agree on which
term should be used for the electrostatic interactions. The most common primitive models for
the electrolyte interactions are the Debye-Hückel model[26] and the electrostatic part of the
mean spherical approximation (MSA)[47, 48]. Both models use Coulomb’s law to describe the
force between two charges zi and zj given by Eq. (4.2):

F (r) =
e2

4π
1
εrε0

zizj
rij2

(4.2)

The coulombic forces are lowered when the relative static permittivity of the medium increases
(e.g. in water with εr = 78 at 25◦C) which enables the dissociation of salts. Another funda-
mental equation is the electroneutrality condition, i.e. that the net charge of a system is zero:

∑
i

ρiqi = 0 (4.3)

ρi
[
mol/m3

]
Molar density of component i

The Debye-Hückel model[26] was first derived by Debye and Hückel (1923) from a linearization
of the Poisson equation by treating all ions as point charges and assuming a minimum distance
of di between the ions surrounding a central ion. The non-restricted primitive MSA model was
developed by Blum[47, 48] from statistical mechanics, by treating ions as charged hard spheres
of different diameters σi. In the original MSA model, the screening length Γ must be solved
for numerically as it is done in this work, but several simplifications of the MSA theory making
it into an explicit equation of the Helmholtz energy have been presented in literature[1, 110].
Figure 4.1 shows a visual interpretation of the assumptions of the two models.

Figure 4.1: Illustration of assumptions used in the Debye-Hückel and in the MSA model. Debye-Hückel
treats ions as point charges with a minimum separation distance, while MSA treats all ions
as charged hard spheres.

Several authors have presented the differences between the Debye-Hückel and MSA models
for use in an equation of state [52, 85–89, 110–112, 114]. Myers et al.[114] stated that MSA
yields better results for the thermodynamic properties of electrolyte solutions at high concen-
trations. Along the same lines, Paricaud et al.[111] stated that since the simpler Debye-Hückel
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theory treats ions as point charges it is only correct for infinitely dilute solutions and quickly
breaks down at increasing electrolyte concentrations where the ion-ion and ion-solvent correla-
tions become important. It has also been stated that the liquid densities are better described
by MSA than Debye-Hückel[110, 112].

While the observations of these authors may be valid, it is important to realize that the liq-
uid densities are obtained through an implicit function that includes volume and compositional
derivatives from all contributions to the Helmholtz energy to solve for the bubble point pressure
and vapor/liquid volumes. The results obtained from this procedure furthermore depend on the
method used for parameter estimation and the experimental data that was used in the param-
eter estimation. Sadowski et al. [115–120] have succesfully developed an electrolyte extension
of PC-SAFT based on Debye-Hückel, and Bostrom et al. [59] showed that similar results were
obtained from numerical solution of the non-linear Poisson-Boltzmann equation to the HNC and
Monte Carlo simulations to determine the radial distribution of ions near a protein (macro-ion),
indicating that the Poisson-Boltzmann equation is not inferior to molecular simulation. Rather
than comparing the complete EoS after parameterization, this investigation will perform a fair
and un-biased comparison of MSA and Debye-Hückel by comparing the contributions to the
residual Helmholtz energy from MSA and Debye-Hückel at constant temperature, volume and
composition.

4.1.1 On the derivation of the Debye-Hückel theory

This section presents parts of the derivation of the Debye-Hückel theory to illustrate important
concepts of electrolyte thermodynamics that are common to the Debye-Hückel and MSA theo-
ries for long-range electrostatic interactions. The derivation follows the approach presented by
other authors[26, 181–183].

The Poisson equation relates the electrical potential ψi with the local charge density ci (r)
of ion i. In spherical coordinates, the Poisson equation may be written as Eq. (4.4):

∇2ψi = −ci (r)
ε0εr

(4.4)

ψi Electrical potential around component i , see Eq. (4.4)
ci

[
C/m3

]
Charge density of component i

The local number density of the ions surrounding ion j may be written as Eq. (4.5):

cj (r) = NAe
N∑
i

ziρigij (r) (4.5)

Eq. (4.4) may only be solved when gij (r) is a known function of the potential ψi (r) [184]. To
arrive at an expression for the pair correlation function, the potential of average force wij (r) is
first defined in Eq. (4.6):

gij (r) = exp
[
−wij (r)

kBT

]
(4.6)

wij [J] Potential of average force exerted between molecule i and j

wij (r) is then assumed to be proportional to the electrostatic potential as shown in Eq. (4.7):

wij (r) = ezjψi (r) (4.7)
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4.1.1. On the derivation of the Debye-Hückel theory

Inserting Eq. (4.7) into Eq. (4.6) gives an expression for the radial distribution function as
shown in Eq. (4.8).

gij (r) = exp
[
−ezjψi (r)

kBT

]
(4.8)

Onsager [185] showed that the assumption that the distribution of ions was given by Eq.
(4.8) becomes inconsistent for charge-asymmetric electrolytes since the logical requirement that
ρjgji (r) = ρigij (r) is not fulfilled, except for the linearized Poisson equation. Onsager [186]
presented a procedure to remedy this discrepancy of the derivation by using higher order cor-
rections of the Debye length, but this will not be investigated further here.

Using Eq. (4.8) the charge density of the Debye-Hückel theory can be determined from Eq.
(4.9) and it follows that the Poisson-Boltzmann equation is given by Eq. (4.10):

ci (r) = NAe
N∑
j

zjρj exp
[
−ezjψi (r)

kBT

]
(4.9)

∇2ψi = − e

ε0εr

N∑
j

zjρj exp
[
−ezjψi (r)

kBT

]
(4.10)

Eq. (4.11) is obtained after linearizing Eq. (4.10):

∇2ψi = −
N∑
j

ezjρj

(
1 − ezjψi (r)

kBT

)
(4.11)

The final expression for the linearized Poisson-Boltzmann equation (Eq. (4.13)) is obtained
from Eq. (4.11) by inserting the electroneutrality condition from Eq. (4.3) and by defining the
Debye length κ−1 from Eq. (4.12):

κ2 =
e2

kBT

1
εrε0

N∑
i

ρiz
2
i (4.12)

∇2ψi = κ2ψi (r) (4.13)

Thus, the electrical potential ψi may be deduced by the solution to Eq. 4.13 imposing the
boundary conditions lim

r→∞
ψi (r) = 0 and Eq. (4.2) as presented in the derivation shown in e.g.

McQuarrie[181] or Michelsen and Mollerup [182]. With both models, the electrostatic potential
of a molecule with fractional charge λqi may be calculated using Eq. (4.14):

ψi (r = di) =
λqi

4πεrε0

1
dij

1
1 + λκdij

(4.14)

The total electrostatic potential at r = dij may be related to the excess Helmholtz energy using
the partial charging process [181, 182], where the ion with charge λqi is charged from λ = 0 to
1, as presented in Eq. (4.15)-(4.16):

ADH =
∑
i

niezi

∫ 1

0
ψi (λ) dλ (4.15)

ADH = − kBTV

4πNA
∑
i
niz2

i

∑
i

niz
2
i χi (4.16)
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ADH [J/mol] Helmholtz energy from the Debye-Hückel model
Where the function χi is given by Eq. (4.17)

χi =
1
d3
i

[
ln (1 + κdi) − κdi +

1
2

(κdi)
2
]

(4.17)

The complete derivatives of up to 2nd order are provided in the book by Michelsen and
Mollerup[182].

Pitzer [38, 187] discussed how the hard-core contribution could be included in the Debye-Hückel
theory using a statistical mechanical treatment of the osmotic pressure Π given by Eq. (4.18).

Π − ρkBT = −4π
6

∑
i

∑
j

ρiρj

∞∫
0

(
∂uij
∂r

)
gij (r) r3dr (4.18)

Using a potential uij for the hard-core ions given by Eq. (4.19), Pitzer[38, 187] derived the
expression shown in Eq. (4.20) by including the third order Taylor expansion of the radial
distribution function gij from Eq. (4.8).

uij =

⎧⎪⎨
⎪⎩

∞ r < dij

zizje
2

4πεrε0r
r >= dij

(4.19)

Π
ρkBT

− 1 = − κ3

24πρ (1 + κdi)
+ ρ

[
2πd3

3
+

1
48π

κ4di

ρ2(1 + κdi)
2

]
(4.20)

As pointed out by Onsager[185], methods that use higher order terms of the radial distribution
function will become inconsistent for unsymmetrical electrolytes as the logical requirement
ρjgji (r) = ρigij (r) is not fulfilled. Pitzer notes that the method is consistent for symmetrical
electrolytes, and that the inconsistency for unsymmetrical cases is small. Since the model by
Pitzer includes the contribution from hard-core repulsions, it is not suited as a perturbation
for the electrostatic forces in an EoS, as the EoS already contain terms that account for the
short-range interactions.The Pitzer equation [38] is used to accurately correlate experimental
data for osmotic coefficients and such correlations are e.g. used by the oil industry to evaluate
scaling propensity using the ScaleSoftPitzer software from the Brine Chemistry Solutions [43].

4.1.2 On the derivation of the MSA theory

The fundamental difference between the derivations of the MSA and the Debye-Hückel theories
is that MSA treats the ions as hard-core spherical molecules with diameter σi. This gives rise
to an excluded volume that is inaccessible to other ions leading to different expressions for the
Helmholtz energy and screening length compared to the Debye-Hückel theory. The lengthy
derivation of MSA has been presented by Blum[47, 48] and will not be repeated here. The final
expression for the excess internal energy is given by Eq. (4.21):

ΔEMSA = − V e2

4πεrε0

N∑
i

ρizi

[
Γzi + ησi
1 + σiΓ

]
(4.21)

In which Γ is given by the MSA closure equation from Eq.(4.22), and the function η is calculated
from Eq. (4.23):

(2Γ)2 =
1

kBT

e2

ε0εr

∑
k

ρk(zk +Nkσk)
2 (4.22)
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η =
1
Ω
π

2Δ

∑
k

ρkσkzk
1 + Γσk

=
1
Ω

π

2Δ
NA

V

∑
k

nkσkzk
1 + Γσk

(4.23)

The distance (2Γ)−1 is the MSA equivalent of the the screening length in the Debye-Hückel
theory κ−1, and the auxillary function Ω is calculated using Eq. (4.24):

Ω = 1 +
π

2Δ

∑
k

ρkσ
3
k

1 + Γσk
= 1 +

π

2Δ
NA

V

∑
k

nkσ
3
k

1 + Γσk
(4.24)

Δ is a measure of the included volume fraction calculated using Eq. (4.25) and must be strictly
positive and larger than ca. 1-0.74 (0.74 being the packing factor of the face-centered cubic
lattice). Note that this term also includes the contribution from uncharged species in the
mixture:

Δ = 1 − π

6

∑
k

ρkσ
3
k = 1 − π

6
NA

V

∑
k

nkσ
3
k (4.25)

The Helmholtz energy may be calculated using the thermodynamic relation shown in Eq.
(4.26):

∂

∂(kBT )−1

(
AMSA

kBT

)
= ΔEMSA (4.26)

The integration shown in Eq. (4.26) cannot be performed directly, but through the procedure
by Höye and Stell[188], where the Helmholtz energy may be expressed from Eq. (4.27):

AMSA

kBT
=

ΔEMSA

kBT
−
∫ Γ

0
dΓ′

(
∂

∂Γ′

ΔEMSA

kT

)
(4.27)

Note that taking the derivative of Eq. (4.27) wrt. Γ yields the identity in Eq. (4.28):

∂

∂Γ

(
AMSA

kBT

)
T,V,n

= 0 (4.28)

The solution to the integral in Eq. (4.27) gives the surprisingly simple result shown in Eq.
(4.29):

AMSA

kBT
=
V Γ3

3π
− 1
kBT

V e2

4πεrε0

N∑
i

ρizi

[
Γzi + ησi
1 + σiΓ

]
(4.29)

Furthermore, another form of Eq. (4.22) as shown in Eq. (4.30) can be obtained by using Eq.
(4.28):

(2Γ)2 =
1

kBT

e2

εrε0

N∑
i

ρizi
∂

∂Γ

[
Γzi + ησi
1 + σiΓ

]
(4.30)

The MSA theory has one internal variable Γ which is not known from explicit relations and
must be obtained from numerical methods. An implicit function expressing the Helmholtz
energy arises from the derivation of MSA. The equations may be solved using an iterative
scheme of Eq. (4.22), but as Γ changes depending on temperature, pressure and composition, it
becomes difficult and inefficient to obtain the second order derivatives of MSA explicitly using a
successive substitution scheme. However, in this work a computationally more efficient approach
based on an unconstrained minimization of the Helmholtz energy was used (see Appendix C.1).
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4.1.3 The electrostatic moment conditions

Mixtures containing electrolytes should satisfy the so-called moment conditions [183]. The
solutions to the four first moments are therefore interesting in terms of analyzing the importance
of the assumptions done in the Debye-Hückel theory, i.e. that the radial distribution function is
only a function of the long-range forces from the electrostatic interactions. From the Coulombic
forces between ions (Eq. (4.2)) it is possible to derive a set of statistical mechanical moment
conditions for electrolytes using the Ornstein-Zernike equation. A derivation of the moment
conditions has been presented by e.g. Attard[183], and his results are summarized in this paper
to illustrate that the Debye-Hückel theory cannot satisfy the fourth moment condition due to
neglecting the short-range forces. The zeroth moment condition is shown in Eq. (4.31):

4π
∑
k

ρkzk

∫ ∞

0
r2hik (r) dr = −zi (4.31)

The left hand side of Eq. (4.31) represents integration over all ions in the vicinity of the central
ion. The physical significance of Eq. (4.31) is that the total charge in the ion cloud surrounding
the central ion i will be of same magnitude but opposite charge as the central ion i [48]. The ze-
roth moment is thus the microscopic equivalent of the electroneutrality condition from Eq. (4.3).

The Stillinger-Lovett second moment condition is given by Eq. (4.32):

4πe2

ε0εrkBT

∑
i

∑
j

ρiρjzizj

∫ ∞

0
r4hik (r) dr = −6 (4.32)

The physical significance of Stillinger-Lovett 2nd moment is that for finite size ions, a charge
oscillation occurs in the ionic cloud[183]. Note that neither the 0th nor the 2nd moment depend
on the short-range interactions (determined by the direct correlation function c(r)).

The fourth moment is presented in Eq. (4.33)[183]:

1
120

QH(4)Q =
(
H(0) − C(0) − H(0)C(0)

)(
I − C(0)

)
(4.33)

Where the matrix Q is given by Eq. (4.34), H(0) from the first term of the linearization of
the indirect correlation function hij (r) in Eq. (4.35), and C(0) from the first term of the
linearization of the short-range part of the direct correlation function as given by Eq. (4.36)

Qij =
√
ρiρj

kBT

qiqj
ε0εr

(4.34)

H0
ij = (ρiρj)

1

2h0
ij (r) (4.35)

C0
ij = (ρiρj)

1

2 c0
ij (r) (4.36)

It is evident that the fourth moment depends on the short-range interactions, represented by
C(0). The fourth moment condition has been related to the partial ionic structure factors and
the isothermal compressibility of the electrolyte[189, 190]. The Debye-Hückel theory assumes
that the short-range interactions are negligible, i.e. that C(0) = 0 but the MSA accounts for the
short-range interactions by treating the ions as hard spheres. However, when the Debye-Hückel
model is augmented by additional terms to account for the short-range interactions, as is done
with electrolyte equations of state, one can argue that this deficiency is no longer problematic.
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4.1.4 On the Relationship between EoS and Activity Coefficient Models

An EoS will include one of the terms for the Helmholtz energy from Debye-Hückel (Eq. (4.16))
or MSA (Eq. (4.26)) to account for the long-range electrostatic interactions, as a perturbation
to reference EoS. Insofar, the efforts to form a working EoS for mixtures with electrolytes have
not resulted in significant improvements over the activity coefficient (or excess Gibbs energy)
models for electrolyte systems[1]. This section serves to present the relationship between the
expressions for the long-range electrostatic forces developed for the Debye-Hückel and MSA
theories, and the activity coefficient models that are widely used by the industry to predict
thermodynamic properties of mixtures containing electrolytes. The chemical potential may be
determined from the compositional derivative of either the Helmholtz or the Gibbs free energy:

μi =
(
∂A

∂ni

)
T,V,nj �=i

=
(
∂G

∂ni

)
T,P,nj �=i

(4.37)

The chemical potential may be split into two terms from the relation μi = μii + μEi , one term
corresponding to the ideal mixture contribution μii, and one term corresponding to the excess
chemical potential μEi . The activity coefficient may then be obtained from the excess chemical

potential using the well-known relation ln γi = μE
i

RT . The chemical potential may be calculated
from either the rational (mole-fraction) or the molality scale, and may furthermore be given as
the unsymmetrical activity coefficient, tending to 1 as the concentration goes to zero. Com-
monly, activity coefficient models for electrolyte mixtures use unsymmetrical activity coefficients
using the molality scale for solutes, and the symmetrical rational activity coefficient for solvents.

Debye and Hückel[26] originally derived a model for the activity coefficient from the expres-
sion of the excess Helmholtz energy from Eq. (4.16) by replacing the molar volume and static
permittivity by empirical correlations, and using the resulting equation as an expression for the
excess Gibbs energy. This procedure has been used for activity coefficient models[38, 71, 75, 187],
whereas electrolyte EoS determine the volume from the pressure equation given by Eq. (4.38).

P = −
(
∂A

∂V

)
T,n

(4.38)

Primitive electrolyte EoS[84, 94, 110–112, 114, 115, 121, 128, 129, 184] determine the static
permittivity from (semi)-empirical solvent-specific correlations while non-primitive EoS[52, 67]
determine the static permittivity from dipolar interactions. Common to both the electrolyte
EoS and activity coefficient models, is that they include terms that account for the short-range
interactions; activity coefficient models determine the short-range forces from local-composition
models as UNIQUAC[75] or NRTL[71], or from Pitzer’s modifications of the Debye-Hückel
theory to include a hard-core repulsive term shown in Eq. (4.20).

4.1.5 Numerical Comparison of the Debye-Hückel and MSA Theories

The previous section introduced the Debye-Huckel and MSA models and showed the major
differences between the assumptions of these two models. It is of interest to investigate the
numerical differences in the excess Helmholtz energy to determine the differences between MSA
and Debye-Hückel. It was decided to use the same numerical value of the ion diameter in MSA
as in Debye-Hückel to provide a basis for comparing the two models, thus in this section, σi
will be used as the symbol for the ion diameter and the distance of closest approach di. Typical
Pauling radii are shown in Table 4.1:

To obtain the complete picture of the differences between the two models, it was decided to
vary the ion diameter, ion charge, temperature, volume, and composition. Additionally, as has
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Ion Li+ Na+ Mg2+ Ca2+ Cl– SO2–
4 NO–

3

Radii [Å] 0.74 1.02 0.72 1.00 1.81 2.30 1.79
α [L/mol] 0.12 0.1062 0.1155 0.1097 0.1173 0.0022 0.1104

Table 4.1: Pauling radii for selected ions [191] and ion specific parameters for calculation of the static
permittivity [182].

been shown by several authors[84, 92, 109, 114, 129, 182], the relative static permittivity εr is a
function of temperature, volume, and composition, and that this dependence is of high impor-
tance to the performance of the electrolyte equation of state. To determine the influence of the
static permittivity on the performance of the two models, the model presented by Michelsen
and Mollerup[182] was implemented. According to this model, the relative static permittivity
is calculated using the empirical expression shown in Eq. (4.39):

εr (T, V, n) = εwr (T ) × E (n, V ) (4.39)

Where E (n, V ) is an ion correction factor that effectively serves to reduce the relative static
permittivity. εwr is the relative static permittivity of water calculated as a function of tempera-
ture using Eq. (4.40):

εwr (T ) = εwr (T0)

(
1 +

β1

2

NAμ
2
w,0

kBε0

(
ρw (T )
T

− ρw (T0)
T0

))
(4.40)

T0 [K] Reference temperature T0 = 273.15K
εwr Static permittivity of liquid water at saturation conditions
μw,0 [C · m] Dipole moment of water in vacuum μw,0 = 8.33 · 10−30C · m
β1 Fitting constant for static permittivity of water β1 = 3.1306
ρw

[
g/cm3

]
Density of water , see Eq. (4.41)

ρw (T ) = 0.99984+ 1.51782× 10−4 (T − T0)− 4.50573× 10−5(T − T0)1.55 [g/cm3] (4.41)

The relative static permittivity and density of pure water are shown in Figure 4.2 and the
E-factor is given by Eq. (4.42).

E (n, V ) = 1 +
ions∑
k

(
0.010ck − αkCk

1 + 0.160Ck

)
(4.42)

Ci [mol/L] Concentration of component i in molality
αk [L/mol] Ion-specific constant for dielectric decrement

Selected values for α are shown in Table 4.1 and an example calculation for the static permit-
tivity of NaCl and MgCl2 are presented in Figure 4.3. The basis of the comparison utilizes a
constant volume with the static permittivity of pure water, if not stated otherwise. This is done
to more easily distinguish the effect of parameters on the models.

4.1.6 Comparison of Screening Length

Comparing Eq. (4.12) to Eq. (4.22) shows that the screening length in the Debye-Hückel theory
is independent of diameter, while this is not true for MSA. Figure 4.4 compares the screening
length of MSA and Debye-Hückel at 25◦C, showing that the Debye-Hückel theory predicts an
unphysical behavior where increasing the ion size does not increase the screening length. The
difference between the screening length in MSA and Debye-Hückel depends on the molality and
the ion diameter. When the volume and static permittivity are kept constant, the screening
length of the Debye-Hückel and MSA display a linear dependence on temperature, i.e. the higher
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Figure 4.2: Temperature dependence of liquid density and relative static permittivity for water us-
ing Eqs. (4.40)-(4.41). Experimental data indicated by black dots are from the Landolt
Börnstein database [23]
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Figure 4.3: Effect of salt concentration on relative static permittivity of NaCl and MgCl2 using Eq.
(4.42). Experimental data indicated by black dots are taken from the collections of
Akhadov[24] and Barthel et al. [25].

the temperature, the higher the screening length. A similar and weak temperature dependence
of the screening length at 3 molal and constant volume is observed from Figure 4.5. Note that
the volume change due to the presence of electrolytes was not included in either Figure 4.4
or Figure 4.5, as the comparisons have been carried out at constant volume and not constant
pressure. Figure 4.7 illustrates illustrates that the volume dependence of the screening length
in the two models is rather weak but proportional to the volume.
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Figure 4.4: Comparison of screening lengths at 25◦C, a 2.8L volume, and constant relative static per-
mittivity εr = 78.

Finally, Figure 4.6 shows that both models
display similar dependence of the screening
length on the relative static permittivity. A
decrease in the static permittivity caused by
the compositional changes or due to an in-
crease in the temperature will yield a decrease
in the screening length. Due to its typical
range of values in aqueous electrolytes pre-
sented in Figure 4.3, the static permittivity
has a larger influence on the screening lengths
than temperature and volume alone. To
summarize, the two models display the same
trends for the screening length when changing
the temperature, volume, ion charges, compo-
sition and static permittivity. However, only
MSA predicts an increase in the screening
length with increasing ion diameters. MSA
can therefore be considered a better choice in
cases where the absolute value/magnitude of
the screening length is important (e.g. for in-
terfacial phenomena).

Figure 4.5: Effect of temperature on the screen-
ing lengths calculated with MSA
(solid) and Debye-Hückel (dashed)
for NaCl (black) and MgCl2 (gray)
at 25◦C, 3 molal, 1.2L volume with
relative static permittivity εr = 78.

4.1.7 Comparison of Helmholtz Energy

The Helmholtz energy and its derivatives are of great importance for equations of state that
incorporate either MSA or Debye-Hückel to account for the ion-ion interactions. It is therefore
of interest to compare the trends and values obtained from using the two models.
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Figure 4.6: Effect of static permittivity on
the screening lengths calculated
by MSA(solid) and Debye-Hückel
(dashed) for NaCl(black) and MgCl2
(gray) at 3 molal, constant volume
at 1L, and constant temperature at
25◦C.

Figure 4.7: Effet of volume on the screening
length calculated by MSA (solid)
and Debye-Hückel (dashed) for NaCl
(black) and MgCl2 (gray) at 25◦C, 3
molal, and relative static permittiv-
ity εr=78.

4.1.8 Influence of Ion Diameter

Although the ion diameter does not influence the screening length in the Debye-Hückel theory,
it is important for the calculation of the Helmholtz energy. Figure 4.8 compares the reduced
Helmholtz energy Ar

RT using the Debye-Hückel and MSA models for different ion diameters.
Figure 4.8 together with Figure 4.4 show that an increase in the ion size leads to an increase

Figure 4.8: Effect of diameter on the electrostatic Helmholtz energy with relative static permittivity
equal to that of water (shown above the figures). MSA is black/colored, Debye-Hückel is
gray. Volume is fixed at 2.8L.

in the separation distance between the ions in both models, thereby reducing the interaction
energy and thus the Helmholtz energy. In all cases MSA yields lower energies at the same
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concentration. The larger excluded volume at higher concentrations contributes to lowering
the Helmholtz energy in the case of MSA, whereas the Debye-Hückel theory does not account
for this effect. Since the Helmholtz energy from the Debye-Hückel theory is always slightly
larger than the Helmholtz energy calculated using MSA, it is possible to make an empirical
modification of the ion diameter in the Debye-Hückel and MSA theories as shown in Eq. (4.43),
in order to obtain nearly identical results from the two models:

di = ωσi (4.43)

Interestingly, when choosing ω = 5
6 , the values of the Helmholtz energies and their derivatives

from both models become similar (within 5% ) for different ion sizes, ion charges, and temper-
atures up to 5 molal. The largest deviations are observed in the volume derivative for large
ions. It was furthermore found that the size of the solvent does not change the optimal ω factor
significantly, but it does have an effect on the value of the volume derivative. Since the MSA
theory accounts for the excluded volume explicitely and Debye-Hückel does not, the physical
significance of the ω factor is to account for the effect of the excluded volume by reducing the
separation distance of the ions. From this analysis, it may be concluded that if the ion size is
fitted during pure component parameter estimation, the two models can perform similarly.

When the static permittivity is calculated from the composition using the empirical model
given by Eq. (4.39), the reduced Helmholtz energy changes by 50-100% as evidenced by Fig-
ure (4.9): Figure 4.9 shows that the static permittivity has a profound effect on the reduced

Figure 4.9: Effect of Diameter on the electrostatic Helmholtz energy with composition dependent static
permittivity. MSA is black/colored, Debye-Hückel is gray. Volume is fixed at 2.8L.

Helmholtz energy, and in the following sections the influence of using the empirical model on
the derivatives of the residual Helmholtz energy is investigated.

4.1.9 Comparison of Volume Derivative

Figure 4.10 shows that the volume derivative of Helmholtz energy increases with increasing ion
concentration and temperature. Figure 4.10 does not include the effect of volume on the static
permittivity, as this is not included in the empirical model for the static permittivity of pure
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water given by Eq. (4.40). However, Figure 4.11 shows that the volume derivatives are affected
if the static permittivity is modeled using Eq. (4.39) . As the volume derivative is inversely

Figure 4.10: Comparison of the volume derivative of Helmholtz energy at different diameters at con-
stant temperature and relative static permittivity (shown above the figure). MSA is
black/colored, Debye-Hückel is gray. Volume is fixed at 2.8L.

dependent on the static permittivity, the reduction of εr due to the presence of salts contribute
to increase the volume derivative. Additionally a volume dependency is introduced through the
E (n, V ) correction function given by Eq. (4.42). Figure 4.11 illustrates that accounting for the
effect of salts has a substantial effect on the volume derivative. However, the result shown in
Figure 4.11 is not necessarily the correct physical behavior, but rather a result of fitting the
empirical model parameters to concentration data (see Eq. (4.42)). If the correction factor was
depending on molality or mole fractions rather than concentrations, the volume dependency
would become zero, which would influence the behavior shown in Figure 4.11. Utmost vigilance
should be exercised when using empirical correlations for the static permittivity, as they may
end up including a non-physical behavior of the Helmholtz energy expression of the electrostatic
models. It is considered of high importance to have a model for the permittivity that not only
fits the data, but actually resembles the correct physical dependence on temperature, volume
and composition.

4.1.10 Comparison of Temperature Derivative

The influence of temperature, ion charge, and ion size on the temperature derivative is presented
in Figure 4.12: The same trend is observed for both MSA and Debye-Hückel in Figure 4.12
where the absolute value of the temperature derivative increases with increasing ion size and
temperature for both models. Figure 4.13 shows that when the temperature derivative of the
static permittivity is included together with the empirical correlation for the static permittivity,
the temperature derivative changes sign, but is of the same order of magnitude.
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Figure 4.11: Comparison of the volume derivative of Helmholtz energy when Eq. (4.39) is used to model
the relative static permittivity. MSA is black/colored, Debye-Hückel is gray. Volume is
fixed at 2.8L.

4.1.11 Comparison of Compositional Derivatives

As shown in Eq. 4.37, the fugacity coefficient depends on the compositional derivatives of the
Helmholtz energy. The fugacity coefficients are used in the calculation of the thermodynamic
equilibrium properties at constant temperature and pressure. In an EoS, the fugacity coefficients
at constant pressure are determined by first solving for the volume root from the pressure
specified in Eq. (4.38) and then inserting this volume into Eq. (4.37). In Figure 4.14 compares
the contribution to the Helmholtz energy from MSA and Debye-Hückel at constant volume
(e.g. same volume in MSA and Debye-Hückel), but as evidenced by Figure 4.8 and Figure 4.10,
the difference in the volume derivative may lead to a slightly different volume root and thus
somewhat different results for the activity coefficients at constant temperature and pressure,
depending on the parameters and the other terms in the EoS. Figure 4.14 shows that the
compositional dependence of the static permittivity (see Figure 4.3) may completely change the
behavior of the compositional derivatives at higher concentrations, and thus is important to the
calculation of activity coefficients. While Figure 4.10 showed that careful considerations must
be used to select the model that is used for the static permittivity, Figure 4.14 shows that it
is of great importance to include the compositional dependence of the static permittivity. The
importance of the relative static permittivity on the compositional derivatives was also noted
by other authors [84, 92, 109, 114, 129, 182]. As the empirical model of the static permittivity
does not depend on the concentration of uncharged molecules, only the MSA model provides a
small contribution to the compositional derivative of the Helmholtz energy for water, but this
contribution is very small compared to the contribution of the ions. If the effect of increasing
solvent concentration was included in the model for the static permittivity, both models would
yield a larger contribution to the compositional derivative of the Helmholtz energy for water.

4.1.12 Conclusions from work on Debye-Hückel vs. MSA

The long-range columbic forces may be described by either the Debye-Hückel or the MSA the-
ories. The MSA model was derived based on statistical mechanics and includes the effect of an
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Figure 4.12: Comparison of temperature derivative of Helmholtz energy at different ion diameters. The
temperature derivative of the static permittivity of pure water was set to zero to observe
the behavior of the model without including the temperature dependence of the static
permittivity. MSA is black/colored, Debye-Hückel is gray. Volume is fixed at 2.8L.

excluded volume on the electrostatic interactions. The two models were compared numerically
in terms of the screening length, the contribution to the residual Helmholtz energy and the first
order derivatives of the Helmholtz energy. Both models predict similar trends with regards to
temperature, volume and compositional dependence of the Helmholtz energy, while only MSA
correctly predicts an increase in the screening length when the ion diameter is increased. Nearly
identical quantitative results of the two theories are obtained if the distance of closest approach
di of the Debye-Hückel theory is taken as 5

6 of the hard sphere diameter σ used in the MSA
model. It is thus concluded that the two theories will perform similarly if the ion diameter is
included as a fitted parameter in the parameter estimation. The static permittivity was found
to be a key parameter and the effect of temperature, volume and composition on the static
permittivity will affect the predicted behavior of ions in the solution. The current models for
the static permittivity are empirical and this makes it difficult to obtain trustworthy results for
multicomponent solutions using the current equations of state for electrolytes.
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Figure 4.13: Comparison of temperature derivative of Helmholtz energy at different ion diameters using
the empirical correlation for the relative static permittivity shown in Eq. (4.39). MSA is
black/colored, Debye-Hückel is gray. Volume is fixed at 2.8L.
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Figure 4.14: Comparison of the compositional derivative of the Helmholtz energy calculated by MSA
(solid) and Debye-Hückel (dashed) at constant temperature using a constant static per-
mittivity (black lines) (shown above the top figure) and the empirical correlation from
Eq. (4.39) (gray lines). Results are obtained using a constant volume V = 1.3L.
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4.2 Insights from Molecular Simulation

The previous section illustrated that the full Debye-Hückel model provides a similar representa-
tion of the contributions from ion-ion interactions to the Helmholtz energy as the mean spherical
approximation model. The consequence is that if it is possible to improve the simpler Debye-
Hückel model with additional terms, it may be possible to derive a more complete description
of the total electrostatic interactions. The most important assumption in the derivation of the
Debye-Hückel model is related to the linearization of the Poisson-Boltzmann equation in Eq.
(4.13). As demonstrated by Kirkwood [192], the linearization is only strictly valid provided that
the exponent is close to zero. when inserting the shortest separation distance (the distance of
closest approach di), this becomes Eq. (4.44):

e2

kBT

zizj
4πεrε0

1
di
<< 1 (4.44)

It is evident that the criterion will be valid at small charges, high temperatures, and high static
permittivity. Bjerrum [28] suggested that ions that are in close contact would be treaeted as
seperate species, and defined the Bjerrum length lB as the value where the left hand side of Eq.
(4.44) of a 1:1 electrolyte is unity:

lB =
1

kBT

e2

4πεrε0
(4.45)

All ions that are separated by a shorter distance will be treated as ion pairs, effectively reducing
the ionic strength of the solution. While there are advanced models that incorporate the mass-
action law in the mean spherical approximation (such as the binding MSA (BIMSA) [49–51,
56, 193]), it is also possible to account for this effect in the simple Debye-Hückel framework
through a chemical equilibrium shown in Eq. (4.46):

A+ + B− −−⇀↽−− [A+B−] (4.46)

The total density may then be calculated from Eq. (4.47):

ρ = ρA + ρB + 2ρAB (4.47)

The density ρAB is then calculated from Eq. (4.48) where γi denotes the activity coefficient of
the species [54]:

ρAB
ρAρB

= K(T )
γAγB
γAB

(4.48)

Bjerrum suggested that the equilibrium constant for reaction Eq. (4.46) should be calculated
from KB in Eq. (4.49). The functional form for the equilibrium constant K(T ) has however
been debated for a long time [56, 194]. Today, the most common form is that of Ebeling KE

[54, 56, 194], as it guarantees an exact representation of the restricted primitive model’s second
virial coefficient. Still, the choice may be different when non-electrostatic contributions are
included in the equation of state (or the model for the activity coefficient γ).

KB(T ) = K(T, q = lB) = 4π
∫ q

σ/2
r2 exp (2lB/r) dr (4.49)

KE(T ) = 4π
∫ ∞

σ/2
r2

[
exp

(
2lB
r

)
+ exp

(
−2lB

r

)
− 2 −

(
2lB
r

)2
]

(4.50)

The Onsager book-keeping principle [194, 195] states that in a complete theory of electrostatics
including a chemical model for ion pairing, the results will be insensitive to the finer details in
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the definition of an ion pair and small changes in the equilibrium constant. In Onsager’s own
words from a conference in Montpellier (1968) [194, 195]):
The distinction between free ions and associated pairs depend on an arbitrary convention. Bjer-
rum’s choice is good, but we could vary it within reason. In a complete theory this would not
matter; what we remove from one page of the ledger would be entered elsewhere with the same
effect. L. Onsager (1968)

Based on the Onsager book-keeping principle Ebeling et al. [194] made a thorough analysis of
the different definitions for ion pairs and choices for mass-action rules. They showed that a
consistent model based on the Bjerrum equilibrium constant would require a redefinition of the
Debye-Hückel diameter into one that depends on temperature, whereas the Ebeling equilibrium
constant was consistent with the Debye-Hückel model without further modifications. Ebeling
et al. [194] defined an ion pair as any two ions that are within a distance σ < r < q, where the
distance q is calculated by equating the Ebeling with the Bjerrum equilibrium constant.

Several authors have compared the various electrostatic models against molecular simulation
data [53, 54, 56, 196–198]. The phase behavior and critical behavior of a pure ionic fluid has
been of particular interest as molecular simulations of a known potential can help to validate
the analytical theories. Primitive models may be simulated based on the reduced temperature
and density as shown in Table 4.2. Simulations of hard spheres with the long-range Coulombic
potential requires special methods (e.g. the Ewald summation technique) to obtain a descrip-
tion of the system, and there is therefore some deviations between simulations from different
authors. While the critical temperature for Debye-Hückel model is quite close to the molec-
ular simulation results, the density is quite far off. If the concept of ion-ion association is
included using the Ebeling equilibrium constant it improves the critical density while retaining
the critical temperature [54]. However, as pointed out by Fisher and Levin ([53]), while the
Debye-Hückel theory coupled with the Bjerrum theory improves the description of the critical
point, it deterioriates the vapor-liquid coexistence curve unless the interactions between the
ion-pair (a strong dipole) and the ions are included through the Kirkwood equation [199] or
the improved version by Fisher and Levin [53]. The pure restricted primitive MSA has similar
deviations but may be improved through the same means as shown by Jiang et al. [56].

Model Reduced critical temperature Reduced critical density

T ∗
c = kBTc

4πεrε0di
e2z2

i

ρ∗
c = NAd

3ρc

Molecular simulation [53, 54,
56, 196, 200]

0.048-0.058 0.030-0.080

Debye-Hückel [26] 1/16 = 0.0625 1/64/π = 0.005
Debye-Hückel + Bjerrum [53] 1/16 = 0.0625 0.045
Debye-Hückel + Bjerrum +
Ion-Dipole [53]

0.057 0.028

MSA [47, 48] 0.0786 0.0144

Table 4.2: Critical temperature and density for ionic fluids from simulations and models.

The results from molecular simulation indicate that a complete theory for electrostatics should
include a concept for ion pairing as well as it should include the interactions between ions and
ion pairs. Still, the vague definition of an ion pair used in primitive electrolyte models does
not provide a molecular picture of ion-ion association. On a molecular basis, ion pairs are ob-
served as three distinct types in close contact; separated by 0-2 solvent molecules ion pairs (see
Figure 4.15). When the ions are present in a dipolar solvent, solvation shells will be formed
surrounding the molecules, requiring a treatment of ion-solvent association. Such effects cannot
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Figure 4.15: Different types of ion pairs; A contact ion pair (CIP) (left), A solvent-separated ion pair
(SIP) (middle), and a fully solvated ion pair (SSIP) (right).

be described by molecular simulations based on primitive electrolyte models with an implicit
solvent and require a more fundamental (and computationally expensive) treatment with an
explicit solvent. Figures 4.16-4.17 show the ion pairs observed in a recent molecular dynamics
study by Kalcher et al. [60, 201] as distinct peaks in the pair distribution function gij(r). From
Figure 4.17 it is evident that the ion-ion and ion-solvent association are also intrinsically linked
since there are more solvent-separated ion pairs for NaCl and LiCl than for KCl or CsCl due
to the size assymmetry and preference for the solvent. This indicates that a complete descrip-
tion of association in electrolyte systems will not only require modeling of ion-ion association,
but also ion-solvent association and the interdependence of the two. More work is needed to
determine the appropriate modeling approach in an electrolyte EoS.

Figure 4.16: Radial distribution function of Cl–

around Na+ indicating the presence
of both contact ion pairs and solvent-
separated ion pairs (for NaCl, there
are two times more solvent-separated
ion pairs than contact ion pairs)
(adopted from [60])

Figure 4.17: Height of the first peak in
the radial distribution function
from the molecular dynamics
simulations of Kalcher [60].

4.3 Importance of the Born Term

In the previous section, the Debye-Hückel model was found to give a similar representation of
the Helmholtz energy as the mean spherical approximation. These models both provide a de-
scription of the excess energy due to ion-ion interactions. Still it is not the only contribution to
the total Gibbs energy; another part is the so-called self-potential, which was first introduced by
Born (1920) [45]. In Chapter 1 it was shown that more than half of the electrolyte EoS models
presented in literature include a Born term, but still many prominent research groups within
thermodynamics (e.g. Gmehling at University of Oldenburg [96–108], Radosz at University of
Wyoming [121–127], Galindo at Imperial College [110–112], and Sadowski at TU Dortmund
[115–120]) have omitted the Born term from their electrolyte equation of state. The most com-
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monly quoted reason for the omission is that the Born model does not provide a contribution
to the excess chemical potential, and only serves to let the ions stay in the polar phase [109]. If
ions are artificially constrained to the liquid phase it will provide the same effect [89]. This is a
typical assumption used by researchers when performing calculations with a single liquid polar
phase or calculations of the excess properties of liquid phases.

The Born potential is derived from the energy of charging a sphere in a medium with static
permittivity εr. In fact, the Born model may be derived from the same framework as Debye-
Hückel, provided that the integration limit is changed from the surface of the ion to the center
of the ion, as illustrated by Figure 4.19. The Helmholtz free energy may be obtained through
the charging process assuming that each molecule has the partial charge λq [182]:

Ae = NA

∑
ni

qi∫
0

ψidq = NA

∑
niqi

1∫
0

ψidλ

= NA

∑
ni

1∫
0

[
ψ0

(
1
2di
)

− ψ0,i (0) + ψ1 (di) − ψ1

(
1
2di
)

− ψ2 (di)
]
dλ

The contributions are summarized in Table 4.3. A slightly more concise form of the Debye-
Huckel including the self-potential as shown in Eq. (4.51) is obtained by summing up the
different terms.

Ae = − NAe
2

4πεrε0

N∑
i

niz
2
i

di
[Φi − β] Φi =

ln (1 + κdi) − κdi

(κdi)
2 +

1
2

(4.51)

The original Debye-Hückel model is recovered when β = 0, whereas β = 1 gives Debye-Huckel
with a self potential. It should be realized that in order to avoid numerical errors at low
concentrations in the actual implementation of Eq. (4.51) must use the infinite dilution limit
of Φi = 1/3κσ at low concentrations as seen in Figure 4.18. It will lead to other values for β if

κdi

(Φ
−

Φ
∞

)/
Φ

∞
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Figure 4.18: Numerical errors in Φ function defined in Eq. (4.51) at infinite dilution in comparison
with the limiting law Φ = 1/3κdi

different terms are used for the electrical field used in ψ′
0, but this will not affect the other term

of the function, which originates from the Debye-Hückel model. For instance, if the spheres are
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assumed to have a uniform charge distribution, the electrical field and contribution to Helmholtz
energy can be written as Eq. (4.52) leading to β = 0.5.

ψ′
0 =

q

4πε0εr

r(
d
2

)3 ψ0

(
1
2di
)

− ψ0,i (0) =
1

4πε0εr

qi
di

(4.52)

Figure 4.19: Electrical field in the vicinity of an
ion with diameter di.

Description Electrical Field ψ′

Conductive sphere ψ′
0 = 0

Continuum model ψ′
1 = − 1

4πεrε0

q

r2

Debye-Hückel ψ′
2 =

expκ (d− r)
4πεrε0

q

r

1 + κr

1 + κd

Table 4.3: Electrical field and contributions to the
Helmholtz free energy from different
parts of the electrical field shown in Fig-
ure 4.19.

The chemical potential at constant volume of Eq. (4.51) is given by Eq. (4.53):

μei =
(
∂Ae

∂ni

)
=
(
∂Ae

∂ni

)
εr

+
(
∂εr
∂ni

)(
∂Ae

∂εr

)
(4.53)

The limit of the chemical potential at infinite dilution Eq. (4.53) can be written as Eq. (4.54)

lim
ni→0

μei = β
NAe

2

4πεrε0

z2
i

di
(4.54)

It is noted that the Gibbs free energy of hydration in the Born model is calculated from Eq.
(4.55) [45]:

ΔhydG =
NAe

2

4πε0

z2
i

di

(
1
εr

− 1
)

(4.55)

The chemical potential of transferring one molecule from an ideal gas phase with εr = 1 to a
liquid may be calculated from Eq. (4.54) as shown in Eq. (4.56)

lim
ni→0

μ
(2)
i − μ

(1)
i = β

NAe
2

4πε0

z2
i

di

(
1
εr

− 1
)

(4.56)

The correct driving forces and the Gibbs energy of hydration are recovered when this potential
is used. β corrects the Debye-Hückel diameter for the near-ion field, which supports the idea
of fitting a Born radius or diameter to Gibbs energy of hydration data. To illustrate the im-
portance of including the Born term in an equation of state for electrolytes, Figure 4.20 shows
an approximation of the contributions from different terms of an electrolyte CPA equation to
the chemical potential of NaCl at infinite dilution in liquid water with εr = 78, liquid decane
with εr = 2, and a vapor phase with εr = 1. It is evident that the Born term provides the main
contribution to the fugacity coefficient at infinite dilution.

The closer the values of εr between two phases, the less important becomes the Born term
and other terms may therefore be used to calculate the Gibbs energy of transfer. The Gibbs
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Figure 4.20: EOS contributions to the chemical potential of NaCl at infinite dilution. NaCl was mod-
eled using critical parameters suggested by Simon et al [92] and the Pauling diameters
shown in Table 4.1 p. 49, whereas water and decane were modeled with standard CPA
parameters [82, 177, 202].

energy of transfer may also be written in terms of the fugacity coefficients at infinite dilution
as shown in Eq. (4.57):

ΔhydG = RT
(
ln φ̂(2)

i,∞ − ln φ̂(1)
i,∞

)
(4.57)

The typical thermodynamic cycle used to include the Born term in an equation of state involves
discharging of the ions in the gas phase as shown in Figure 4.21, whereas Eq. (4.51) assumes
that ions are initially uncharged. The difference between Eq. (4.51) and "regular" Born term is
therefore just the reference state, and the original Born term can be recovered from Eq. (4.53)

by setting β = 1 and subtraction of NAe
2

4πε0

z2
i

di
. As it is a consequence of the reference state, this

difference does not change the distribution of ions between phases, as this is determined by the
difference in the inverse static permittivity of the two phases.

4.3.1 Relationship to the Standard State Properties of Electrolyte Models

While most equation of state modeling is focusing on vapor-liquid, and liquid-liquid equilib-
rium, the electrolyte models have become specialized in handling of chemical equilibrium and
solid-liquid equilibrium. It is therefore important that an electrolyte EoS can be developed to
handle these properties in order to provide an alternative to the current approaches for modeling
of electrolyte solutions. The standard state properties of electrolyte solutions are required in
order to make any calculations of the thermal properties, solid-liquid equilibrium, and chemical
equilibrium (weak electrolytes). This section will illustrate the different options for determining
the standard state properties of the e-CPA EoS.

Electrolyte mixtures typically make use of the aqueous unsymmetrical molal standard state for
electrolytes and other neutral solutes and the symmetrical standard state for the solvent[203].
The aqueous standard state may be described through the thermodynamic pathways presented
in Figure 4.22, which shows that the path from the idael gas state to the liquid state involves the
energy of ion hydration (where the main contribution originates from the Born term [203–205]):

The standard state formation Gibbs energies can be measured using voltaic or galvanic cells.
The electromotive force E may be measured at different concentrations and this may be related
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Figure 4.21: Typical thermodynamic cycle for deriving equations of state including the Born term.
Inspired by Myers et al. (2002) [114].

Figure 4.22: Thermodynamic relationship between different phases and their respective Gibbs energy.

to the standard state E0 by extrapolation to 0 molal as shown in Eq. 4.58:

E = E0 − RT

veF
ln

(∏
i

avi

i

)
(4.58)

ve Stoichiometric coefficient of the electrons in the half-cell reactions
ai Activity of component i

By using the standard hydrogen cell electrode H/H+ as the anode or cathode, the Gibbs
energy of formation can be calculated directly from ΔfG = −veFE0. Care must be taken in the
extrapolation towards 0 molal, as the activity coefficients are very non-linear [2]. The conven-
tional standard state provides the following relationship between the "true" aqueous properties
(indicated by superscript aq) of the ion Mz carrying charge z, and the properties relative to
hydrogen as shown in Eq. (4.59) and Eq. (4.60), where the superscript • indicates the related
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neutral species of the ion.

ΔfX
o
Mz (conv) =

(
Xaq

Mz − 1
v
X•

Mv

)
− z

(
Xaq

H+ − 1
2
X

•

H2

)
X = G,H,A (4.59)

Xo
Mz (conv) = Xaq

Mz − zXaq
H+ X = S,Cp, V (4.60)

Standard state properties for the enthalpy of formation and the aqueous standard state en-
tropy is available online in the CO-DATA collection [206], the CRC Handbook of Physics and
Chemistry [207], or Wagman et al. (1982) [208]. The standard state properties of selected ions
are summarized in Table 4.4.

ΔfG
o [2] ΔfH

o [2] So[206] Cop [2] Cop [207]
[kJ/mol] [kJ/mol] [J/mol/K] [J/mol/K] [J/mol/K]

H+ 0 0 0 0 0
Li+ -293.31 -278.49 13.4 68.6 68.6
Na+ -261.91 -240.12 59 35.767 46.4
K+ -283.27 -252.38 102.5 6.1055 21.8

Mg++ -454.8 -466.85 -138.1 -18.635 -
Ca++ -553.58 -542.83 -53.1 -32.809 -

F– -278.49 -333.05 -13.8 -102.95 -106.7
Cl– -131.23 -167.16 56.5 -126.17 -136.4
Br– -103.96 -121.5 82.55 -177.8 -141.8

SO2–
4 -744.53 -909.27 20.1 -267.76 -293.0

NO–
3 -111.25 -207.36 146.4 -60.97 -86.6

Table 4.4: Aqueous standard state properties of selected ions at 25◦C from different sources. While the
different sources agree on the formation energy/entropy, some discrepancies are observed in
the heat capacity.

While the IUPAC recommended standard state is at a reference pressure of 1 bar, the de-
scription of aqueous electrolytes typically requires a pressure-dependent standard state to ac-
curately describe solid-liquid equilibria of electrolyte systems over a wide range of conditions
[203]. The geochemical community has developed several models available for the standard state
properties of ions at wide ranges of temperature and pressure. Most famous is the Helgeson-
Kirkham-Flowers, HKF [203]. The HKF package is implemented in the software SUPCRT92
[209] or the SOCW [210]. Common to these models are that they are build on correlations of
measured apparent molar volume and heat capacities. The HKF and SOCW model both have
the limitation that they cannot be used at temperatures below -30 degrees due to a divergence
of the heat capacity correlation. Another disadvantage is that these approaches require deter-
mination of a large number of parameters and thus require a large amount of high-quality data.

The Extended UNIQUAC activity coefficient model by K. Thomsen [75] or the Electrolyte
NRTL model [71] use the IUPAC aqueous standard state at 1 bar where parameters have been
fitted to low temperature, low pressure data (ca. -30-110◦C, 1 bar). To handle the pressure
dependence of e.g. solubility, a 2nd order pressure-correction has been introduced for the stan-
dard state properties of certain salts with Extended UNIQUAC [211, 212], whereas Aspentech
have recently introduced the possibility of using a linear pressure dependency in the equilibrium
constants [213].
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For the standard state heat capac-
ity (i.e. the temperature dependence
of the standard state properties), the
data is less reliable. Marcus (1997)
[214] e.g. cites ideal gas heat capac-
ities for Mg++ and Ca++ and the val-
ues by K. Thomsen[2] differ for sev-
eral of the other ions. However, the
temperature dependence is of high im-
portance and it is therefore needed to
determine the optimal way of estab-
lishing this. The approach used e.g.
by K. Thomsen [2] in Extended UNI-
QUAC is to evaluate the aqueous heat
capacity relative to the hydrogen ion,
which is assigned Cp,i = 0, whereas all
other compounds are correlated using
Eq. (4.61). This results in the non-
monotonic behaviour for different va-
lency salts as shown in Figure 4.23:

Cp
o = A+BT +

C

T − 200
(4.61)
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Figure 4.23: Standard state heat capacities as calcu-
lated with Eq. (4.61).

Note that the due to the standard state convention where H+ has zero heat capacity, Eq. (4.61)
includes the true heat capacity of the hydrogen ion as shown in Eq. (4.62). The T-dependent
correlation shown in Eq. (4.61) must therefore capture the temperature and pressure depen-
dence from the heat of hydration of the ion and that of H+ as shown in Eq. (4.62):

Caqp,Mz (T ) ≈ Cigp,Mz (T, Pr)+ΔhydCp,Mz (T, P )−z×
(
Cigp,H+ (T, Pr) + ΔhydCp,H+ (T, P )

)
(4.62)

A pressure-dependent standard state is however necessary in order to correctly represent the
heat capacity and apparent molar volume of the electrolytes over wider temperature and pres-
sure ranges. Alternatively, it is possible to use the ideal gas standard state with an EoS capable
of representing the hydration free energy. While the approach in e.g. Extended UNIQUAC and
Electrolyte NRTL may be used to correlate the data, they are of an empirical nature as it is the
hydration free energy and properties of the electrolyte solution that depend on pressure, rather
than the properties of the salt [203–205].

Born (1920) estimated the solvation radius Ri by setting the work required to charge the ion
in vacuum equal to the ionization energy or electron affinity of a range of molecules using Eq.
(4.55), neglecting the effect on entropy. Table 4.5 presents the radii calculated from Eq. (4.55)
using the ionization energy (IE) and electron affinity (EA) from the NIST JANAF tables [215].

The differences between the measured ion diameters and the calculated Born radius is
often interpreted as being due to the inclusion of the solvation shell surrounding the molecules
[216]. There are also experimental sources available for the enthalpy of hydration. Marcus
(1987) [217] reviewed different sources for the enthalpy of solvation of various ions, and showed
that the enthalpy and entropy of hydration of the H+ ion was given by:

ΔhydH =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1098 ± 5

− 1091 ± 10

− 1104 ± 17

− 1103 ± 7

[
kJ

mol

]
ΔhydS

o ≈ −131 ± 1
J

mol×K
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IE / EA [eV] Ion rBorn [Å] rion [Å] rBorn/rion rBorn − rion [Å]

H 13.6 H+ 0.53 - - -
Li 5.392 Li+ 1.34 0.69 1.93 0.64
Na 5.139 Na+ 1.4 1.02 1.37 0.38
K 4.341 K+ 1.65 1.38 1.2 0.28

Mg Mg−−>Mg+: 7.646 Mg++ 1.27 0.71 1.79 0.56
Mg+−−>Mg++: 15.04

Ca Ca−−>Ca+: 6.113 Ca++ 1.6 1 1.6 0.6
Ca+−−>Ca++: 11.87

F 3.401 F– 2.11 1.33 1.59 0.78
Cl 3.613 Cl– 1.99 1.81 1.1 0.18

SO4 5.1±0.1 SO–
4 1.41 - - -

5.1-1.69 SO2–
4 8.44 2.3 3.67 6.14

NO3 3.937 NO–
3 1.83 1.79 1.02 0.04

Table 4.5: Ionic radii as calculated from Eq. (4.55) and measured ion diameters Marcus (1997)[214].

The relatively similar standard hydration enthalpies were determined from extrapolation meth-
ods, measured via electrode potentials and from the so-called TATB extrathermodynamic as-
sumption, where the enthalpy of hydration of three molecules of similar size and charge are
defined as equal, enabling determination of other ions from the lattice enthalpy and heats of
solution of salts with tetraphenyl ions and suitable counterions [217]. The correction shown in
Eq. (4.63) must be applied in order to convert between the aqueous standard state (where the
Gibbs energy of formation of the H+ ion is fixed to 0 at 25◦C) and the ideal gas standard state
(where z is the charge of the ion). A similar conversion can be made for enthalpy, entropy, and
heat capacity.

ΔfH
ig
Mz︸ ︷︷ ︸

Ideal gas

+ ΔhydH
aq
Mz︸ ︷︷ ︸

True hyd. energy

= ΔfH
aq
Mz︸ ︷︷ ︸

Conventional
Aqueous S.S.

+z × ΔfH
aq
H+︸ ︷︷ ︸

True formation
enthalpy of H+

(4.63)

The conventional standard state formation properties can be calculated when the true hydration
energy is available. The ideal gas and aqueous standard states are related through standard
thermodynamic routes and so the ideal gas Gibbs energy may be transformed into the aqueous
state using the following steps (shown for H+):

1
2H2(g) −−⇀↽−− H(g) ΔG = ΔfG

ig

H(g) −−⇀↽−− H+(g) + e− ΔG = IE

H+(g) −−⇀↽−− H+(aq) ΔG = ΔsolvationG

As shown in Table 4.6 good agreement with the values presented by K. Thomsen [13] for all ions
but sulphate are obtained using this approach. In the calculation, the ideal gas enthalpy of for-
mation from the NIST Computational Chemistry Comparison and Benchmark Database [218]
and the NIST Gas-Phase Ion Thermochemistry database [219] were utilized. If the 2nd ion-
ization energy is back-calculated from the conventional standard state, EA

(
SO−

4 → SO−−
4

)
=

−0.1eV, which is significantly less than -1.6eV obtained from quantum chemical calculations
[220]. By using this value, rBorn = 5.76Å is obtained, which is closer to the crystallographic
radius. The decision on the standard state is crucial to the development of the equation of state
for thermal properties and solid-liquid equilibria, as chemical accuracy (<1kcal/mol) is required
in order to get useful results for speciation and solid-liquid equilibrium. Figure 4.22 indicates
two practical approaches for calculating the total chemical potential:
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Ion ΔfH
ig ΔhydH

ig ΔfH
aq ΔfH

aq,conv (calc) ΔfH
aq,conv [206]

[kJ/mol] [kJ/mol] [kJ/mol] [kJ/mol] [kJ/mol]
H+ 1530.1 -1103 427.05 0
Li+ 679.55 -531 148.55 -278.5 -278.49
Na+ 603.34 -416 187.34 -239.71 -240.12
K+ 507.85 -334 173.84 -253.21 -252.38

Mg++ 2336 -1949 386.97 -467.13 -466.85
Ca++ 1912.9 -1602 310.9 -543.2 -542.83

F– -248.87 -510 -758.77 -331.72 -333.05
Cl– -227.29 -367 -594.3 -167.24 -167.16
SO–

4 -737.8±12
SO2–

4 -574.7±18 -1035 -1609.7 -755.64 -909.27
NO–

3 -306.16 -325 -631.17 -204.11 -207.36

Table 4.6: Calculation of conventional standard state aqueous formation enthalpy from the ideal gas
enthalpy and the heat of hydration. Ideal gas formation enthalpies were taken from Table
4.5. Hydration energies were taken from Marcus [214]

• Use the aqueous solute standard state

• Use the ideal gas standard state

So far, all known work on electrolyte systems has used the aqueous reference state. This is
mainly due to two reasons:

• The thermodynamic models employed have mainly been based on activity coefficients

• Using the ideal gas reference state requires accounting for the Gibbs energy of solvation

However, none of the above points are show-stoppers for using the ideal gas as the reference
state in e-CPA, if the residual properties can be represented to a reasonable accuracy. From a
scientific point of view, the choice of the ideal gas as the reference state is the most desirable
since that is the most fundamental choice for equations of state. If the equation of state could
provide accurate description of the Gibbs energy of hydration over wide ranges of temperature
and pressure, it will become possible to use standard state properties predicted by ab initio
methods (e.g. statistical thermodynamics or quantum chemical methods), which will improve
the predictions of intermediate or reactive species. However, as shown in Chapter 3, the Cubic
Plus Association EoS does not provide an accurate description of thermal properties when
the ideal gas standard state is used, due to inaccuracies in the residual Helmholtz energy and
must use the pure liquid reference state to improve the accuracy on thermal properties. Still,
the pressure-dependent standard states currently employed in activity coefficient-based models
could potentially be eliminated by EoS models that include a term for the Gibbs energy of
hydration (e.g. the Born term), as the pressure dependence would be handled by the EoS.

4.4 Insights from Non-Primitive Models and Statistical

Thermodynamics

In 1901, van’t Hoff received the Nobel prize for his work on establishing the thermodynamics of
osmotic pressure and chemical equilibrium [221, 222]. van’t Hoff showed that when a solution
containing e.g. water and sugar is seperated by a semi-permeable membrane that allows trans-
port of water molecules, the solution side will have a greater pressure than the pure water. The
pressure difference is known as the osmotic pressure Π and by equating the chemical potentials
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on each side of the membrane it is then possible to write the thermodynamic equilibrium using
Eq. (4.64).

μs(T, P ) = μs(T, P + Π) +RT ln γsxs Π = cRT
(
1 +Bc+ Cc2...

)
(4.64)

The osmotic pressure can be modeled through a virial equation of state in the solute concen-
tration, and thus rather than considering all molecules in the solution the osmotic equation of
state reduces the thermodynamic treatment of solutes to effective solute-solute potentials in a
background medium, measuring only the effect of solutes on the solvent properties (e.g. vapor
pressure). In 1945, McMillan and Mayer [223] presented the first formal statistical mechanical
treatment of multicomponent solutions, by transforming the Grand canonical partition func-
tion into an effective form involving only solute species where the effect of the solvent enters
through the calculation of effective solute potentials. In 1976, Adelman [68, 69, 156] derived an
Ornstein-Zernike equivalent for solutes by transforming the multi-component Ornstein-Zernike
equation with the indirect and direct correlation functions (Hij and Cij) between component
i and j (Eq. (4.65)) into a form that only included solute species shown in Eq. (4.66) and
effective direct correlation functions ceffij :

hij(X1,X2) = cij( �X1,X2) + Ω−1
n∑
k

∫
cik(X1,X3)ρkhkj(X3,X2)dX3 (4.65)

hαβ(X1,X2) = ceffαβ ( �X1,X2) + Ω−1
p∑
γ

∫
cαγ(X1,X3)ργhγβ(X3,X2)dX3 (4.66)

Where Xi is a vector property containing the position and orientation of molecule i, and Ω is the
angular phase space volume (equal to 4π for linear molecules and(8π)2 for non-linear molecules
[69]). The effective Ornstein-Zernike in Eq. (4.66) is as general as the original Ornstein-
Zernike equation, but only includes a summation over the solute compounds and furthermore
the properties that may be derived from Eq. (4.66) are related to the osmotic properties -
for instance, the compressibility equation can be written as Eq. (4.67), which is identical to
that of the Ornstein-Zernike equation, with the exception that it uses the osmotic pressure and
effective direct correlation function rather than the total pressure and the true direct correlation
function.

β
∂Π
∂ρα

= 1 − Ω−1
p∑
γ

∫
ceffαγ (X1,X3)dX3 (4.67)

When the actual direct and indirect correlation functions are known, Adelman [69] showed that
the effective direct correlation function can be calculated from Eq. (4.68) in which the subscripts
p indicate polar and q indicate charged compounds:

ceffpp (X1,X2) = cpp(X1,X2) +
∫

cpq(X1,X3)ρqcqp(X3,X2)dX3

+
∫ ∫

cpq(X1,X4)ρqhqq(X4,X5)ρqcqp(X5,X2)dX4dX5)
(4.68)

Adelman derived the effective direct correlation function in the case of polar-ionic solutions
where the true direct and indirect correlation functions were derived from electrostatic ion-ion,
ion-dipole, and dipole-dipole interactions using the procedure by Blum [47]. He showed that it
was possible to relate the pure ion-ion interaction given by the Coulomb potential to an effective
Coulomb potential (shown in terms of the Fourier transform of the direct correlation function
in Eq. (4.69)) where ion-ion interactions are shielded by an effective static permittivity εr. The
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effective static permittivity of the fluid was calculated from in Eq. (4.70) for a pure dipolar
solvent (indicated by the subscript s) with ions of charge ±1:

(2π)3/2ceffion−ion(k) = − βe2

εrε0k2
(4.69)

εr =
q+

q−
q+ = 1− (2π)3/2ρscss(k = 0) q− = 1+ (2π)3/2ρqc

(1)
ss (k = 0) (4.70)

That is, q+ and q− are functions of the dipole-dipole interactions that lead to an effective
shielding of the electrostatic interactions. In the limit of infinite dilution, Eq. (4.70) becomes
equal to the static permittivity of the pure solvent and thus equal to the Wertheim theory [66].
Furthermore, Adelman showed that in the limit of infinite dilution, the molecular model gives
the exact same results for the Debye inverse shielding length and the radial distribution function
of Debye-Hückel. Adelman thus showed an equivalence between the molecular model and the
continuum model, provided that the static permittivity is calculated from a molecular model of
the solvent + solutes.

4.4.1 Relationship to Non-Primitive Electrolyte EoS

The equations for the full non-primitive MSA equation of state which explicitly treats the ion-
ion, ion-dipole, and dipole-dipole interactions were initially presented by Blum et al. [62–64].
The first attempts for non-primitive modeling of electrolytes with an electrolyte EoS were made
by Jin and Donohue [86–88] and later by W. Liu et al. [113], who included explicit terms
for the ion-ion, ion-dipole, and dipole-dipole interactions. These attempts were unsuccesful
as they required the static permittivity εr of the solvent as an additional input to accurately
model the excess properties. Z. Liu et al [65, 67], Zhao et al. [52], and Herzog et al. [138]
all presented equations of state based on the non-primitive MSA, but only Herzog et al. [138]
showed applications to actual experimental data. The equations from Herzog et al. [138] are
repeated below for the restricted primitive case where the ion diameter σi is equivalent to the
dipole diameter σd. In the non-primitive MSA, the electrostatic contributions to the Helmholtz
free energy depend on balancing of the ion-ion, ion-dipole, and dipole-dipole interactions, which
is in practice done by solving the closure equations in Eq. (4.71)-(4.73) for the parameters:

0 = a2
1 + a2

2 + d2
0 (4.71)

0 = a1k10 − a2(1 − k11) − d0d2 (4.72)

0 = k2
10 + (1 − k11)2 − y2

1 − d2
2 (4.73)

The two parameters d2
0 and d2

2 represent the charge and dipole density, respectively, and are
calculated from Eq. (4.74):

d2
0 = 4πβe2σ

ions∑
j

ρjz
2
j d2

2 = 4/3πβμ2
sρs (4.74)

The remaining constants used to calculate Eq. (4.71)-(4.73) are repeated below:

β3 = 1 + b2/3 β6 = 1 − b2/6 β12 = 1 + b2/12 (4.75)

λ = β3/β6 Δ = b2
1/4 + β2

6 y1 = β6/β122 (4.76)
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DF = 1/2
(
β6 [1 + b0] − b2

1/12
)

a1 =
(
2D2

F

)−1
(Δ − 2β6DF ) (4.77)

a2 = −b1/β6

(
2D2

F

)−1
(Δ/2 +DFβ3) Λ = 1/2 (1 + b0) + β6/6 (4.78)

k10 = b1/(2Δ)(1 + a1Λ) k11 = 1 − 1/Δ(β3 − a2b1Λ) (4.79)

Eq. (4.71)-(4.73) are then solved for b0, b1, and b3 using the initial estimates shown below:

b0 = −2d0(1+d0)F 1/2
H /(4+ 8d0 + 3d2

0), b1 = −b0(2b2)1/2 b2 = 3d2
2FH/(2+d2

2 (4.80)

Where FH = 1 − 3/2xionxsξ
1/2
3 and ξ3 is the packing fraction π/6ρσ3. The ion-ion, ion-dipole,

and dipole-dipole energy may then be calculated from Eq. (4.81)-(4.83):

βAii = V
2d2

0b0 −Q2
ii

12πσ3
Qii = −a1 − 2 + β6/DF (4.81)

βAid =
V

12πσ3

(
−2d0d2b1 − 2Q2

id

)
Qid =

b1

β2
6D

(β3 + a1 [3Λ − 2DF ]) (4.82)

βAdd =
−V

12πσ3

(
Q2
dd + 2

[
b2/β

2
12 (1 − b2/24)

]2)
Qdd =

1
Δ

(
2β2

3 − b1a2 [3Λ − 2DF ]
)

− 2

(4.83)

The non-primitive MSA model was implemented in order to investigate the differences between
the non-primitive contributions to the Helmholtz energy/chemical potentials as well as the
calculated static permittivity. Z. Liu et al. [65, 67] derived a low-density expansion of the
non-primitive MSA and showed that this is equivalent to the primitive MSA with an effective
static permittivity as discussed by Adelman. Z. Liu et al. [65] then derived an electrolyte EoS
based on the result from the primitive MSA equation, but using the static permittivity of the
fluid as calculated from the Wertheim model [66] given by Eq. (4.84) and also compared the
solution to the non-primitive MSA.

εW =
1
16
λ2 (1 + λ)4 (λ+ 2)2

(
λ2 − 16

(1 + λ)4

)
= 12πβρdμ

2
d (4.84)

Zhao [52] noted that the expression for the effective static permittivity is modified in the
presence of electrolytes and should be calculated from Eq. (4.85).

εA = 1 +
ρdα

2
2β

2
6(1 + λ)4

16
(4.85)

When using σ = 2.75Å and the dipole moment of water μ = 1.85D, the predicted static
permittivity of the pure solvent at 25◦C is only 45.2, as opposed to the experimental value of
78.2. By adjusting μ = 2.22D, it is possible to match the static permittivity of water at 25◦C.
Figure 4.24 shows the static permittivity as calculated by either model, when the total volume
is calculated as the density of NaCl. It is evident that the non-primitive modeling approach also
includes a decrease of the static permittivity with the concentration of electrolytes, but that this
decrease is more pronounced than evidenced from the experimental data. Furthermore, Figure
4.24 compares the ion-ion and ion-dipole interactions as calculated by the npMSA model with
the Debye-Hückel and Born models using the static permittivity as calculated by Eq. (4.84)
and Eq. (4.85). There exists a noticable disagreement between the primitive and non-primitive
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models.

To extend the investigation to derivative properties, the derivatives of the models were cal-
culated through numerical differentiation. Figure 4.25 it may be observed that the volume
derivatives differs by a factor 5-10 from that of the Debye-Hückel and Born models at higher
concentrations. The npMSA furthermore has a minimum in the volume derivative, which could
introduce additional volume roots. The temperature dependence shown in Figure 4.26 is ob-
served to display the same trends - the agreement is better when using the Wertheim static
permittivity from Eq. (4.84). The chemical potentials from ion-ion interactions of the two
models shown in Figure 4.27 are in better agreement, whereas the chemical potential from
the ion-dipole interactions shown in Figure 4.28 display a significant difference as the ion con-
centration increases. However - this does not imply that it is the Born model that is wrong;
Herzog et al. [138] compared the solvation free energy calculated with the semirestricted non-
primitive MSA but did not obtain proper correspondence with the hydration free energy of the
salts even when the ion diameter was adjusted, whereas the Born model has succesfully been
applied to modeling of the Gibbs energy of hydration over wide ranges of temperature and
pressure[204, 205, 224, 225].

While not shown in this investigation, the non-primitive MSA term also includs dipole-dipole
interactions, that provides an additional contribution to the overall Helmholtz free energy, and
the delicate balancing of ion-ion, ion-dipole, and dipole-dipole energetics requires further inves-
tigation in order to conclusively validate the non-primitive modeling approach for e.g. mixtures
of polar and hydrogen bonding compounds. Models that include the dipole-dipole interactions
actually have to turn off the dipolar interactions for hydrogen-bonding compounds to describe
e.g. water over wide ranges of temperature and pressure [226], as the interaction between asso-
ciation and polarity is not well accounted for with the present models.

All in all, it may be concluded that even when using the dielectric constant from the npMSA
model as calculated by Eq. (4.85), the Debye-Hückel and Born models do differ from the
npMSA, but that the trends are generally in good agreement. More importantly, the chemical
potential calculated from the npMSA and the Debye-Hückel model show comparable trends;
and it is important to notice that the models provide a significant contribution to the chemical
potential of the solvent, due to the dependence of the dielectric constant on the solvent density.
Such a significant contribution to the chemical potential was not observed in Figure 4.14 p. 58
where an empirical model is used for the static permittivity in the Debye-Hückel model. This
shows that the Debye-Hückel and Born models coupled with the npMSA dielectric constant
captures a different physical effect; namely that when the dipole density increase, the static
permittivity will increase. This contribution is ignored when using an empirical correlation for
the dielectric constant that is independent ofthe solvent density. Still, the investigatoin shows
that npMSA could have several problems; for instance must the dipole moment be adjusted to
match the static permittivity of the solvent - but perhaps more problematically, it overestimates
the decrease in the static permittivity as the salt concentration increases. This error cannot be
easily solved by adjusting ion-specific parameters may imply a problem with the coupling of the
ion-ion, ion-dipole and dipole-dipole interactions in the npMSA model; however, it would re-
quire a more detailed investigation including a comparison to molecular simulation to determine
whether this is indeed the case.

4.4.2 On the conversion from the McMillan-Mayer framework

The introduction chapter highlighted the confuson in literature on whether the primitive models
need to be converted from the McMillan-Mayer (MM) to the Lewis-Randall (LR) framework.
As mentioned in Section 4.4, the McMillan-Mayer framework enables a statistical mechanical
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Figure 4.24: Dielectric Constant from Non-primitive MSA and Helmholtz Energy. DH(εX) or
Born(εX) indicates whether the Wertheim static permittivity εW from Eq. (4.84) or
the Adelman A from Eq. (4.85) was used in the model.
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Figure 4.25: Volumetric derivatives of the Helmholtz free energy from Non-primitive MSA and Debye-
Huckel/Born. DH(εX) or Born(εX) indicates whether the Wertheim static permittivity
εW from Eq. (4.84) or the Adelman A from Eq. (4.85) was used in the model.

treatment of solute molecules immersed in a solvent through effective solute-solute potentials.
The LR framework does not distinguish between solvent and solute molecules, and is based on
the state variables T , P , and n, whereas the MM framework depends on the concentration of
solute compounds, c, T , and the pressure of the pure solvent P0. In order to convert between
activity coefficients calculated with the two frameworks, the following conversion is needed:

ln γLR0 (T, P,n) − ln γMM
0 (T, P,n) = −V 0P

e

RT
(4.86)
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Figure 4.26: Temperature derivative of the Helmholtz free energy from Non-primitive MSA and Debye-
Huckel/Born. DH(εX) or Born(εX) indicates whether the Wertheim static permittivity
εW from Eq. (4.84) or the Adelman A from Eq. (4.85) was used in the model.
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Figure 4.27: Chemical potential of salt and solvent from Non-primitive MSA and Debye-Huckel.
DH(εX) or Born(εX) indicates whether the Wertheim static permittivity εW from Eq.
(4.84) or the Adelman A from Eq. (4.85) was used in the model.

In which V 0 is the partial molar volume of solvent and the electrostatic pressure P e =
−
(
∂Ae

∂V

)
T,n

. From Table 1.2 in the introduction chapter (p. 14) it was shown how most authors

do not mention the discrepancy on the conversion between the frameworks. Wu and Prausnitz
[109] stated that since the primitive MSA model was developed from a MM framework, one
should not include derivatives of the static permittivity on the Helmholtz energy; but it is the
opinion of this author, that this statement cannot be true - if the derivatives of a function used
to calculate the Helmholtz energy are neglected it will lead to an inconsistent thermodynamic
model.
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Figure 4.28: Chemical potential of salt and solvent from Non-primitive MSA and Born. DH(εX) or
Born(εX) indicates whether the Wertheim static permittivity εW from Eq. (4.84) or the
Adelman A from Eq. (4.85) was used in the model.

Myers et al. [114] perform the conversion between the frameworks to calculate the corrected
activity coefficient of the solvent, while Radosz et al. [121–127] and Haghtalab et al. [136, 137]
state that the correction is insignificant and will be hidden by the parameters. Advocates of
the non-primitive models for electrolyte mixtures argue that since the non-primitive models are
developed from the T, V, n state variables, they do not require any conversion between the
frameworks [52, 138], making the non-primitive model a more suitable choice for electrolyte
equations of state.

In an attempt to clarify the situation on conversion from the McMillan-Mayer framework, Breil
and Mollerup (2006) [227] stated that the electrostatic contribution to the chemical potential
of the solvent at constant volume must be zero, since the solvent is not involved in the charging
process. They showed that when the T, V, n state variables were used, the conversion between
the two frameworks was superfluous and argued that it is unnecessary to perform a conversion
from the McMillan-Mayer framework in electrolyte equations of state when the Helmholtz en-
ergy from the original Debye-Hückel is used. This contrasts Herzog et al. [138] who state that
the primitive MSA must be converted, irrespective of whether it is used as an activity coefficient
model or in an equation of state [228], which has also been done by e.g. Simonin et al. [50, 51].

Despite several attempts, the recent literature on electrolyte EoS do not provide a completely
satisfactory explanation on the necessity of conversion between the McMillan-Mayer and Lewis-
Randall frameworks. It is the oppinion of this author that a different interpretation is needed
in order to rectify the situation. As discussed in Section 4.4, Adelman [68, 69, 156] developed a
generalization of the Ornstein-Zernike relations for effective solute-solute potentials and showed
that the electrostatic interactions may be calculated from the shielded Coulomb potential (Eq.
(4.69)), where the static permittivity of the solute εr is calculated from the direct and indirect
correlation functions of the entire mixture. Friedman (1982) [158] investigated the Adelman ap-
proach further and showed the similarity between the McMillan-Mayer theory and the effective
direct correlation functions from Adelman, which on the other hand do not require conversion
between the frameworks as it is simply an alternative transformation of the Ornstein-Zernike
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equations. This provides an alternative view on the static permittivity, as a description of the
dipole-dipole and ion-dipole interactions in the mixture, and therefore requires differentiation
with regards to all of the molecules in the mixture. Whereas Adelman [69] developed the sta-
tistical mechanical framework for describing the effective correlation functions, it is suggested
to use the reverse scheme as an alternative approach that will allow the use of primitive mod-
els, such as the Debye-Hückel model to model the effective ion-ion interactions in the mixture,
provided that the static permittivity is modeled using a physically correct approach. This is an
indirect approach to model the direct correlation functions between all molecules in the actual
mixture.

4.5 Summary and Conclusions

This chapter investigated the fundamentals of thermodynamic modeling of electrolyte systems
and in the process provided answers and guidelines for several of the research questions:

• How should electrostatic interactions be modeled?

• Should activity coefficients be converted from the McMillan-Mayer to the Lewis-Randall
framework?

• How should the static permittivity be modeled? And does it even matter?

• Should the model include an explicit term for the Gibbs energy of solvation?

• What is the importance of ion-solvent and ion-ion association in an electrolyte EoS?

The residual Helmholtz free energy of the Debye-Hückel model was compared to the implicit
non-restricted primitive mean spherical approximation model ([161] Ind. Eng. Chem. Res.
(2012), 51 (14), 5353-5363) and it was shown that the models provide quite similar results for
the energy and its derivatives with regards to temperature, volume and composition. It was
concluded that either model could be used to represent the contribution to residual Helmholtz
energy from electrostatic interactions, and that the choice of model for the static permittivity
would have a much larger effect than the differences between the two models.

Molecular simulation has provided insight in the behavior of electrolyte mixtures and has shown
that ion pairs are a natural consequence of the short-range interactions between ions. Their
appearance of ion pairs is ubiquitous and necessary in order to get agreement with molecular
simulation - furthermore, associated ions have been investigated through various experimen-
tal means such as conductometry and dielectric spectroscopy. While it is common to consider
salts such as NaCl as fully dissociated in water at room temperature, it may become important
to include such a model, when treating mixed solvents as ion pairs will be more prevalent in
low-permittivity solvents where the Bjerrum length lB is large. A real mixture of e.g. water
and ions will display several ion-specific traits as a consequence of the ion-solvent and ion-ion
interactions, and Kalcher et al. [60, 201] showed that the ion-solvent association and ion-ion
association are linked and that ions that have strong interactions with the solvent will have a
greater tendency to form solvent-separated ion pairs, leading to an increased complexity of the
system.

The Born model was shown to be of great importance to the fugacity coefficient at infinite
dilution, and therefore the main contributor to the driving force of ions towards the most polar
phase. If the model has a good description of the Gibbs energy of hydration, it was furthermore
shown that it would become possible to use the ideal gas standard state for standard state prop-
erties. This would in itself lead to new possibilities for predicting e.g. the chemical speciation

Page 77 of 270

100



4.5. Summary and Conclusions

and reduce the need for fitting unknown standard state properties. It was concluded that the
EoS must have a term that accounts for the Gibbs energy of hydration, in a manner that takes
into account the dipole-ion interactions; either through the Born model or an improved model.

The ion-ion and ion-dipole contributions to the non-primitive MSA was compared to the Debye-
Hückel and Born models using the static permittivity calculated from the non-primitive model.
It was shown that while there are differences in the derivatives wrt. temperature and volume, a
reasonable agreement was observed between the chemical potential for the Debye-Hückel model
and the npMSA. The contributions to the chemical potential of the Born model differed signifi-
cantly at higher salt concentrations, but gave a nearly identical contribution at infinite dilution.
While the non-primitive approach is of great interest to the development of electrolyte EoS,
the non-primitive model also includes an explicit dipole-dipole interaction term, which makes
it impossible to include as an extension to the CPA model without refitting parameters for
all polar compounds. Since the goal of this study is to extend the existing model to handle
electrolytes while maintaining backwards compatibility with the existing model, the model will
be based on the Debye-Hückel and Born.

The confusion in literature concerning conversion from the McMillan-Mayer to the Lewis-
Randall framework was also addressed. Following the work by Adelman [69], a new inter-
pretation of the problem was proposed, in which the static permittivity is viewed in terms of its
shielding effect on the Coulomb potential in electrolyte solutions. The comparison of the prim-
itive and non-primitive electrolyte models furthermore indicated that new physical behavior
of the primitive electrostatic models is incorporated when the static permittivity is calculated
from a physically based model. The development of a physically correct model to describe the
static permittivity of complex mixtures will be the main topic of the next chapter.
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Chapter 5

Modeling of the Static Permittivity

of Complex Fluids

The previous chapter demonstrated that the static permittivity εr is a key property for describ-
ing the electrostatic interactions and the Gibbs energy of hydration for primitive electrolyte
models. The non-primitive MSA (npMSA) elminates the need of using a static permittivity
by directly determining the ion-ion, ion-dipole, and dipole-dipole interactions. Adelman [69]
derived a solute-based Ornstein-Zernike equation and demonstrated the relationship to the ef-
fective Coulomb potential in a medium with a static permittivity arising from the interactions
between all molecules in the mixture:

ψeffij =
e2zizj

4πεrε0r2
ij

In Section 4.4.1 it was demonstrated that the static permittivity predicted by the npMSA model
is 40% lower than its experimental value when using the vacuum dipole moment of water. While
it is possible to adjust the dipole moment manually to obtain better agreement with the liquid
static permittivity, there are other problems remaining; for instance is theoi dipole-dipole in-
teraction energy turned off for hydrogen-bonding compounds in dipolar SAFT-type as it leads
to incorrect representation of the phase equilibrium in mixtures with polar compounds [226].
Additionally, the dipole-dipole interaction energy is incompatible with the existing CPA formu-
lation making it impossible to use the npMSA as the basis for an electrolyte extension to CPA.

It was shown that the chemical potential of the solvent at constant volume was affected by the
concentration of ions in the case of the non-primitive MSA since the static permittivity depends
on the density of the solvent. As shown in Chapter 4, this behavior is not observed when an em-
pirical correlation that is independent of the solvent density is used for the static permittivity in
the Debye-Hückel model . It was therefore argued that rather than using a non-primitive model
to determine all interactions between ion-ion, ion-solvent, and solvent-solvent, it may be more
feasible to develop a physically realistic model of the static permittivity and thereby indirectly
provide a measure of the balance between ion-ion, ion-dipole, and dipole-dipole interactions.
This model for the static permittivity can then be used within primitive electrolyte models such
as Debye-Hückel and Born to calculate the effective charge-charge interaction potential and in
the process avoid the need to convert from the McMillan-Mayer framework.

In this chapter, the efforts to develop a new model for predicting the static permittivity of com-
plex mixtures containing non-polar, polar, and hydrogen-bonding compounds are presented.
This work was published in two articles in J. Phys. Chem. B in 2013:

• Modeling of Dielectric Properties of Complex Fluids with an Equation of State (published
in J. Phys. Chem. B. (2013), 117, 3389-3397) [162]
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• Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of State
(published in J. Phys. Chem. B. (2013), 117, 10523-10533) [163]

5.1 Introduction

The static permittivity is a key property for describing solutions containing polar and hydrogen
bonding compounds. However, the precise relationship between the molecular and dielectric
properties is not well-established. Here it is shown that the relative permittivity at zero fre-
quency (static permittivity) can be modeled simultaneously with thermodynamic properties.
The static permittivity is calculated from an extension of the framework developed by Onsager,
Kirkwood, and Fröhlich to associating mixtures. The thermodynamic properties are calculated
from the Cubic-Plus-Association (CPA) equation of state that includes the Wertheim associ-
ation model as formulated in the Statistical Associating Fluid Theory (SAFT) to account for
hydrogen bonding molecules. It is shown that by using a simple description of the geometry
of the association, the Kirkwood g-factor can be calculated as a function of the probability of
hydrogen bond formation. The results show that it is possible to predict the static permittiv-
ity of complex mixtures over wide temperature and pressure ranges from simple extensions of
well-established theories simultaneously with the calculation of thermodynamic properties.

5.2 Literature Survey

5.2.1 Measurement of Static Permittivity of Complex Fluids

The static permittivity of polar non-conducting fluids may be measured directly from the real
part of the permittivity from the frequency range 0.1-1MHz, but for conducting fluids (e.g. in
mixtures containing electrolytes), it is required to assess the dielectric losses through dielectric
relaxation spectroscopy (DRS) to determine the static permittivity[32, 229]. When analyzing
the equilibrium dielectric properties of conducting mixtures, the measured permittivity ε∗ must
be corrected for the direct-current conductivity σ causing ion drift at low frequencies using
Eq.(5.1) [32, 230–234]

ε∗
d = ε∗ + i

σ

ωε0
(5.1)

ω [rev/s] Angular frequency
σ [S/m] Direct current conductivity
ε∗
d Complex permittivity (frequency dependent dielectric response)

Note that the real part of the frequency-dependent dielectric response εd will tend towards
the static permittivity of the solution in the limit of zero frequency. DRS provides insight in
the relaxation processes in the mixture, and has e.g. been used to derive information on the
dynamics of solvation of pure components and mixtures. The frequency-dependent behavior
may be determined using a model, such as the first-order Debye relaxation model[235] as shown
in Eq. (5.2)[32, 230, 236–238]:

ε∗
d = ε∞ +

εr − ε∞

1 + iωτ
(5.2)

τ [s] Characteristic dipole relaxation time
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Note that τ is a measure of the time it takes
for dipoles to become randomly arranged af-
ter removal of the electrical field. In practice,
several relaxation processes may be involved in
analyzing the frequency-response of the permit-
tivity, and therefore permittivity data is often
analyzed using a number of relaxation models,
each of which are fitted to the more generic form
given by Eq. (5.3) where 0 ≤ αj , βj ≤ 1:

ε∗
d =

N∑
j=1

Sj[
1 + (iωτj)

1−αj

]βj
+ ε∞ (5.3)

The dielectric response of pure water at 20◦C is
shown in Figure 5.1, where the characteristic re-
laxation time τc corresponds to the cooperative
relaxation of the hydrogen-bond network and τf
the free water and memory of dielectric friction
[33].

Figure 5.1: Dielectric profile of water at 20
◦C [33]

Additionally, the imaginary part of the permit-
tivity shows four intermolecular vibrations; v50

for bending, v180 for stretching, and v400/v700

for libration of hydrogen bonds [33]. Typical re-
laxation schemes following Eq. (5.3) are shown
in Table 5.1 to the right. After data acquisi-
tion the data must be corrected for the dielectric
responses arising from the measurement equip-
ment, and then analyzed by a relaxation model
such as Eq. (5.3)[32, 239].

αj βj
Debye 0 1

Cole-Davidson 0 Fitted
Cole-Cole Fitted 1

Table 5.1: Typical relaxation models and pa-
rameters for Eq. (5.3)[32, 239]

5.2.2 Theory of the Static Permittivity

Dielectric spectroscopy is widely used to gain insight in molecular properties of fluids[24, 154,
240, 241]. The dielectric properties of fluids are characterized from the complex permittiv-
ity ε′ + iε′′, which can be measured from the response of the fluid to an external electrical
field[24, 154, 240, 241]. The electrical response ultimately depends on many factors, including
transport and thermodynamic properties (density, viscosity, etc.), molecular properties (dipole
moment, molecular polarizability, etc.), and also the fluid structure (e.g. due to hydrogen
bonding) [24, 150–152, 154, 240–243]. The zero-frequency limit of the relative permittivity of a
material, also known as the static relative permittivity is a measure of the ratio of capacitance
of a medium relative to the capacitance of vacuum[24, 240, 243]. The static permittivity is
required as input to primitive models for the electrostatic interactions between ions in a polar
medium[161], such as the Debye-Hückel[26] theory and the Born[45] model of the solvation free
energy.

The static permittivity has also been used to correlate solubility and speciation of neutral
compounds and pharmaceuticals[30] and to predict the scaling propensity of produced water
containing gas hydrate inhibitors[224]. Online measurements of the permittivity are used for
non-destructive sensing of moisture content of soils and food[154, 244]. It also serves as a valu-
able resource for assessment of water saturation in geological formations and determination
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of the hydrocarbon content in the presence of fresh formation water or water with unknown
salinity[245].

The theoretical background for predicting the static permittivity (εr) of polar compounds
from molecular properties relies on the famous papers by Onsager[150] and Kirkwood[151].
Fröhlich[152] introduced the Kirkwood g-factor accounting for the local structure in Onsager’s
relations and Hasted[154] extended the formulation to mixtures as shown in Eq. (5.4). A
derivation of Eq. (5.4) is available in Appendix C.2.

(2εr + ε∞) (εr − ε∞)

εr(ε∞ + 2)2 =
NA

9ε0kBTv

∑
i

xigiμ
2
i,0 (5.4)

ε∞ Permittivity at infinite frequency, typically replaced by square of the
refractive index n2

μi,0 [C · m] Dipole moment of component i in vacuum
gi Kirkwood g-factor of component i

When the polarizability is included, the Onsager equations provides a good description of the
static permittivity of real liquids [157]. Stell et al. [157] attributes this to the quadrupolar
interactions and anisotropic interactions, which effectively counterbalances the contribution to
the g-factor that is ignored by the Onsager theory. While the Onsager theory is inaccurate
for describing results from molecular simulation of simple dipolar models it is actually a good
approximation for real liquids that have multipolar moments leading to error cancellations [157].

Eq. (5.4) can be derived using the procedure by Buckingham[153] and by assuming the same in-
finite frequency permittivity ε∞ for all spherical enclosures (see Appendix C.2). ε∞ is calculated
from the Clausius-Mossotti[24, 240] equation for mixtures shown in Eq. (5.5):

ε∞ − 1
ε∞ + 2

=
1

3ε0

NA

v

∑
i

xiα0,i (5.5)

α0,i
[
C2m2/J

]
The molecular polarizability of molecule i

Oster and Kirkwood[242] derived a model for the pure component g-factor for water and al-
cohols using Eq.(5.6) with a coordination number z = 4 for water and using the statistical
mechanical average angle γ of the projected dipole moment of surrounding molecules onto the
central molecule:

g = 1 + z 〈cos γ〉 (5.6)

Haggis et al.[241] used the "broken-down ice" structure of water, to accurately predict the
static permittivity of water over wider temperature ranges by accounting for a reduction in
the degree of hydrogen bonding. Suresh and Naik[246, 247] presented a model for predicting
the static permittivity of binary mixtures of methanol, water, and acetone by calculating cos γ
from molecular geometry and the probability of association determined by a chemical model for
hydrogen bonding. Suresh improved the model for mixtures[248] and used the model to analyze
two proposed schemes for the cross-association between water and dimethyl sulfoxide.

5.2.3 Refractive Index

The infinite frequency polarizability ε∞ is often approximated by the square of the refractive
index, which has been measured for many compounds (especially at 589 nm). The refractive
index is a measure of the relative speed of electromagnetic waves in a given material compared
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to vacuum. As a light wave with wavelength λ propagates from one transparent medium with
refractive index n1 to another with refractive index n2, part of the light will be reflected at the
interface, while another part of the beam will appear to bend according to Snell’s law given by
Eq. (5.7) [249]:

sin θ1

sin θ2
=
n2

n1
(5.7)

This process is known as refraction and is due to the change in relative speed of the light in the
different media. The refractive index defined by Eq. (5.8) as a measure of the relative speed of
the light wave in a medium compared to the speed of light in vacuum [249, 250]:

n =
c

v
(5.8)

In Eq. (5.8), c is the speed of light in vacuum and v is the velocity of light in the material. As the
speed of light cannot be higher than the speed of light in vacuum, |n| ≥ 1. The refractive index
is a characteristic function of both the type of medium and conditions (temperature, pressure,
volume), as well as the wavelength of the incipient light λ. The dependence of refractive index
of solids on the wavelength is known as dispersion, and will e.g. cause the separation of sun
light into it’s color spectrum as a beam enters a prism [249]. The dispersion contributions to
the refractive index can be related to the wavelength of the incipient light through the Cauchy
polynomial given by Eq. (5.9) [249, 250], whereas a more advanced form is needed to take into
account absorption lines.

n = a+
b

λ2
+

c

λ4
+

d

λ6
... (5.9)

The refractive index can also be derived from the Maxwell equations [250]. This yield the
expression shown in Eq. (5.10):

n2 = ελμr (5.10)

Where μr is the relative magnetic permeability of the material and ελ the relative permittivity
of the medium at the wavelength λ. For non-ferromagnetic materials, the magnetic permeability
becomes approximately unity, and for non-polar substances the dependence of relative static
permittivity on the wavelength becomes negligible and it is sufficient to use the relative static
permittivity.
The refractive index depends on the conditions
and the given medium. The refractive index in
a gas is close to unity, as the concentration of
molecules in the gas is small and thereby the
light maintains most of its momentum. In a
liquid, the refractive index increases due to the
increased molecular density and the interaction
between the molecules. Examples of the refrac-
tive index of different medium are shown in Ta-
ble 5.2.

Medium Temperature Refractive
[◦C] Index

Air (g) 0 1.000293
Water (l) 20 1.333

Acetic Acid (l) 20 1.3716
Ethanol (l) 20 1.3614
NaCl (s) 26.85 1.544

Table 5.2: Refractive indices at 589nm at
1atm in various media [207].

In general, the refractive index depends on temperature, pressure and composition. Refractrom-
etry uses the composition dependence to determine the concentration of a solute in a solvent
from known empirical relationships between concentration and refractive index at a given tem-
perature and pressure.

Refractometry has e.g. been used to correlate and measure the concentration of sucrose in
an aqueous medium [251] or to determine the relative ratio of refrigerant and refrigerant oil
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under pressurized condition[252]. Breil and Mollerup used the refractive index calculated by
the Clausius-Mossotti equation along with an activity coefficient model to calculate the tur-
bidity and scattering ratio of a mixture of sucrose and lysozyme [253]. The refractive index
has also been used as a method to correlate other physical properties. Escobedo and Mansoori
[254] proposed a corresponding states expression for calculation of the Parachor parameter for
a corresponding states approach to calculation of the surface tension of a liquid mixture. Riazi
and Roomi [255] utilized the refractive index to correlate thermodynamic and physical proper-
ties such as heat capacity and viscosity as well as parameters for the cubic EoS, and showed
that this gives better correspondence with the liquid density of heavier compounds. Riazi and
Roomi [255] also present a characterization scheme using the refractive index for petroleum
pseudocomponents.

In this work, the refractive index or infinite frequency permittivity will be calculated from
the molecular polarizability and the Clausius-Mossotti equation from Eq. (5.5) to provide an
estimate of the polarizability of the medium.

5.3 Extension of the Theory of the Static Permittivity to

Handle Hydrogen-Bonding Compounds

5.3.1 Derivation of a Geometrical Model for Calculation of the Kirkwood

g-factor

The following section summarizes the development of a new model for the static permittivity of
mixtures containing hydrogen-bonding compounds. It extends the model for mixtures shown in
Eq. (5.4), in which the g-factor can be calculated from Eq. (5.11) (see derivation in Appendix
C.2):

gi = 1 +
1
μ2

0,i

〈∑
j �=i

μ0,i · μ′
0,j

〉
(5.11)

μ′
0,j [C · m] The dipole moment of molecules surrounding the central dipole

Eq. (5.11) is approximated from the pro-
jected dipole moments of all molecules that
are hydrogen bonded to a fixed central
molecule C. A sketch of the innermost
neighbor is shown in Figure 5.2 to the right.
It is evident that the angle between the
two dipole moments, γ, can be calculated
from the projection of the dipole moment of
a de-central molecule μD onto the central
molecule μC using Eq. (5.12):

〈cos γ〉 =
〈μC · μD〉
μCμD

(5.12)

By assuming free rotation around the hy-
drogen bond, Eq. (5.12) can be rewritten
in terms of the dipole moment in the direc-
tion of the hydrogen-bond μH towards the
other molecule as shown in (5.13):

Figure 5.2: Sketch of bonding angles and dipole
moments with the innermost neighbor

〈cos γ〉 =
μH · μD
μCμD

(5.13)
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Eq. (5.13) is transformed using simple trigonometric relationships into Eq. (5.14) for tetrahe-
dral, and Eq. (5.15) for planar networks (see Appendix C.3).

〈cos γ〉 = −μOH + μOR cosϕ
μCμD

(
μOH cos θ + μOR

(
cos θ cosϕ− 1

2
sin θ sinϕ

))
(5.14)

〈cos γ〉 = −μOH + μOR cosϕ
μCμD

(μOH cos θ + μOR (cos θ cosϕ− sin θ sinϕ)) (5.15)

In Eq. (5.14) and Eq. (5.15), μOH and μOR are the constituents to the dipole moment in
the O-H and O-R directions, respectively. Eq. (5.14) and Eq. (5.15) may be used for pure
components and mixtures to determine angles between proton donors and proton acceptors and
vice versa. θ = 109.47◦ is used for the predictions with the tetrahedral network and θ = 120◦

is used for the planar network. Assuming that the central molecule C can form up to zCD
hydrogen bonds with molecule D in the first shell the contribution to the scalar product of the
dipole moments of the first zij neighbors can be calculated from Eq. (5.16):

〈μC · μD〉(1) = zCDμCμD 〈cos γ〉 (5.16)

The simplified picture of the hydrogen
bonding network shown in Figure 5.3 (to
the right) is constructed in order to de-
termine the projected dipole moment from
all neighbors to the central molecule in-
cluding hydrogen-bonded molecules from
the first, second, and nth shell. If the
molecules can form more than 2 hydro-
gen bonds, each shell will contain more
molecules than the first. As shown by
Suresh and Naik[246] the geometrical con-
figurations in the tetrahedrally coordinated
shells result in that the dipole moments of
all but zCD molecules will be cancelled out.
It is therefore assumed that there are only
zCD molecules in each shell that give a net
contribution to the central dipole moment.

Figure 5.3: Sketch of color-coded important dipole
moments and angles in a hydrogen-
bonding system.

The projected dipole moment from the kth shell onto the first shell may then be calculated
from the rotation angle θ which is multiplied onto the projected dipole moment of the first shell
using Eq. (5.17):

〈μC · μD〉(k) = 〈μC · μD〉(1)cosk−1 (π − θ) , k = 2..∞ (5.17)

The statistical mechanical average in Eq. (5.11) for mixtures of associating compounds is then
approximated by a summation over the surrounding shells for all molecules given by Eq. (5.18):〈∑

j �=i

μ0,i · μ′
0,j

〉
=

〈
shells∑
k

components∑
j

〈
μ0,i · μ′

0,j

〉〉
(5.18)

The statistical mechanical average
〈
μ0,i · μ′

0,j

〉
depends on the probability of molecule i and j

being associated (Pij) and on the projection of the dipole moment onto the central molecule. The
statistical mechanical average of the projection of the dipole moments from the first hydration
shell onto the central molecule can be calculated from Eq. (5.19) (obtained by using Eq. (5.16)),
in which we have dropped the bracket notation 〈〉 for the statistical mechanical average angle:∑

j

〈
μ0,i · μ′

0,j

〉
= μ0,i

∑
j

zijPijμ0,j cos γij (5.19)
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zij Coordination number of molecule j around a central molecule i
γij The angle between the two dipole moments as shown in Figure 5.2

The contributions from the 2nd, 3rd and the kth shell are calculated using Eq. (5.17). The
probability of the kth shell to exist is equal to P ki , where Pi =

∑
j∈S

Pij is the probability of the

molecule i to be bonded to any of the molecules in the set S. The contribution from the kth
shell to Eq. (5.18) is then given by Eq. (5.20):

∑
j

〈
μ0,i · μ′

0,j

〉(k)
= μ0,i

∑
j

zijPijμ0,j cos γij[Pi cos (π − θij)]
k (5.20)

It is then possible to calculate the sum of the contributions over all shells as shown in Eq.
(5.21):〈

shells∑
k

components∑
j

〈μ0,i · μ0,j〉
〉

= μ0,i

∑
j

zijPijμ0,j cos γij
Pi cos θij + 1

(5.21)

By inserting Eq. (5.21) in Eq. (5.11), the explicit expression shown in Eq. (5.22) for the g-factor
in mixtures of associating compounds is obtained.

gi = 1 +
∑
j

zijPij cos γij
Pi cos θij + 1

μ0,j

μ0,i
(5.22)

Note that Eq. (5.22) does not account for closed (e.g. ring-like) structures. Furthermore, the
parameters for Eq. (5.22) cannot easily be deduced for components with multiple conformers
and must be fitted to experimental data. Note also that if cos γij is negative (corresponding to
the dipoles being aligned antiparallelly) Eq. (5.22) may result in g < 1.

5.3.1.1 Examples

Applying Eq. (5.14) in the case of water (μ0 = 1.855D, ϕ = 104.5◦, θ = 109.5◦) results in
γ = 69.4◦. By assuming that the bond length of the O −H bond does not change significantly
in water compared to alcohols, and by using the value μOH = 1.52D from water for methanol
the angle for methanol γ = 57.8◦ is calculated for a planar configuration and μ0 = 1.7D using
(5.15).

5.3.1.2 Selection of Hydrogen Bonding Network

Before any calculations of the static permittivity can be performed, it is necessary to determine
the hydrogen bonding network. The Kirkwood g-factor can be obtained from experimental data
by rearranging Eq. (5.4) to form Eq. (5.23):

gi =
1
μ2
i

(2εr + ε∞) (εr − ε∞)

εr(ε∞ + 2)2

9ε0kBTv

NA
(5.23)

The g-factor calculated near the freezing point temperature (i.e. at high degree of association),
serves as a good indicator for the choice of the hydrogen bonding network. It may be compared
to the maximum g-factor that is calculated from the model by inserting Pij = 1 into Eq. (5.22)
for a pure component:

gmax = 1 +
zij cos γij
cos θij + 1

(5.24)

To illustrate how the choice of hydrogen network affects the calculated g-factors, the experimen-
tal g-factor for methanol is calculated to be in the range of 3.25-3.5 at 163-183K. If methanol
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was in a tetrahedral configuration (θ = 109.47◦) with a maximum of three hydrogen bonds (from
the two lone pairs on oxygen and the one hydrogen bond), the maximum g-factor calculated
using Eq. (5.24) and Eq. (5.14) is 2.76, and thus, a tetrahedral hydrogen bonding configuration
cannot reproduce the experimental data. If a planar configuration (θ = 120◦) with two hydro-
gen bonds is used instead, the maximum g-factor calculated using Eq. (5.24) and Eq. (5.15) is
3.67, which is in much better accordance with the observed values.

5.3.1.3 Handling of Different Conformations

The nature of the problem changes in the case of multi-functional molecules and molecules with
internal degrees of freedom as these conformational changes may affect the overall magnitude
and direction of the dipole moment. In such situations, the total mixture may contain different
conformers of the molecules and essentially requires us to perform calculation of the distribution
of conformers, and then perform calculations for each geometrical configuration. In practice,
this becomes a difficult task and would require additional information about e.g. intramolecular
association. Instead it is proposed that the model parameters are used as effective parameters,
where e.g. μOH , zcosγ, or θ is fitted to the static permittivity at a known temperature - this
makes it possible to get reasonable predictions of the static permittivity over wide ranges of
temperature for many molecules.

5.3.2 Correlation of Pure Component Parameters

The thermodynamic model was described in Section 3. The model parameters fitted to ther-
modynamic properties are adopted as shown in Table 5.3. In connection with prediction of
the static permittivity, CPA is used to calculate the volume and the probability of association,
which are already calculated by in terms of the unbonded site fractions XAi

obtained from solv-
ing Eq. (3.9) p. 31 within the equation of state. The probability of two sites to be hydrogen
bonded is calculated from Eq. (5.25):

PAiBj
= ρxjΔAiBj

XAi
XBj

(5.25)

For a pure component, the probability of two molecules to be bonded may be obtained using
Eq. (5.26):

Pij =
∑
Bj

PAiBj
= 1 −XAi

(5.26)

Eq. (5.25) is then used to determine the Kirkwood g-factor from Eq. (5.22).

The static permittivity has been calculated for pure compounds using the densities calculated
from correlations available in the DIPPR database[176], and the probability of association calcu-
lated from solving Eq. (5.25) using the parameters from Table 5.3. The results are summarized
in Table 5.4 and have been slightly modified in comparison to the published paper, as it was
decided to base the parameter estimation on the angle γ rather than θ. Note that it is also
possible to obtain a good correspondence with experimental data (within 5% RAD for most
fluids) by only fitting the parameter γ to εr at 20◦C. Note that AAD is the absolute average

deviation AAD = 1
N

N∑
i

|x(calc) − x(experimental)| and RAD is the relative average deviation

AAD = 1
N

N∑
i

∣∣∣x(calc)−x(experimental)
x(experimental)

∣∣∣.
The model generally shows excellent agreement with the experimental data for static permit-
tivity of the pure compounds that are hydrogen bonding. The largest deviation is observed for
hydrogen sulfide for which Eq. (5.4) reduces to the Onsager equation. For hexane and n-decane,
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Component Tc b Γ =
a0

Rb
c1 1000 · βAi,Bj

εAi,Bj

kB
Association scheme

Unit [K] [cm3/mol] [K] K
Water 647.13 14.52 1017.3 0.6736 69.2 2003.25 4C
Methanol 512.64 30.98 1573.7 0.431 16.1 2957.78 2B
Ethanol 513.92 49.11 2123.8 0.7369 8 2589.85 2B
Propan-
1-ol

536.78 64.11 2234.5 0.9171 8.1 2525.86 2B

Butan-
1-ol

563.05 79.7 2368.6 0.9784 8.2 2525.86 2B

Pentan-
1-ol

586.15 97.46 2808.8 0.9358 3.6 2525.86 2B

Hexan-
1-ol

611.35 110.8 2950.2 0.9805 3.3 2525.86 2B

Octan-
1-ol

652.5 148.5 3368 1.1486 0.14 3218.55 2B

Ethylene
glycol

719.7 51.4 2531.7 0.6744 14.1 2375.75 4C

Diethyl
ether

466.7 92.36 2302.7 0.5946 - - -

Hydrogen
sulfide

373.53 28.5 1878.2 0.6027 - - -

1,4-
dioxane

587.0 73.58 3004.7 0.8417 - - -

Hexane 507.6 107.9 2640 0.8313 - - -
Decane 617.7 178.7 3190.5 1.1324 - - -

Table 5.3: CPA parameters, association strengths and reduced energy for selected components[1, 82,
172]

the static permittivity εr becomes equal to the infinite frequency permittivity ε∞ calculated
from the Clausius-Mossotti-equation, Eq. (5.5).
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Component α0 × 1040 μ0 εr at 20◦C γ ϕ θ z AAD RAD

Unit
[
C2m2

J

]
[D] Calc. Exp. [◦] [◦] [◦] [%]

Water 1.613 1.855 78.8 80.1 69.3* 104.5 109.47 4 (T) 0.8 3.1
Methanol 3.661 1.7 34 33 54.4* 109.47 120.0 2 (P) 0.8 1.9
Ethanol 6.019 1.69 25.2 25.3 51.9* 109.47 120.0 2 (P) 1.0 4.7
Propan-1-ol 7.499 1.68 20.8 20.8 43.6* 109.47 120.0 2 (P) 0.5 2.2
Butan-1-ol 9.88 1.66 18.5 17.8 38.3* 109.47 120.0 2 (P) 0.4 4.0
Pentan-1-ol 11.8 1.7 15.4 15.1 41.6* 109.47 120.0 2 (P) 0.3 3.2
Hexan-1-ol 13.84 1.65 12.8 13 37.7* 109.47 120.0 2 (P) 0.3 3.3
Octan-1-ol 17.92 1.76 10.6 10.3 48.6* 109.47 120.0 2 (P) 0.1 1.5
Ethylene
Glycol

6.342 2.36 43.4 41.4 74.7* 109.47 109.47 4 (T) 0.4 1.0

Diethylether 11.35 1.3 4.39 4.27 - - - - 0.3 4.7
1.43* 0.1 2

Hydrogen
Sulfide

4.395 0.978 5.17 5.93 - - - - 0.6 12.8

1,4-dioxane 9.553 - 2.22 2.22 - - - - 0 0.3
Hexane 13.24 - 1.89 1.89 - - - - 0 0.4
Decane 21.25 - 1.99 1.99 - - - - 0 0.3

Table 5.4: Pure component properties for calculating the static permittivity using densities from
DIPPR correlations and the deviation from experimental data.

Unless stated otherwise, the values for polarizability, dipole moment, and static permittivity are from CRC
Handbook of Chemistry and Physics[207] and the DIPPR database[176]. The experimental data was from the
Landolt-Börnstein database[23]. * indicates fitted value. (T) indicates tetrahedral configuration (i.e. using Eq.
(5.14)), (P) indicates planar (i.e. using Eq. (5.15)).

However, one of the difficulties arising for
accurate calculation of the static permittiv-
ity is the scatter in the experimental data
reported in literature for the vacuum dipole
moment (see Figure 5.4 for the case of 1-
alcohols as a function of chain length). Still
the dipole moment recommended by the
DIPPR database[176] is used by default.
The results indicate that the model is suit-
able for calculation of static permittivity of
pure components - however, in general the
main interest is in the prediction of static
permittivity for multi-component systems
over wide ranges of temperature and pres-
sure. To enable calculation for multicom-
ponent systems, the model is coupled with
the CPA EoS using the calculation proce-
dure shown below:
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Figure 5.4: Scatter of reported dipole moments for
alcohols available in the DIPPR 801
database[176].

• Specification of temperature, pressure, composition

• Solve numerically for liquid volume (Eq. (3.2))

• Solve association equations numerically (Eq. (3.9) p. 31)
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• Calculate static permittivity (Eq. (5.4) and Eq. (5.22))

While the CPA parameters are fitted to vapor pressure and liquid density, the CPA EoS does
not always yield perfect agreement with DIPPR densities. This affects the calculation of the
static permittivity in accordance with Eq. (5.4), and it is therefore necessary to adjust the
parameters slightly to match the experimental data. Table 5.5 shows the results and parameters
when densities are calculated using CPA.

Component εr at 20o γ θ AAD RAD
Unit Calc. Exp. [◦] [◦] [%]
Water 80.2 80.1 63.5* 95.80* 0.7 4.0
Methanol 34.3 33 54.6* 120.0 0.8 1.8
Ethanol 24.8 25.3 49.1* 120.0 0.8 3.1
1-propanol 20.7 20.8 39.2* 120.0 0.5 2.7
1-butanol 18.4 17.8 50.13 128.6* 0.6 4.4

18.4 17.8 34.1* 120.0 0.9 7.9
1-pentanol 14.9 15.1 37.3* 120.0 0.4 4.1
1-hexanol 12.9 13 38.1* 120.0 0.4 4.5
1-octanol 10 10.3 42.2* 120.0 0.2 1.8
Ethylene Glycol 41.6 41.4 73.3* 109.47 0.5 1.3

Table 5.5: Refitted pure component properties for calculation of static permittivity using densities
calculated by CPA and deviation from experimental data from the Landolt Börnstein
database[23]. * indicates a fitted parameter.

Figure 5.5 shows the predicted
water permittivity with DIPPR
and CPA densities using the pre-
dicted bonding angles from as-
suming a tetrahedral geometry
(see Section 5.3.1.1). The results
with CPA are evidently poorer
than when using the DIPPR den-
sities, since the liquid density is
not accurately represented with
CPA (see Figure 5.6). This dis-
crepancy made it necessary to fit
both angles (θ and γ) to obtain
a satisfactory fit with RAD<5%.
For the other compounds it was
only necessary to adjust the an-
gles γ or θ. A comparison of the
static permittivity of pure water
calculated from DIPPR and CPA
densities with fitted parameters
are shown in Figure 5.7.
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Figure 5.5: Comparison of experimental data[256–261] for
the static permittivity of water the predictions
using the bonding angles calculated by assuming
a tetrahedral configuration of the hydrogen bond
network (θ = 109.47◦).

Figure 5.8-5.9 shows that the model displays good correspondence with the experimental data
for methanol and ethylene glycol.

5.3.3 Relationship to Monomer and Free OH Fraction

Another method to evaluate the performance of the new model would be to use it to calculate
the monomer fraction XA = 1−Pii based on the assumed network. A tetrahedral hydrogen bond
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Figure 5.6: Comparison of calculated liquid
density of water using CPA and
DIPPR [176].
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Figure 5.7: Calculated static permittivity of water
using DIPPR and CPA densities and
comparison to experimental data [256–
261].
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Figure 5.8: Calculated static permittivity of
methanol using DIPPR and CPA
densities and comparison to exper-
imental data.

Temperature [K]

St
at

ic
P

er
m

it
ti

vi
ty
ε r

250 300 350 400 450
20

25

30

35

40

45

50

55 [42]
[43]
[44]
[45]
[46]
[47]
[48]
DIPPR
CPA

Figure 5.9: Calculated static permittivity of
MEG using DIPPR and CPA densi-
ties and comparison to experimental
data [267–273].

network with 4 neighbors and the theoretical angles calculated in Section 5.3.1.1 is assumed in
the case of water. Figure 5.10 shows a comparison of the degree of hydrogen bonding as cal-
culated with the present theory in comparison to experimental data measured with vibrational
spectroscopy[274] or NMR [275, 276] and the monomer fractions calculated with the original
CPA parameters. The data from NMR was recalculated from the hydrogen bonding fraction η
using the relation η = 2(1−XA)/1.73[276]. It is evident from Figure 5.10, that the results from
monomer fraction predicted by this theory disagree with experimental data at higher temper-
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Figure 5.10: Fraction of monomer and the free OH fraction of water as calculated by the CPA and
from static permittivity data, in comparison to measurements performed using vibrational
spectroscopy [274] and NMR[275, 276]

atures. Von Solms[172] showed that the site fractions calculated from association models such
as CPA, are not always in good agreement with experimental results for monomer fractions.
Still, as there is significant discrepancy between data from different sources and methods used
to determine the monomer fraction more high-quality data is needed [1].

Highly polar compounds, such as acetone, may exhibit behavior that can be treated as self-
association [277, 278]. The lowest energy configuration in a system consiting of two ”associated”
acetone molecules is shown in Figure 5.11[277]. Such anti-parallel arrangements will reduce the
effective dipole density of the liquid and therefore the static permittivity (shown in Figure 5.12).

Figure 5.12 shows the two larger sets of experimental data is available. The data from Cole
(1941) [279] was measured at 1 bar, while the data from Teutenberg et al. (2009) [280] was mea-
sured at 100 bar. Using the vacuum dipole moment of acetone (2.88D)[176], the refractive index
calculated from Eq. (5.5) using the acetone molecular polarizability (7.121 ·10−40C2m2/J)[176],
and the density of acetone from the DIPPR correlation[176], the g-factor is calculated using Eq.
(5.23) as shown in Figure 5.13.
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Figure 5.11: The anti-parallel configuration
of acetone (figure from [277])

Temperature [K]
St

at
ic

p
er

m
it

ti
vi

ty
ε r

200 300 400 500
5

10

15

20

25

30

35
[279]
[280]

Figure 5.12: Static permittivity of of acetone
and comparison to experimental data
from Cole (1941) [279] and Teuten-
berg (2009) [280]

The data set by Cole [279] shows the trend
for acetone at low temperatures, and does
indeed display an increasing trend for the
g-factor as could be expected from an anti-
parallel configuration (where the degree of
association will decrease with increasing
temperature). The fact that the g-factor
is above 1 could be modified by increas-
ing the dipole moment slightly. However,
the more recent data by Teutenberg et al.
[280] shows the opposite trend with regards
to the Kirkwood g-factor. The contradic-
tory results obtained from analysis of data
from the two sets of experimental data,
indicates that more low-temperature data
(where the polar forces are larger) is needed
to say whether such antiparallel configu-
rations are present at sufficient concentra-
tions to affect the static permittivity. In
either case, the new model may be param-
eterized to match these patterns, but more
reliable experimental data is needed.
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Figure 5.13: Calculated g-factor of acetone using
(5.23) using experimental data for the
static permittivity (see Figure 5.12
and DIPPR density [176].

5.3.4 Calculation of the Static Permittivity of Mixtures

In the case of mixtures, bonding angles, coordination numbers, and the type of hydrogen bond-
ing network must be determined. While the parameters can be fitted to experimental data they
may also be predicted, once the hydrogen bonding network is known. In the original paper
[162], the hydrogen bonding network was fixed from chemical knowledge/considerations, but in
order to further simplify the scheme and improve the predictions it was decided to fix the hy-
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drogen bond network based on the association scheme of the central molecule; e.g. a 2B central
molecule is assumed to coordinate two molecules with a planar configuration and therefore use
Eq. (5.15) to calculate γ, whereas a 4C molecule is assumed to coordinate four molecules and
use Eq. (5.14). The near-Elliott combining rule[1] shown in Eq. (3.14) and Eq. (3.13) p. 32
is used to determine cross-association energies and volumes between positive and negative sites
on the molecules.

Since no parameters are fitted to the experimental data, the results shown in this section are
predictions from the pure component parameters. Figure 5.14 compares the predicted static
permittivity of mixtures of water and methanol with the experimental data as a function of tem-
perature and composition. To ease the comparison, it also shows the excess static permittivity
defined by (5.27):

εEr = εr(mixture) −
N∑
i

xiεr,i (5.27)

Figure 5.14 reveals good agreement with the experimental data, except for the sudden jump
in static permittivity at low methanol mole fractions observed in the data from Travers and
Douzou[263], which is attributed to experimental error. Fig. 5.15 shows good correspondence
with the predicted permittivity of water + ethanol and Figure 5.16 that also the binary mixture
of methanol and ethanol is well predicted.
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Figure 5.14: Static permittivity of water-methanol mixture at different temperatures. The data at
473.15K from Teutenberg et al.[280] is measured at 100 bar, the remaining at 1 bar or
the saturation pressure.

Figure 5.17 shows results for the temperature-dependence of the static permittivity in the
binary water-ethylene glycol system. Since molecular simulation has revealed that the coordi-
nation numbers of water around ethylene glycol can be larger than five [285, 286], it is assumed
that ethylene glycol coordinates up to six water molecules, which also gives the best agreement
with the mixture data. Note that the data from Akerlöf[273] are consistently under-estimating
the static permittivity of ethylene glycol rich mixtures. This deviation is attributed to experi-
mental error, as the data for pure component ethylene glycol from Akerlöf[273] shown in Figure
5.9 is significantly lower than data from other sources. Figure 5.18 shows the static permit-
tivity of water-ethylene glycol mixtures at 25◦C illustrating that the new model also captures
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Figure 5.15: Static permittivity of water-ethanol mixture at different temperatures. Pressure is 1 bar.
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Figure 5.16: Static permittivity of methanol-ethanol mixture at different temperatures. The excess
permittivity is smaller than in the case of e.g. water-alcohol or water-glycol mixtures.

the pressure dependence up to high pressures (2500 bar). Figure 5.19 shows that the model
gives excellent predictions that are possibly better than the experimental data for the system
ethanol-ethylene glycol.

The binary system water-1,4-dioxane was also investigated in order to further validate the
modeling approach for systems with a large difference in structure and dipole moments. 1,4-
dioxane is a non-polar cyclic ether that is fully miscible in water, due to the lone pairs on its
ether bonds, which was modeled with four negative sites. The cross-association energy εij/kB
and strength β was fitted to match the vapor-liquid equilibrium data from 283-430K, with rep-
resentative results shown in Figure 5.20 using a kij = 0. The system exhibits a large negative
excess static permittivity due to the large differences between the molecules, and this is reflected
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Mole fraction MEG
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Figure 5.17: Static permittivity of water-ethylene glycol mixture[273, 287–289]. Data by Akerlöf[273]
systematically display a lower static permittivity in ethylene-glycol rich mixtures, which
is attributed to experimental error.

by the experimental and modeling results shown in Figure 5.21. The model shows excellent pre-
dictions of the static permittivity even in this highly asymmetric system.

Finally, Figure 5.22 validates the modeling approach for prediction of the static permittivity of
ternary mixtures containing water/methanol/ethylene glycol as well as water/methanol/ethanol
as a function of temperature. As demonstrated by Figures 5.14-5.22, the static permittivity of
binary and ternary mixtures of associating compounds is well predicted by the present model.
No new parameters were fitted to the binary or ternary systems; instead the model parameters
were calculated directly from Eq. (5.14), and thus the presented results are true predictions
from the model.

5.3.5 Summary

A new model was proposed to calculate the static permittivity for complex mixtures contain-
ing polar, non-polar, and associating compounds. The model extends the framework by On-
sager, Kirkwood, and Fröhlich and enables modern EoS using a term to take into account
hydrogen-bonding/association to predict the static permittivity of multicomponent mixtures.
By adjusting one or two parameters, the model succesfully correlates the pure component static
permittivity typically within 1-4% relative deviation over wide ranges of temperature and pres-
sure. Using a simple geometrical model for the hydrogen bond network to determine the bonding
angles in a mixture, the model succesfully predicts the static permittivity of binary and ternary
mixtures over wide ranges of temperature and pressure. The new model will become the basis
for calculation of the static permittivity in the electrolyte CPA EoS.
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Figure 5.18: Pressure dependence of static permittivity of water-ethylene glycol mixture at 25◦C [283,
290–294].

Mole fraction EtOH

E
xc

es
s

st
at

ic
p

er
m

it
ti

vi
ty
εE r

0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

St
at

ic
p

er
m

it
ti

vi
ty
ε r

0 0.2 0.4 0.6 0.8 1
20

25

30

35

40

45
T

em
p

er
at

ur
e

[K
]

288.15

298.15

303.15

308.15

318.15

[295]
[296]

Figure 5.19: Static permittivity of water-ethylene glycol mixture. The experimental data for this
system is scattered and most likely errorneous, but model predictions appear reasonable.
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Figure 5.20: P-x,y and T-x,y of the water-1,4-dioxane mixture. Experimental data from the Landolt-
Bornstein database [23]. The modeling results were obtained by fitting cross-association
parameters βij = 14.88·10−3 and εij/kB = 1775K using four negative sites on 1,4-dioxane.
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Figure 5.21: Static permittivity of water-1,4-dioxane mixture. The model displays excellent predictions
of the order of magnitude and temperature trends in the excess permittivity. No param-
eters were adjusted to obtain the static permittivity and it is therefore a pure prediction
using the binary interaction parameters from the VLE shown in Figure 5.20.
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5.4 Extension of the Theory of Static Permittivity to

Mixtures Containing Salts

The model presented in the previous section was shown to provide an excellent description of
the static permittivity of pure compounds and mixtures with a limited number of adjusted
parameters. In the following sections the model is extended to handle salts. This work was
published in J. Phys. Chem. B. (2013), 117, 10523-10533) [163]. It will present a literature
study on microscopic models for the effect of kinetic depolarization and dielectric saturation and
this insight will then be used to develop continuum models through mixing rules and ion-solvent
association. A literature survey on methods used to calculate the static permittivity of aqueous
salt solutions (including phenomenological models) is presented. Finally a new methodology for
obtaining the static permittivity over wide ranges of temperatures, pressures, and composition
for the use within an equation of state for mixed solvents containing salts is presented. The
static permittivity is calculated from a new extension of the framework developed by Onsager,
Kirkwood, and Fröhlich to associating mixtures. The Wertheim association model as formulated
in the Statistical Associating Fluid Theory is used to account for hydrogen bonding molecules
and ion-solvent association. Finally, the effect of the new model for the static permittivity is
illustrated through a comparison of the Helmholtz energy and first order derivatives obtained
using the Debye-Hückel Helmholtz energy obtained using the new model and an empirical model
given by Eq. (4.39).

5.4.1 Effect of Salts on the Static Permittivity

The static permittivity is the most important physical property for thermodynamic models
that account for the electrostatic interactions between ions. The measured static permittivity
in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of
the dipoles in the electrical field surrounding ions. Kinetic depolarization may explain 25-75%
of the observed decrease in the permittivity of solutions containing salts, but since this is a dy-
namic property, this effect should not be included in thermodynamic modeling of electrolytes.
Kinetic depolarization has, however, been ignored in relation to thermodynamic modeling, and
authors have either neglected the effect of salts on permittivity or used empirical correlations
fitted to the measured static permittivity, leading to an over-estimation of the reduction in the
thermodynamic static permittivity.

The static permittivity, εr, is required as input to models for the Coulombic interactions between
ions in a polar medium[84, 92, 109, 114, 128, 129, 161, 182], such as the Debye-Hückel[26] theory
and the Born[45] model of the solvation free energy. Accurate modeling of the static permittiv-
ity and its derivatives is therefore important for representing chemical and phase equilibrium
in mixed-solvent electrolyte solutions[298], but unfortunately, the empirical models applied in
the context of thermodynamic models may introduce unphysical behavior[161]. Despite the
importance of the static permittivity there is no consensus on what expressions to use in rela-
tion to modeling of electrolyte systems. Researchers have used either εr of the pure or mixed
solvent[85, 86, 89, 91, 93, 109, 110, 112, 114, 115, 128], some have accounted for the effect
of ions through empirical models where the calculated solvent permittivity is reduced by a
factor[51, 92, 94, 95, 129, 139]. Others use non-primitive models where the static permittivity
is calculated implicitly within the equation of state itself from dipole-dipole, ion-dipole, and
ion-ion interactions[52, 67].

The presence of salts will reduce the static permittivity of the mixture through kinetic depolar-
ization and formation of solvation shells around the ions, where water becomes irrotationally
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bounded effectively removing their contribution to the dielectric relaxation of the solvent[32,
241, 299, 300]. A monovalent cation is expected to coordinate 6-8 water molecules[241], while
anions are expected to coordinate slightly less. The coordination number is typically estimated
from hydrated molar volumes and ion diameters[241, 301].

Kinetic depolarization gives rise to a systematic error in analysis of the measured zero-frequency
permittivity, since it is caused by the flow of current and is therefore not a thermodynamic
effect[157, 230]. Following the treatment by Hubbard and Onsager[231–234], the measured real
part of the permittivity at zero frequency of conducting mixtures may be separated into a static
(equilibrium) contribution, εr, affected by dielectric saturation, and a dynamic contribution
ΔεD caused by kinetic depolarization as shown in Eq. (5.28) [231–234, 302]:

lim
ω→0

ε∗
d = εm = εr + ΔεD (5.28)

In Eq. (5.28) εr is the static permittivity and ΔεD is the kinetic depolarization, calculated from
Eq. (5.29)[231–234], when assuming a no-slip condition, and 2

3 of Eq. (5.29) when assuming
perfect slip.

ΔεD = −
(

1 − ε∞

εr

)
τσ

ε0
(5.29)

The magnitude of ΔεD was shown to ac-
count for 25-75% of the observed decrease
in the static permittivity[231–234, 302,
303], yet it has been ignored by groups
working with thermodynamic properties of
electrolytes in analysis of the experimen-
tal data for the static permittivity. Fig-
ure 5.23 shows the effect of kinetic depo-
larization calculated from Eq. (5.29) for
NaCl at 25◦C compared with the empir-
ical model from Eq. (4.39) p. 49[182].
The kinetic depolarization effect is calcu-
lated from Eq. (5.29) using experimental
conductivities[207] and τ = 8.7ps as the re-
laxation time for pure water at 20◦C[304].

Figure 5.23: Effect of kinetic depolarization on
measured static permittivity of NaCl.
The correlation to the experimen-
tal data[24, 25] is calculated from
the empirical correlation by Mollerup
(Eq. (4.39) p. 49) [182].

Figure 5.23 shows that while the empirical model matches the experimental data for the observed
static permittivity, it actually over-estimates the reduction of the static permittivity εr since
50% of the observed reduction is due to a dynamic effect from the kinetic depolarization. This
has a profound effect on the thermodynamic properties. Unfortunately, Eq. (5.29) does not give
an exact contribution from kinetic depolarization, making it essentially impossible to determine
the true static permittivity that should be used in connection with thermodynamic models from
measurements of the permittivity. The scatter in the experimental data observed in Figure
5.23 is generally observed for all salts and the data from different groups are in some cases
inconsistent[299].

5.4.2 Modeling of Dielectric Saturation

The effect of dielectric saturation is caused by the strong interactions between dipoles and the
electrical field surrounding the ions[27, 32, 241, 305]. This effect was modeled by Booth[305],
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who derived a relationship between the electrical field, the dipole moment of the solvent
molecules, and the radial dependence of the dielectric saturation as shown in Eq. (5.30):

εr = n2 + απN0

(
n2 + 2

)
μvE

−1L

(
βμv

(
n2 + 2

)
E

kBT

)
(5.30)

Where the parameters α = 4/3 and β = 1/2 , when using the Onsager definition of the local
field, while it is α = 28

3

√
73 and β = 1

6

√
73 using the Kirkwood definition. Booth[306] made

detailed calculations of the electrical field to verify the assumptions used in deriving Eq. (5.30)
and obtained a new corrected equation where α = 3.3 and β = 0.55, obtained by increasing the
Onsager field by 10%, as indicated by the calculations. In order to match the static permittivity
of the solvent at distances far from the ion, it is noted that this is equivalent to take the limit
at zero field strength from Eq. (5.30).

limr→∞ε (r) − n2 = limE(r)→0ε (r) − n2 = εr − n2 (5.31)

By combining Eq. (5.31) and Eq. (5.30), it is straightforward to derive the relationship shown
in Eq. (5.32):

ε (r) − n2

εr − n2
=

3
x

(
coth x− 1

x

)
x =

βμv
(
n2 + 2

)
E

kBT
(5.32)

The value of β depends on the assump-
tion of the local field. E (r) is the elec-
trical field from the ion with charge q given
by q

[
4πεr (r) ε0r

2
]−1. Figure 5.24 presents

the dielectric saturation profiles calculated
from Eq. (5.32) for the case of ions with
charges from 1 to 4 in water at 25◦C as-
suming ε∞ = 2, and using β = 0.55[306].
It is evident from Figure 5.24 that the di-
electric saturation depends largely on the
ion charge. It should be noted that the
effect of dielectric saturation may be rep-
resented as a type of ion solvation, where
larger ion valencies lead to higher coordi-
nation numbers as the dipoles in the ion
hydration shell are assumed to be aligned
with the electrical field of the ion and thus

Figure 5.24: Dielectric saturation profile for dif-
ferent ion valencies in water using the
Booth model (Eq. (5.32)).

do not contribute to the dipolar fluctuations and static permittivity [229, 230].

The Booth model neglects the discrete nature of the solvent structure around the ions, and
only provides qualitative insight in the influence of the electrical field from the ions. To de-
scribe the effect of ions on the discrete solvent structure, ions are commonly characterized in
two groups[300]; kosmotrophic ions such as Li+ that cause an increasing order in the sol-
vent structure (associated with a large negative entropy change) and chaotrophic ions like
Cs+that break down the solvent structure (resulting in a large positive entropy change). Dill et
al. [300] showed that the solvation entropy is related to the distance between the dipole moment
of water and the charge through the Mercedes-Benz model of water; see Figure 5.25. Lenart
et al.[307] performed grand canonical Monte Carlo simulations of 1:1 electrolyte solutions us-
ing the effect of dielectric saturation to determine the radial dependence of static permittivity,
combined with a model for the first hydration layer around ions giving good correspondence
with the observed activity coefficient of LiCl, NaCl, and KCl. Lenart et al.[307] note that using
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Figure 5.25: a) The Mercedes-Benz (MB) + dipole model of water. b) As the distance between the
water dipole and the charge is shorter the electrostatic interactions are higher for smaller
ions. c) Cations will interact more strongly with water as the distance is shorter. Figure
from Dill et al. [300].

an overall concentration-dependent static permittivity is a measure of the macroscopic effect of
dielectric saturation and that the effect of dielectric saturation in simulations directly provides
more detailed knowledge of the hydration structure and effect on activity coefficients.

The effect of dielectric saturation may be represented as a type of ion solvation, where the
molecules in the ion hydration shell are assumed not to contribute to the dipolar fluctuations as
the dipoles become aligned with the electrical field of the ion[229]. This effect has been included
through mixing rules assuming that each ion removes N molecules of water from the solution
forming spheres with a lower static permittivity [27, 229, 241, 308, 309].

5.4.3 Ion Solvation Models

The effect of dielectric screening may be represented as a type of ion solvation, where the
molecules in the ion hydration shell do not contribute to the dipolar field as the dipoles are
aligned with the electrical field of the ion[229]. The first of such solvation models was presented
by Hückel[27], who determined the reduction in the static permittivity using the linear model
shown in Eq. (5.33), and showed how it improves the correlation of the activity coefficient at
high concentrations, c:

εr = εw − 2δc (5.33)

Hückel found that if δ was determined from the predicted reduction in the static permittivity
obtained from a different model and measurements of the refractive index, it was larger than the
value obtained from fitting δ to the activity coefficient. In a recent review, Marcus [310] provided
an overview of the dielectric decrement of many different salts with ion-specific parameters for
the linear decrement. Haggis et al.[241] used the linear model for the reduction of the static
permittivity, and fit the constant δ to experimental data. Haggis et al.[241] also related the
parameter δ to the hydration number nc, the molar volume v and the molar volume of water
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vw starting from the correlation by Fricke[311] shown in Eq. (5.34):

εr − εw =
βρ

1 − ρ
(εsolute − εr) (5.34)

In which εr is the static permittivity of the mixture, εsolute the static permittivity of the solute
(taken as 2), β is a function of the particle axial ratio, and ρ the volume fraction of particles.
Eq. (5.34) reduces to Eq. (5.35) at low solute concentrations

εr = εw − βρ (εw − εsolute) (5.35)

Finally, Haggis et al.[241] presented the expression shown in Eq. (5.36) that enables calculation
of δ from the coordination number of water, nc:

δ = 1.5 (v (εw − ε∞,s) + vw (εw − ε∞,w) × nc) (5.36)

Giese et al.[308] proposed a scheme where spherical enclosures with a static permittivity of
εθ ≈ 2 were submersed in water with the static permittivity εw = 78.2. The relationship
between the static permittivity of the solvent εs and the fraction of spheres f , is calculated
from the mixing formula shown in Eq. (5.37):

f =
2εw + εθ
εw − εθ

εw − εs
2εw + εs

(5.37)

For alkali halide solutions it was found that the static permittivity εs could only be related to f
if it was assumed that each ion was removing zf moles of water from the solution. Thereby Giese
et al. [308] showed that the fraction of the water molecules that was irrotationally bounded by
the ions did not contribute to the overall dipolar contributions to the polarizability.

Ruff[309] approximated the effect of dielectric saturation using the Booth equation by an expo-
nential function and determined the volume average static permittivity by a volume integral of
the dielectric saturation effect, leading to the average static permittivity being represented by
Eq. (5.38):

εr = εs (1 − g exp (−hfar0)) (5.38)

Where εs is the static permittivity of the solvent, g and h are solvent-dependent parameters
determined from approximation of the Booth function, fa is a function of the anion and cation
concentration and volumes, and r0 a measure of the interionic separation.

5.4.4 Ion Screening

A different approach was presented by Weiss and Schröer[312], who considered the mixture of
equisized spherical ions and dipolar ion pairs in the restricted primitive model. By equating the
energy from ion-dipole and dipole-ion interaction energy, they obtained the expression for the
static permittivity as a function of ionic concentration shown in Eq. (5.39):

(εr − ε∞)
[
(2εr + ε∞) (1 + κσ) + εr(κσ)2

]
εr (1 + κσ)

=
μ2ρd
ε0kBT

(5.39)

Where ρd is the density of dipoles from the association of ions, κ is the inverse Debye length
and σ is the ion/dipole diameter. Weiss and Schröer[312] applied their model to determine
the static permittivity used for modeling of the phase behavior of a pure ionic fluid, where Eq.
(5.39) lead to a significant reduction of the static permittivity due to shielding compared to the
Onsager model.
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5.4.5 Field-Theory Approach

Using field-theoretical methods Levy et al.[313] calculated the effect of ions on the static per-
mittivity from a self-consistent solution of the Poisson-Boltzmann equation, using Eq. (5.40) to
describe the radial dependence of the static permittivity of a solvent with bulk permittivity εs:

εr (r) =
εs

3h2 (lh/r) + 1
(5.40)

In Eq. (5.40), lh is a characteristic hydration length scale that depends on the dipole size
and Bjerrum length and where the function h (x) gives rise to a similar behavior as the Booth
function shown in Figure 5.24. By solving correction to the Gibbs free energy due to the
hydration behavior, Levy et al. [313] shows that the static permittivity of water with salts can
be calculated using Eq. (5.41):

εr = εw +
(εw − 1)2

εw

4π
3cda3

− (εw − 1)2

εw

κ2

πcda

(
1 − κa

2π
tan−1 2π

κa

)
(5.41)

In Eq. (5.41), cd is the dipole density and εw is the permittivity of water. Levy et al.[313] fits the
dipole moment and the ion size and obtains good correspondence with the static permittivity
of different salts in water.

5.4.6 Phenomenological Models

A range of phenomenological models have been presented in literature. Helgeson et al.[299]
presented an empirical relationship between the static permittivity of water εw and the static
permittivity of the solvent as shown in Eq. (5.42):

ε−1
r − ε−1

w =
∑
k

bkψkmk (5.42)

In which mk is the molality of the salt, bkψk is a salt specific constant fitted to the measured
reduction of static permittivity. The authors observed a linear relationship between the Gibbs
energy of solvation and the reduction of static permittivity.

Pottel (1973) [314] developed the following model based on packing considerations:

εr − 1 = (εs − 1)
1 − ξ3

1 + 0.5ξ3
ξ3 =

NAπ

6V

∑
i

niσ
3
i (5.43)

Simonin (1996) [315] simplified the Pottel equation to take only a single parameter α to deter-
mine the decrease as a function of the ion concentration, and Inchekel (2008) [129] found that
it was easier to fit the experimental data of osmotic coefficients when using the simpler model
based on mole fractions rather than concentrations:

εSimonin
r =

εs

1 + α
ions∑
i
Ci

εInchekel
r =

εs

1 + α
ions∑
i
xi

(5.44)

In which α is an adjustable parameter.

Wang and Anderko[298] modeled the effect of salts using the empirical equation shown in Eq.
(5.45):

εs =
εs,0

1 +
ions∑
i
Aixi ln

(
1 +Bi

√
IX
) (5.45)
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In which εs,0 is the static permittivity calculated for the pure solvent and εs is the static
permittivity of the medium including salts. Ai and Bi are ion-specific parameters, and IX is
the ionic strength based on the mole fraction scale, as presented in Eq. (5.46):

IX =
1
2

ions∑
i

xiz
2
i (5.46)

Michelsen and Mollerup[182] presented a different empirical model given by in Eq. (4.39) p. 49,
with results shown in Figure 4.3 p. 50.

While the empirical correlations given by Eqs. (4.39), (5.42)-(5.45) give reasonably good cor-
respondence with the experimental data, the derivatives with regards to temperature, volume,
and composition may be very different. Additionally, these models do not account for the sig-
nificant contribution from kinetic depolarization, and this omission gives rise to a systematic
error. This may result in unphysical behavior for the model of the static permittivity, and thus
affect the derivatives from the electrostatic contributions to Helmholtz energy[161].

5.5 Extension of Model to Mixtures Containing Salts

In Section 5.3.1 and publication [162] the derivation of a new model for the static permittivity
based on a geometrical model for the dipolar correlations for calculation of Kirkwood’s g-factor
(Eq. 5.22) coupled with Wertheim’s association theory[80] within the Cubic-Plus-Association
(CPA) equation of state[82] was presented. The model succesfully correlates the static permittiv-
ity over wide ranges of temperature and pressure for pure compounds and through assumptions
on the hydrogen bond network in mixtures the model enables excellent predictions of the static
permittivity of mixed solvents. In this section the model is extended to handle mixtures con-
taining electrolytes by accounting for the effect of dielectric saturation through a ion-hydration
model.

5.5.1 Extension of Model to Salts

Molecules that are located in the solvation shell around
ions become oriented in the strong symmetrical electrical
field around ions. This effect may be observed by a
reduction in the static permittivity due to cancellation
of the oppositely directed dipole moments as illustrated
in Figure 5.26. Following the concepts used in models
for the static permittivity incorporating ion solvation, it
is assumed that the molecules in the first hydration shell
surrounding an ion will not contribute to the projected
dipole moment. This is the case since the symmetrical
electrical field will cause cancellation of dipoles that are
aligned in the electrical field, as illustrated by Figure
5.26 to the right.

Figure 5.26: Canceling out of
dipole moments due
to alignment in the
electrical field sur-
rounding an ion.

By assuming cancellation of the dipole moments of molecules in the first hydration shell and
therefore a Kirkwood g-factor of 1, Eq. (5.4) can be rewritten into the form shown in Eq. (5.47):

(2εr + ε∞) (εr − ε∞)
εr

=
(
ε∞ + 2

3

)2 NA

ε0kBTv

∑
i

xiΘigiμ
2
i,0 (5.47)
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In which Θi is the fraction of component i that is not bound to an ion and is calculated using
Eq. (5.48):

Θi = 1 −
ions∑
j

Pij (5.48)

The charged ions are assumed to associate with polar molecules, forming a solvation shell
containing Nij molecules of type i around ion j as shown in Figure 5.26.

5.5.2 Treatment of Ion-Solvent Association

In order to separate the ion-ion, ion-solvent, and solvent-solvent interactions, the contribution
to the total Helmholtz energy from association is calculated from Eq. (5.49):

Aassoc = Ahyd +Aion (5.49)

In which Ahyd is the contribution from hydrogen bonds, while Aion is the contribution from
ion-dipole and ion-ion association due to electrostatic forces. The probability of association is
calculated from the site fractions, which are related using Eq. (3.9) p. 31.

The interaction energy between a point dipole and the electrical field from an ion may be
calculated using Eq. (5.50)[316]:

w (r, θ) = − μq

4πεrε0

cos θ
r2

(5.50)

In Eq. (5.50) cos θ denotes the angle between the dipole moment and the electrical field. Quan-
titatively Eq. (5.50) results in very strong interaction energies that are decreasing with the
distance squared, i.e. the forces felt by the second solvation shell will be significantly smaller
than in the first solvation shell. Ion solvation will therefore be modeled as a short-range in-
teraction using the association framework by Wertheim[80]. The static permittivity for the
short-range interaction is lower than the solvent permittivity as evidenced by the dielectric sat-
uration curves shown in Figure 5.24, and it is assumed that the local interaction energy in Eq.
(5.50) is independent of the static permittivity of the bulk solvent.

Eqs. (5.51)-(5.53) show how Eq. (3.9) for the ion-solvent association is written for a mix-
ture containing ni moles of the polar molecule i, and a salt with molality msalt containing
the ions j and k of opposite charge and the stoichiometric factors vj and vk. The fraction of
molecule i that is not bound to any other molecules is then given by Θi. The polar molecule
has a single site representing the dipole moment, while the ions have Nj and Nk identical sites,
respectively.

1
Θi

= 1 +
msalt

V
(vjNjΘjΔij + vkNkΘkΔik) (5.51)

1
Θj

= 1 +
ni
V

ΘiΔij +
msalt

V
vkNkΘkΔjk (5.52)

1
Θk

= 1 +
ni
V

ΘiΔik +
msalt

V
vjNjΘjΔjk (5.53)

At infinite dilution, it is found that the sensitivity of Θi to a change in salt concentration is
calculated from Eq. (5.54), which has been generalized for salts containing more than two ions:

(
∂Θi

∂msalt

)
msalt=0

= − 1
V

ions∑
j

NjvjΔij

1 + 1
V niΔij

(5.54)
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At large association strengths Δij, Eq. (5.54) may be written as Eq. (5.55):

lim
Δwi→∞

(
∂Θi

∂msalt

)
msalt=0

= − 1
ni

∑
j

Njvj (5.55)

Eq. (5.54) and Eq. (5.55) can then be used to determine the relationship between the site
numbers in the Wertheim association framework and the observed coordination numbers around
water. If the probability that an ion j is associated with Nij numbers of molecule i at infinite
dilution is 100%, the probability Θi can be calculated using Eq. (5.56), which is valid at low
concentrations:

Θi = 1 − msalt

ni

ions∑
j

Nijvj (5.56)

A comparison of Eq. (5.54) and Eq. (5.56) reveals the relationship between the apparent
coordination number Nij from Eq. (5.56) and the site numbers and association strengths from
Eq. (5.57):

Nij =
ni
V

NjΔij

1 + 1
V niΔij

(5.57)

Eq. (5.57) can then be used to determine the association strength Δij as shown in Eq. (5.58):

Δij =
1
ρi

(
Nij

Nj −Nij

)
(5.58)

Where ρi is the pure compound molar density of component i. By using water as the reference,
it is possible to define Nj = 2Nwj and obtain the association strength at infinite dilution
Δwj = ρ−1

w . For all other solvents the association strength is calculated from Eq. (5.58) using
Eq. (5.59):

Δij =
1
ρi

(
Nij

2Nwj −Nij

)
(5.59)

The temperature dependence of the association strength Δij calculated from Eq. (5.59) is de-
termined from the saturated liquid density of the pure compound, and the coordination number,
which is assumed to be independent of temperature in this work.

At higher salt concentrations, there are competing mechanisms that will either increase (reduc-
tion in static permittivity) or decrease (ion screening) the association strength Δ. Accounting
for the concentration dependence of the association constant is beyond the scope of this article,
and in the following it is simply assumed that the local static permittivity for calculation of the
forces between dipolar molecules and the central ion is independent of the bulk static permit-
tivity. Interested readers are referred to the work by Hubbard et al.[234] for a discussion on how
the concentration dependence may be included through modification of the radial distribution
function.

5.5.3 Dielectric Properties for an Electrolyte Equation of State

The new model for the static permittivity enables a self-consistent manner to take into account
the effect of dielectric saturation on the static permittivity as the ion-solvent association does
not only lead to a reduction in the static permittivity due to dielectric saturation - in itself the
ion-solvent association provides a contribution to the Helmholtz energy through Eq. (5.49). The
physical coupling of ion-solvent association to the (thermodynamic) static permittivity through
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Eq. (5.47) makes it possible to avoid the problems related to quantification of the dynamic part
of the measured static permittivity, by including the coordination number in parameterization
against thermodynamic data. After parameterization, the static permittivity can be calculated
using the new model and it may then be compared to the measured static permittivity (incl.
kinetic depolarization), to determine whether the model gets reasonable agreement with the
experimental data.

The following section focuses on fitting upper bounds for the coordination numbers of indi-
vidual ions based on the measured static permittivity and subsequently it is analyzed how this
new model affects the derivatives of the Debye-Hückel equation in comparison with using a static
permittivity obtained from the empirical expression by Mollerup [182] shown in Eq. (4.39) p. 49.

This section compares the static permittivity and its derivatives using the following four models:

A) Temperature dependent correlation for static permittivity of water[182]

B) Empirical model from Eq. (4.39) used to calculate static permittivity[182]

C) New model without ion association (Eq. (5.4))

D) New model with ion association (Eq. (5.47)) with hydration numbers from Table 5.6.

Ion Na+ K+ Ca2+ Cl− Br− I− NO−
3 SO2−

4

Molecular Polarizability α0 × 1040
[
C2m2

J

]
2.221 3.166 5.138 3.557 5.256 8.151 4.4 5.775

Hydration number 6 6 8 5 5 5 5 5

Table 5.6: Parameters for modeling of static permittivity and refractive index of salts.
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5.5.4 Modeling of Static Permittivity

The density of the liquid phase is deter-
mined through correlations as a function of
salt concentration and temperature [317–
319]. The squared refractive index n2 = ε∞

is modeled using Eq. (5.5), using the polar-
izabilities shown in Table 5.6. Reasonable
agreement with the experimental data for
the refractive indices is obtained from this
model as evidenced by Figure 5.27. The
hydration number is assigned to 6 in the
case of monovalent cations and 8 in the case
of divalent cations, whereas the hydration
number of anions is set to 5. These hydra-
tion numbers were in reasonable agreement
typical hydration numbers seen in litera-
ture and also had a trend of lower hydra-
tion numbers for anions in comparison to
cations. The static permittivity of NaCl
from 0 to 60 degrees is shown in Figure
5.28, showing that the new model gives
similar agreement with the experimental
data compared to the empirical correlation
from Eq (4.39).

Figure 5.27: Refractive index of selected salts at
20◦C modeled using the Clausius-
Mossotti equation (Eq. (5.5))
and polarizabilities shown in Ta-
ble 5.6 compared with experimental
data[207].

The new model yields good agreement with the pressure dependence of the static permittivity,
as evidenced by Figure 5.29.
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Figure 5.28: Static permittivity of NaCl at 0, 25,
40, and 60◦C (from top to bottom)
using Model B and D with coordi-
nation numbers from Table 5.6. See
model descriptions on p. 107. Ex-
perimental data is taken from data
collections[24, 25].
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Figure 5.29: Change in static permittivity as a
function of pressure at 5◦C and
25◦C.See model descriptions on p.
107. Experimental data from Pot-
tel et al.[320].

Figure 5.29 shows that the empirical model does not give the right trend in terms of the pres-
sure dependence of the static permittivity. The model based on ion solvation is in much better
agreement with the experimental data. Figure 5.30 shows the calculated vs. the measured static
permittivity for different salts at 25◦C. The model displays a reasonable agreement considering
the scatter of the experimental data.
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Figure 5.30: Comparison of the calculated vs. experimental values of selected salts at 25◦C. Data from
[24, 25].

5.5.5 Contributions to Helmholtz Energy

In this section a comparison using the four
different models for the static permittivity
is made to determine the effects of the
model on the contributions to derivatives
of Helmholtz energy using the full Debye-
Hückel theory (Eq. (4.16) p. 44). As
previously shown, the full Debye-Hückel
theory has similar dependence on the
static permittivity as the mean spherical
approximation (MSA)[161], and the ob-
servations are therefore also applicable
to equations of state based on the MSA.
Models A-D (see model descriptions on p.
107.) are compared at densities calculated
from empirical correlations. The results
for the static permittivity of NaCl using
these models are compared in Figure 5.31.
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Figure 5.31: Static permittivity of NaCl calcu-
lated by models A-D. See model de-
scriptions on p. 107. Experimental
data from data collections [24, 25]

The contributions to the Helmholtz energy from electrostatic interactions may be calculated
using the Debye-Huckel equation shown in Eq. (4.16) p. 4.16 [26, 161, 182]. A comparison
of the volume, temperature, and compositional derivatives of the Helmholtz energy from the
Debye-Hückel given by Eq. (4.16) is presented.
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This analysis provides us with the individ-
ual contributions of ion-ion interactions to
residual pressure, enthalpy, and fugacity
coefficients[161].

The volume, temperature, and composi-
tional derivatives are shown in Figures
5.32-5.35. It is evident that the new model
significantly affects the calculations of the
temperature-, volume- and compositional
derivatives. Since the empirical model from
Eq. 4.39 depends on the volume of the
mixture, it gives rise to a volume deriva-
tive. However, the sign is opposite of the
theoretical model from Eq. (5.47), and the
peak in volume may furthermore give rise to
two additional volume roots (one of which is
unstable). The compositional derivatives of
the new model are monotonically decreasing,
whereas the empirical model displays an
increasing trend at higher concentrations.

NaCl molality [mol/kg]
R

ed
uc

ed
H

el
m

ho
lt

z
E

ne
rg

y
A
e
/R
T

0 1 2 3 4 5 6
-30

-25

-20

-15

-10

-5

0

Model A
Model B
Model C
Model D

Figure 5.32: Reduced Helmholtz energy from
Eq. (4.16) for the different mod-
els of static permittivity. Model A
and Model C coincide. See model
descriptions on p. 107.
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Figure 5.33: Volume derivative of reduced
Helmholtz energy from Eq.
(4.16) for the different models of
static permittivity. See model
descriptions on p. 107.
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Figure 5.34: Temperature derivative of reduced
Helmholtz energy from Eq. (4.16)
for the different models of static
permittivity. See model descrip-
tions on p. 107.

Furthermore, the new model predicts a significant contribution to the water activity through
the effect of water on the static permittivity. Increasing the water concentration will increase
the static permittivity as the total dipole density of the fluid will increase, giving a positive con-
tribution to the Helmholtz energy even when ion solvation is ignored. These results can then
be used to set up guidelines for what functional form the static permittivity should provide in
order to give a reasonable contribution and trends in the Helmholtz energy from Debye-Hückel
or MSA:

• Increasing the volume or temperature will reduce the energy (negative ∂A/∂V as the
static permittivity decreases.
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Figure 5.35: Compositional derivative of Helmholtz energy from Eq. (4.16) for the different models of
static permittivity. See model descriptions on p. 107.

• Increasing the concentration of a polar molecule should increase the energy (positive
∂A/∂V as the static permittivity at constant volume increases.

5.6 Conclusion on Modeling of the Static Permittivity

In the previous sections, the framework for calculating the static permittivity was extended to
associating compounds using an equation of state based on the Wertheim association theory. A
model for the geometrical arrangements in hydrogen-bonding systems has been derived, and it
was shown how this model allows for prediction of the static permittivity of pure compounds
and mixtures over wide ranges of temperature and pressure when used within an equation of
state using the association term by Wertheim[80]. The model does not account for ring-type
structures, or multiple conformers, but the general experience is that the model parameters can
be fine-tuned to match experimental data. Fitting one parameter to the static permittivity at
20◦C is sufficient for most compounds, provided that the density is accurately reproduced by
the equation of state. The static permittivity of mixtures may be predicted solely from param-
eters calculated by a model of the geometrical configuration of the hydrogen-bonding structure
involving the binary compounds.

The static permittivity of aqueous salt solutions decreases due to the effect of dielectric satu-
ration. However, the experimental data should be corrected for dynamic contributions caused
by the kinetic depolarization in order to obtain the static permittivity to use in calculations of
thermodynamic properties. A new model for the prediction of the static permittivity of aqueous
salt mixtures has been presented. The new model uses the Wertheim association framework to
account for the effect of dielectric saturation, and has been shown to give a good representation
of the temperature-, pressure-, and salt concentration dependence of the static permittivity of
several aqueous salt solutions. It is shown that empirical models for the static permittivity may
introduce unphysical behavior in the derivatives of the electrostatic Helmholtz energy from the
full Debye-Hückel equation. The new model improves the physical description of the effect of
solvents and solutes on the static permittivity and electrostatic energy, and provides similar
trends as observed in the analysis of the non-primitive model in Chapter 4.
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Chapter 6

Model Development

During the preceding chapters the fundamentals of modeling of electrolyte solutions were inves-
tigated. In Chapter 4, the similarity between the non-primitive and primitive electrolyte models
was investigated, and it was proposed that an electrolyte EoS could be based on the primitive
electrolyte models provided that the static permittivity was calculated through a model based
on the physics of dipolar mixtures. The similarity between the Debye-Hückel and the more
complex mean spherical approximation was illustrated, and it was furthermore shown that the
electrolyte EoS must include a term accounting for the Gibbs energy of hydration, such as
the Born model. In Chapter 5, a new model for predicting the static permittivity of complex
mixtures containing non-polar, polar, associating compounds and salts was developed. This
chapter describes the electrolyte CPA equation of state and the tools developed during the PhD
work. Secondly, it will present how the experimental data has been treated and finally show how
the e-CPA model can been parameterized for ion- and salt-specific parameters in a systematic
manner.

6.1 Description of the Thermodynamic Model

As illustrated by the preceding chapters, a complete electrolyte equation of state should in-
clude various contributions to the Helmholtz free energy. Primitive electrolyte models should
furthermore include a good physical model for the static permittivity. As the electrolyte CPA
is developed from the CPA EoS and should be compatible with existing parameter sets, it
was decided to extend the e-CPA model by including the Debye-Hückel and Born terms for
electrostatics. The electrolyte CPA equation of state has the following contributions:

Ar = ASRK +AAssociation +ADebye−Hückel +ABorn (6.1)

Furthermore, the static permittivity is calculated using the model described in Chapter 5 and
[162, 163]. The fugacity coefficients are calculated using the procedure shown in Figure 6.1,
where the largest difference in comparison to the CPA is that the static permittivity and its
derivatives must be calculated from the site fractions obtained from the solver for the association
equations. The task of the volume root solver is to determine a volume, where the pressure
calculated from the equation of state equals the specified pressure (cf. Eq. (6.2)):

Q1 = P (V ) − Pspec = 0 (6.2)

A Newton-Raphson scheme may be utilized to find the root (cf. Eq.(6.3)):

V (k+1) = V (k) −Q1/Q
′
1 (6.3)

Once Eq. (6.2) is satisfied and the relative change is sufficiently small, it is possible to calculate
the compressibility factor and the fugacity coefficients. In practice, it was found that more
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rapid convergence was possible by transforming the independent variable into X = B/V and
the objective into Q2 = (1 − X)Q1 = 0. A more comprehensive discussion on the volume root
solver is presented in Appendix C.4. Appendix C.6 shows how the generalized Cubic EoS was
implemented with the NRTL/Huron-Vidal mixing rule. The site fractions are solved using the
procedure by Michelsen and Hendriks [321, 322], which is described in Appendix C.7 along with
a discussion of the implementation details related to the association term. The static permit-
tivity is calculated from the new theory presented in Chapter 5 and is implemented using the
procedure summarized in Appendix C.8.

Figure 6.1: Procedure for calculation of the fugacity coefficient in electrolyte CPA.

In addition to making the procedure for calculating fugacity coefficients slightly more com-
plex, the presence of ions leads to further complications that affect existing phase equilibrium
algorithms as the charge balance imposes a further requirement for phase equilibrium. Rather
than modifying existing algorithms, it was decided that this problem could be circumveinted by
introducing neutral salts as apparent components, and returning only fugacity coefficients based
on these apparent components. This step requires a recalculation of the fugacity coefficients
using Eq. (6.4):

ln ϕ̂app
i = − ln

xapp
i P

P0
+
∑
j

vij ln
xjϕ̂jP

P0
(6.4)

A more detailed discussion on the use of the apparent compounds in an electrolyte EoS is
presented in Appendix C.5. All elements of the e-CPA EoS was implemented (from scratch)
in FORTRAN and subsequently linked to MATLAB through the MEX interface, so that all
modeling and figures can performed using MATLAB.

6.2 Parameterization and Data Treatment

The electrolyte CPA equation of state must be parameterized against experimental data in
order to be applied to modeling of thermodynamic properties of complex mixtures. This chapter
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presents the approach taken to select and evaluate the experimental data used in the parameter
estimation and provides an overview of the methods used to regress ion parameters. As the
FORTRAN implementation of e-CPA was interfaced to MATLAB, the complete optimization
toolbox of MATLAB is available. While different approaches have been attempted, this chapter
presents the final parameterization procedure and shows how salts and ions can be gradually
parameterized to obtain physically realizable parameters. The goal is to present a traceable
and reproducible approach to the parameter estimation with electrolytes. All parameters were
optimized using the lsqnonlin method in MATLAB. The lsqnonlin is a trust-region gradient-
search method, it provides reproducible results given the same initial estimates. The initial
estimates are selected so that they display a physical significance.

6.3 Experimental Data

The experimental data can be categorized in four different types [2]:

• Water activity (xwγw)

– Vapor pressure (ywP = xwγwPsat))

– Boiling point temperature (RT ln (xwγw) = ΔfG
o
steam(T, P ) − ΔfG

o
w)

– Freezing point depression (RT ln (xwγw) = ΔfG
o
ice(T, P ) − ΔfG

o
w)

– Isopiestic measurements that measures the vapor pressure relative to a reference sys-
tem with well-known water activity (e.g. MgCl2 or NaCl). At concentrations above

0.1 molal this provides a reliable source for osmotic coefficients (Φ = − xw
1 − xw

lnxwγw)

• Salt activity (m±γ
m
± )

– Direct measurements of mean ionic activity coefficients through specialized cells (e.g.
the Harned cell for HCl) [2]

– Salt solubility (
∑
i∈j

vi ln (miγ
m
i ) = lnKj, where Kj is the equilibrium constant of salt

j)

• Volumetric (V φ
0 , ρ)

– Direct measurements of liquid density ρ or the density relative to a reference ρ− ρw.

• Thermal (ΔH/Cp)

– Apparent molar heat capacity

– Differential/integral enthalpy changes when e.g. diluting the mixture.

– Heat of solution

All of these thermodynamic properties are closely related and a complete electrolyte equation of
state must be able to obtain reasonable agreement for all properties. The parameter estimation
will focus on the excess properties that can be provided directly from the equation of state and
later use data that requires standard state properties (or equilibrium constants) as a means of
validating the parameters. As shown in section 3, the CPA equation of state does not always
provide reasonable results for thermal properties, and it was therefore decided to estimate
parameters against water activity data recalculated as osmotic coefficients, mean molal activity
coefficients, as well as volumetric data. The electrolyte database developed and maintained by
K. Thomsen [13] at the Center for Energy Resources Engineering (CERE) contains many types
of data for a large number of systems. An overview of the data available in the database for
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the different ions of interest in this study are presented in Figure 6.2-6.4. For salts where no
volume data was available, a suitable correlation for the liquid density was used to determine
the apparent molar volume using Eq. (6.5)

V φ
0 =

1
m

(
1
ρ

− 1
ρw

)
+
Msalt

ρ
(6.5)

Several sources for correlations of the liquid density of aqueous salts solutions have been evalu-
ated and compared to available experimental data. It was found that correlations by Lalibertè
[317, 318] or Novotnỳ and Söhnel [319] were generally reliable.

All data has been visually inspected and outliers have been removed. Additionally, certain
datapoints have been excluded from the parameter estimation by transforming freezing point
data and activity coefficient data into osmotic coefficient data.
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Figure 6.2: Overview of water activity data (vapor pressure, freezing point depression, and osmotic
coefficient) for different species. Data from the CERE Electrolyte Database [13].
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Figure 6.3: Overview of mean ionic activity coefficients γm
± for different species. Data from the CERE

Electrolyte Database [13].
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Figure 6.4: Overview of apparent molar volume data for different species. Data from the CERE Elec-
trolyte Database [13].
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Figure 6.5: Overview of included and excluded water activity data recalculated as osmotic coefficients
for KCl. Data from the CERE Electrolyte Database [13].
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6.4 Prediction of Parameters

The e-CPA equation of state has many possibilities for defining adjustable parameters. In order
to reduce the number of adjustable parameters, it is important to use prior knowledge about
e.g. ion sizes to reduce the parameter space. This section highlights how some parameters
in the e-CPA model are defined from other sources. Furthermore, the importance of different
parameters in the model will be illustrated in order to define the adjustable parameters.

6.4.1 Free Energy of Hydration

The hydration free energy, enthalpy, and entropy are related to the difference between the ideal
gas reference state to the aqueous standard state given by Eq. (6.6):

ΔhydG = ΔfG
aq−ΔfG

ig ΔhydH = ΔfH
aq−ΔfH

ig ΔhydS =
ΔhydH − ΔhydG

T
(6.6)

The hydration energy and entropy are therefore related to the fugacity coefficients at infinite
dilution using Eq. (6.7)

ΔhydGi = lim
ni→0

RT ln φ̂i ΔhydHi = lim
ni→0

−RT 2

(
∂ ln φ̂i
∂T

)
P,n

(6.7)

To reduce the number of parameters, the Born radius is defined from the hydration free energy
of the ion at 25◦C. The Born radius will depend on the other parameters used in the EoS
(e.g. the co-volume parameter b0 and the ion-solvent interaction energy). When the hydration
free energy is unknown, it may be estimated using Eq. (6.8), which provides an empirical
relationship between the ion diameter σ and the Born radius first proposed by Latimer et al.
[323] and later supported by e.g. molecular simulation [61].

RanionBorn = 0.5σ + 0.85Å RcationBorn = 0.5σ + 0.1Å (6.8)

6.4.2 Prediction of co-volume parameters

As simple monatomic ions such as Na+ and Cl– can be assumed to be completely spherical, it
is expected that the co-volume parameter can be predicted to fair accuracy using Eq. (6.9).
Table 6.1 shows the predicted co-volume parameters for selected monatomic ions. When b0 is
used in the parameter estimation, its value should be close to the predicted values shown in
Table 6.1.

b0 = 2/3πNAσ
3 (6.9)

Linear mixing rules are used for obtaining the mixture co-volume in the EoS using Eq. (6.10).

Li+ Na+ K+ Rb+ Cs+ Mg++ Ca++ Sr++ Ba++ F– Cl– Br– I–

σ 2.08 2.36 2.80 2.89 3.14 2.09 2.42 2.64 3.00 2.63 3.19 3.37 3.65
b0 11.35 16.49 27.63 30.44 39.01 11.51 17.92 23.21 34.05 22.94 40.83 48.40 61.18
V φ

0 -0.88 -1.21 9.02 14.07 21.34 -21.17 -17.85 -18.16 -12.47 -1.16 17.83 24.71 36.22

Table 6.1: Predicted co-volume parameters for ions. Diameters in [Å], b0 and V φ
0 in [cm3/mol]. The

standard partial molar volume V φ
0 of the ions were taken from [21] (based on defining V φ

0 = 0
for H+).

Since cations and anions are always present in ratios that obey the charge balance, this adds
an extra degree of freedom which may affect the parameter estimation.

bmix =
∑
i

xibi =
∑
i

xib̃i + c
∑
i

xizi (6.10)
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free energy, enthalpy, and entropy of
NaCl. The Born radius is calculated
from Eq. (6.8)

Ion ΔhydG rBorn rion rcalcBorn

[kJ/mol] [Å] Size Eq. (6.8)
H+ -1050 0.64 0.30 1.15
Li+ -475 1.38 0.69 1.53
Na+ -365 1.77 1.02 1.87
K+ -295 2.16 1.38 2.23
Rb+ -275 2.31 1.49 2.34
Cs+ -250 2.52 1.70 2.55

Mg2+ -1830 1.48 0.72 1.57
Ca2+ -1505 1.79 1.00 1.85
Sr2+ -1380 1.95 1.13 1.98
Ba2+ -1270 2.15 1.36 2.21

F– -465 1.41 1.33 1.43
Cl– -340 1.89 1.81 1.91
Br– -315 2.03 1.96 2.06
I– -275 2.31 2.20 2.30

SO2–
4 -1080 2.49 2.30 2.40

NO–
3 -300 2.13 1.79 1.89

Table 6.2: Hydration free energy from Mar-
cus (1991) [216] and the calcu-
lated Born radius using the CPA
EoS and the specified hydration
energy. Comparison to the mea-
sured ion diameters collected by
Marcus (1991) [216] and the cal-
culated radius from Eq. (6.8)

If bi is the true co-volume parameter, the charge balance means that any ion co-volume pa-
rameter obtained from the parameter regression could in fact be bi = b̃i + c, where c is a free
parameter. This extra degree of freedom requires us to define the parameters of one compound,
and estimate all remaining parameters based on this component. While such a choice of a refer-
ence component is not obvious it was decided to build on the experience from the development
of the Extended UNIQUAC model by K. Thomsen [75] where the parameters of the hydrogen
(H+) ion have been fixed.

6.5 Parameter Estimation

6.5.1 Parameterization of HCl

HCl was selected as a good starting point, since the co-volume and energy parameters of
H+ could be fixed as 0.0. It was attempted to adjust the vdW attractive energy param-
eter Γi = ai/R/bi of Cl– to match the experimental data of HCl, but it was found that
a more effective method was to fit the NRTL/Huron-Vidal water-ion interaction parameter
ΔUiw/R = ΔUwi/R = u0

iw, while setting the ion-ion interaction parameter uij to zero as a first
approximation, reducing the number of adjustable parameters to one per ion. This failure of
the Γ parameter to effectively correlate the data could be that it provides contributions to the
dispersive interactions for not just ion-solvent but also for ion-ion; setting u0

ij = 0 between ions
is equivalent to neglecting the ion-ion dispersive energy, which has also been done in several
SAFT-based electrolyte EoS (e.g. Herzog (2010) [138] and Galindo (1999) [110]). As u0

iw for
H+ was defined as zero in it only remains to estimate the H+ diameter σH+ . Figure 6.9 shows
how the optimal Cl– parameters depend on the H+ diameter fitted against the experimental
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6.5.1. Parameterization of HCl

data up to 6 mol/kg by minimizing the objective function shown in Eq. (6.11).

F =
∑[

γm± (calc) − γm± (exp)
γm± (exp)

]2

+
∑[

Φ(calc) − Φ(exp)
Φ(exp)

]2

(6.11)

From Figure 6.9 it is evident that the H+

diameter should be selected in the range
from 2-4Å. The average value of 3Å is se-
lected as it is close the molecular diame-
ter of H2O, which is reasonable considering
that H+ will be mainly present as H3O+

and larger clusters. The parameters in Fig.
6.9 were estimated without using the volu-
metric data, which results in a large over-
estimation of the apparent molar volume as
shown in Table 6.3. In order to obtain bet-
ter correspondence with the liquid volume
it would be necessary to include a term that
would reduce the apparent molar volume.
Figure 6.8 shows that only the Born term
and the ion-solvent association term (using
the ion-water association equilibrium con-
stant as determined from Chapter 5) pro-
vide negative contributions to the apparent
molar volume at infinite dilution.
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Since the Born term was already fixed to the hydration free energy, there remains only three
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Figure 6.9: Optimized Cl– parameters as a function of the H+ diameter. Parameters were optimized
against experimental activity and osmotic coefficients γm

± and Φ. b0 parameter was taken
from Table 6.1.

possibilities for remedying the errorneous apparent molar volume:

Option 1 Adopt co-volume parameters from Table 6.1 and fit a Peneloux volume translation term
to correct the volume from the EoS: V = V (EoS) +

∑
i
xici.
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6.5.1. Parameterization of HCl

Option 2 Include co-volume parameters in regression

Option 3 Include ion-solvent association

Table 6.3 shows the results of the parameter estimation for option 1 and 2 and Figure 6.10
shows a comparison of the two methods with different number of adjustable parameters.

σH+ b0 u0 σCl− ci RAD γ∗
± RAD Φ AAD V φ

0

[cm3/mol] [K] [Å] [cm3/mol] [%] [%] [cm3/mol]
Case 0 40.83 -332.35* 3.19 0 1.53 1.02 28.68
Case 1 40.83 -341.67* 3.05* 0 1.53 1.01 28.65
Case 2 40.83 -341.67* 3.05* -26.86* 1.53 1.01 1.92
Case 3 20.26* -2153* 3.19 0 1.76 1.12 2.10
Case 4 20.21* -2118* 3.53* 0 1.82 1.16 2.05

Table 6.3: Overview of parameters for Cl– estimated through different approaches against activity and
osmotic coefficient data up to 6 molal at 25◦C. * indicates a fitted parameter.

While option 2 would seem as a good practical work-around it has the limitation that the
co-volume parameter cannot become negative and as many of the cations have large negative
apparent molar volumes, the inclusion of this parameter drives the co-volume towards zero. It
was furthermore illustrated in Chapter 5, that the effect of ion-solvent association is important
to model the decrease in the static permittivity with salt concentration. Still, as illustrated
by Figure 6.11, option 1 actually provides an alternative method to represent the decrease of
the static permittivity as a function of the salt concentration due to the over-estimation of the
apparent molar volume with b0 from Table 6.1.
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Figure 6.10: Activity/osmotic coefficients and apparent molar volume of HCl in H2O for Case 2 and 4
at 25◦C (see Table 6.3).

By correcting the apparent molar volume subsequently, the model can still obtain good corre-
spondence with liquid volumes. This approach also has the advantage that all parameters but
u0
iw = ΔUiw/R = ΔUwi/R can be predicted from other sources. While it is possible and more
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Figure 6.11: Static Permittivity and Density of HCl for Case 2 and 4 at 25◦C (see Table 6.3). Linear
decrease is taken from the recommended correlation by Marcus (2013) [310].

physically correct to explicitly account for ion-solvent association, this requires the introduc-
tion of additional parameters and increases the computational requirements. Furthermore, as
indicated by Table 6.3, a good agreement with experimental data for activity coefficients and
osmotic coefficients is possible from fitting only u0

iw. It was therefore decided to parameterize a
simplified electrolyte CPA that does not include ion-solvent association, as a first approxima-
tion. By setting up a simplified reference model, it will become easier to quantify the advantage
of adding additional physics and parameters to the model at a later stage.

6.5.2 Parameter Estimation for Other Ions

After the parameterization of the interaction parameter of Cl– with water from HCl, it is possi-
ble to sequentially obtain parameters for other salts by fixing the parameters for the other ions.
Table 6.4 summarizes the parameters fitted at 25◦C. It is then possible to use these parameters
to provide predictions for other salts as shown in Table 6.5.

From Table 6.4 it is evident that a single parameter u0 may be used to fit parameters and
obtain good correspondence with the osmotic coefficients and activity coefficients up to a cer-
tain concentration for different salts. Table 6.5 shows that when these parameters are used to
predict properties of other salts, the results are somewhat mixed - in some cases, predictions are
excellent, while the predictions in other cases are fairly poor, except for the density which works
very satisfactorily in all cases. This could be seen as a sign that additional binary interaction
parameters or additional physics is required in order to obtain proper predictions with the sim-
plified model. The introduction of binary interaction parameters will lead to a large increase in
the number of parameters, and will also require the inclusion of a large amount of additional
data for salt mixtures in order to define the parameters. The simultaneous parameter regression
is one of the largest hurdles to modeling of mixtures containing salts, and is also prevalent in
the case of activity coefficient models such as Extended UNIQUAC and Electrolyte NRTL. The
parameter estimation makes it difficult for engineers to apply electrolyte models effectively in
their work.

Inspired by the good results with ion-specific parameters shown in Table 6.4 it is suggested
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Ion Salt σ b0 u0 ci RAD γ∗
± RAD Φ AAD V φ

0

Å [cm3/mol] [K] [cm3/mol] [%] [%] [cm3/mol]
F– KF 2.63 22.94 -648.8* -15.82* 1.33 1.04 2.5
Cl– HCl 3.19 40.83 -335.3* -26.84* 1.66 1.15 1.9
Br– KBr 3.37 48.40 -346.2* -29.56* 4.62 3.24 5.5
I– KI 3.65 61.18 -360.1* -30.98* 0.53 0.88 6

NO–
3 KNO3 3.16 39.80 -12.68* -14.01* 0.24 0.67 0.4

SO—-
4 Na2SO4 3.82 70.03 163.3* -46.45* - 1.12 7.0

Li+ LiCl 2.08 11.35 -663.2* -22.50* 3.34 2.50 6.0
Na+ NaCl 2.36 16.49 -34.23* -31.36* 1.73 1.67 5.9
K+ KCl 2.78 27.62 131.8* -36.96* 0.37 0.39 5
Rb+ RbCl 2.89 30.4 95.12* -36.10* 1.14 0.93 5.5
Cs+ CsCl 3.14 39.01 111.5 * -39.48* 3.64 1.76 6.0

Mg++ MgCl2 2.09 11.51 -1500* -37.30* 7.32 6.80 3.9
Ca++ CaCl2 2.42 17.92 -685.2* -44.97* 5.76 5.31 4.0
Sr++ SrCl2 2.64 23.20 -370.1* -54.93 * 5.08 5.66 3.8
Ba++ BaCl2 3.00 34.05 198.8* -66.54* 3.94 1.47 1.8

Average 2.864 2.33 4.36

Table 6.4: Parameters fitted to data up to 6 mol/kg for monovalent salts, and up to 4 molal for divalent
salts at 25◦C. * indicates a fitted parameter.

that the model could be fitted for salt-specific parameters, which will work in case that there
are not too many/too different ions present. The contribution from salts to the NRTL/Huron-
Vidal mixing rule (Eq. (3.8) (p. 31 may in the case of salts with a non-randomness factor α = 0
and the ion-ion interactions uij = 0 be rewritten as Eq. (6.12):

gE,∞

RT
=
(
n2
T

∑
ßxiνi

)2
(
nwna (νw + νa)

ΔUaw
RT

+ nwnc (νw + νc)
ΔUcw
RT

)
(6.12)

Eq. (6.12) may be rewritten into Eq. (6.13) using that na = vamsalt and nc = vcmsalt:

gE,∞

RT
=
(
n2
T

∑
ßxiνi

)2
(
nwmsalt ([vc + va] νw + vaνa + vcνc)

ΔUsw
RT

)
(6.13)

In which ΔUsw is the salt-water interaction parameter, which can be calculated from Eq. (6.14):

ΔUsw
RT

=
va (bw + νa)

(va + vc) bw + vcνc + vaνa

ΔUaw
RT

+
vc (bw + νc)

(va + vc) bw + vcνc + vaνa

ΔUcw
RT

(6.14)

In order to determine the salt-specific parameters, it is possible to set ΔUaw/R = ΔUcw/R = u0
sw

for a given salt, and subsequently calculate ΔUsw from Eq. (6.14). Similarly, the ion-specific
parameters can be calculated from the salts requested by a user. Examples:

• The engineer wants to calculate a system containing NaCl-MgCl2-CsCl. This system
contains four ions and three salts. As the system only has one anion, it is not possible to
include additional salts to fix the last degree of freedom. But if the anion ΔUiw is fixed
from HCl, it is possible to obtain an optimal ΔUiw and thereby uniquely determine the
parameters for all ions.

• The engineer wants to calculate a system containing NaCl-CaSO4. This system contains
four ions and two salts. By including the parameters for Na2SO4 and CaCl2, the degree
of freedom is zero, and it is possible to uniquely determine ΔUiw for all ions.
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Salt RAD γ∗
± RAD Φ AAD V φ

0 Salt RAD γ∗
± RAD Φ AAD V φ

0 [%]
[%] [%] [cm3/mol] [%] [%] [cm3/mol]

LiBr 5.75 4.16 0.2 CsNO3 1.25 1.84 -
LiI 4.24 3.13 1.4 Cs2SO4 15.12 35.4 -

LiNO3 16.5 9.55 1.5 MgBr2 13.05 4.3 2.8
Li2SO4 13.2 12.0 6.3 MgI2 11.01 7.75 2.5

NaF 5.35 5.48 0.7 Mg(NO3)2 9.35 16.1 4.5
NaBr 2.48 3.63 0.5 MgSO4 - 49.5 7.5
NaI 0.81 2.27 0.3 CaBr2 9.85 5.66 3.3

NaNO3 7.08 4.80 1.2 CaI2 5.89 3.41 1.4
K2SO4 2.5 9.02 5.0 Ca(NO3)2 6.71 3.61 4.0
RbF 5.08 2.23 1.0 CaSO4 14.0 - 6.5
RbBr 11.4 5.66 0.2 SrBr2 3.96 3.00 1.9
RbI 11.7 5.67 0.2 SrI2 4.49 3.32 1.4

RbNO3 0.94 1.28 0.5 Sr(NO3)2 4.86 10.8 4.5
Rb2SO4 11.2 25.9 2.3 BaBr2 10.5 4.35 0.5

CsF 9.0 5.08 0.8 BaI2 17.8 10.8 1.1
CsBr 7.34 3.05 - Ba(NO3)2 2.18 4.08 1.5
CsI 12.63 7.45 - Average 8.04 8.57 2.3

Table 6.5: Predictions using the parameters determined from the sequential parameter estimation using
other salts in Table 6.4 at 25◦C. These salts were not used in the parameter estimation and
the results are therefore predictions.

• The engineer wants to calculate a system containing Na2SO4-K2CO3-Mg(NO3)3. This
system contains 6 ions and three salts. It is possible to include parameters for three
additional salts to fix the degree of freedom - but still, the system will be under-specified,
as the system of ions forms up to 9 (anhydrous) salts. Different results may be obtained
depending on which salts are selected as reference salts.

The last case shows the true limitation of a salt-specific approach - that there are many more
salts than there are ions. The more combinations of anions and cations that are possible, the
less accurate will the predictions from the salt-specific parameters become, whereas a perfect
equation of state based on the ion-specific approach can be expected to perform better. However,
that would most likely require a much stronger representation of the physics by e.g. including
ion-ion and ion-solvent association or by fitting ion-ion interaction energies ΔUii. Fitting of
ion-ion interaction energies fitted to aqueous solutions may however be problematic when they
are used in mixed solvents, and has previously lead researchers to introduce solvent-dependent
ion-ion interactions [95, 118, 120] (effectively ternary parameters). Table 6.6 shows the salt-
specific parameters when u0 and the Peneloux volume correction are fitted, whereas Table 6.7
shows the results when the volume parameter νi in Eq. (6.12) is included in the parameter
regression. By including ν0 for the salt, it is possible to extend the applicability range up to
the solubility limit for most salts.

Page 127 of 270

150



6.5.2. Parameter Estimation for Other Ions 128

Salt u0
sw ci RAD γ∗

± RAD Φ AAD V φ
0 Max. molality

[K] [cm3/mol] [%] [%] [cm3/mol]
NaF -158.7* -52.93* 1.87 1.10 0.8 1.0
KF -222.2* -54.38* 0.62 0.61 1.6 3.8
RbF -286.4* -55.55* 1.98 1.30 1.0 3.5
CsF -285.6* -55.92* 0.86 0.74 0.8 3.5
HCl -252.9* -26.89* 1.12 0.97 2.0 6.0
LiCl -447.1* -45.79* 3.95 2.70 0.8 6.0
NaCl -227.3* -54.70* 1.74 1.68 1.2 6.0
KCl -133.5* -60.31* 0.363 0.39 0.8 5.0
RbCl -142.3* -59.45* 1.14 0.93 0.3 5.5
CsCl -114.5* -62.84* 2.88 1.81 0.6 6.0

MgCl2 -557.1* -83.98* 7.32 6.79 3.6 3.9
CaCl2 -414.8* -91.66* 5.74 5.33 4.0 4.0
SrCl2 -344.1* -104.6* 5.08 5.66 1.4 3.8
BaCl2 -166.3* -113.3* 4.44 1.85 3.1 1.8
HBr -356.0* -29.69* 3.20 2.82 0.9 5.5
LiBr -430.1* -49.13* 4.79 4.07 0.2 5.5
NaBr -262.3* -57.80* 2.45 2.77 0.5 5.9
KBr -154.5* -62.69* 0.70 0.71 0.5 5.8
RbBr -142.7* -62.04* 1.27 1.01 0.3 5.0
CsBr -117.1* -38.48* 2.90 2.23 76.6 5.0

MgBr2 -594.0* -85.90* 12.83 6.49 2.6 3.8
CaBr2 -479.8* -94.11* 9.33 7.37 3.1 3.9
SrBr2 -352.7* -104.2* 3.96 3.06 1.9 2.1
BaBr2 -244.2* -113.4* 2.40 2.47 0.6 2.4

HI -339.8* -33.67* 3.40 2.45 0.7 5.5
LiI -404.9* -70.91* 1.85 1.94 1.4 3.2
NaI -284.3* -62.56* 1.85 2.68 0.3 5.5
KI -184.2* -67.95* 0.54 0.88 0.4 5.5
RbI -156.0* -67.16* 2.58 1.99 0.3 5.0
CsI -117.4* -38.48* 1.93 1.35 92.3 3.0

MgI2 -581.7* -99.04* 15.48 10.63 2.2 4.0
CaI2 -412.5* -112.3* 5.76 3.24 1.4 2.0
SrI2 -370.5* -116.9* 4.30 3.71 1.4 2.0
BaI2 -318.4* -123.3* 3.40 3.13 0.9 2.0

LiNO3 -381.6* -34.91* 1.21 0.79 1.3 5.7
NaNO3 -56.88* -44.35* 2.51 1.16 1.2 5.8
KNO3 49.53* -50.97* 0.27 0.65 0.4 3.8
RbNO3 30.10* -49.63* 1.15 0.78 0.4 4.5
CsNO3 27.96* -53.44* 0.84 0.79 0.0 1.5

Mg(NO3)2 -481.3* -61.35* 7.44 3.16 2.7 4.0
Ca(NO3)2 -161.5* -75.92* 6.88 3.21 3.2 3.5
Sr(NO3)2 -30.21* -76.29* 5.89 4.53 4.2 3.5
Ba(NO3)2 112.9* -95.00* 3.12 0.67 1.5 0.4

Li2SO4 -48.40* -90.78* 1.74 1.24 6.6 3.2
Na2SO4 79.25* -109.2* 1.25 1.11 7.0 3.8
K2SO4 51.91* -124.0* 2.94 0.67 5.0 0.7
Rb2SO4 -17.92* -113.2* 1.64 0.84 2.3 1.8
Cs2SO4 -40.63* -120.4* 1.98 0.93 1.9 1.8
MgSO4 64.65* -85.03* - 5.31 8.7 3.6
CaSO4 27.73* -105.0* 13.82 0 6.5 0.015
Average 3.6 2.5 5.3

Table 6.6: Salt-specific parameters at 25◦C. Using ion-specific co-volume parameters and ion diameters
from Table 6.4. * indicates a fitted parameter.
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Salt u0
sw ν0 ci RAD γ∗

± RAD Φ AAD V φ
0 Max. molality

[K] [cm3/mol] [cm3/mol] [%] [%] [cm3/mol]
NaF -549.4* 19.50* -30.37* 2.01 1.20 0.8 1.0
KF -2302* 10.17* -9.855* 2.36 1.44 1.8 17.5
RbF -1050* 21.41* -14.22* 3.29 2.15 0.8 3.5
CsF -1246* 21.60* -3.119* 2.40 1.29 0.5 3.5
HCl -226.5* 49.01* -23.41* 3.72 2.01 3.9 16.5
LiCl -1900* 20.51* -25.76* 8.63 4.33 0.4 20.1
NaCl -888.4* 19.89* -30.49* 1.50 1.05 1.5 6.2
KCl -348.1* 29.54* -24.63* 0.64 0.46 1.0 5.0
RbCl -677.2* 18.05* -17.48* 0.31 0.29 1.2 7.8
CsCl -554.6* 18.68* -10.60* 2.92 1.75 1.5 11.4

MgCl2 -5014* 23.28* -55.45* 9.76 4.61 7.6 6.0
CaCl2 -1157* 58.08* -61.61* 12.0 9.64 4.6 10.5
SrCl2 -2118* 30.44* -63.37* 4.78 2.74 0.6 4.0
BaCl2 -113.8* 167.4* -72.65* 3.23 1.90 2.4 1.8
HBr -2644* 13.41* -23.96* 2.57 1.85 0.7 11
LiBr -3525* 16.32* -26.36* 14.3 5.26 1.4 20
KBr -401.8* 32.41* -26.84* 0.83 0.51 0.5 5.8
RbBr -549.8* 23.02* -21.38* 0.17 0.14 0.5 5.0
CsBr -427.0* 23.40* -64.93* 2.16 1.79 0.5 5.0

MgBr2 -4848* 27.87* -57.29* 13.60 5.14 2.0 5.6
CaBr2 -4356* 29.27* -55.32* 16.08 7.66 1.0 9.3
SrBr2 -526.4* 93.98* -74.50* 4.18 3.12 1.5 2.1
BaBr2 -414.3* 94.14* -70.61* 2.77 2.54 1.1 2.4

HI -2874* 14.83* -27.28* 3.69 1.59 1.2 10.0
LiI -745.1* 47.37* -54.66* 2.15 1.73 1.4 3.2
NaI -2113* 17.42* -31.88* 2.27 1.18 1.0 12.3
KI -326.1* 50.01* -32.44* 1.38 0.37 0.8 8.6
RbI -553.6* 28.41* -26.18* 0.31 0.31 0.6 5.0
CsI -355.6* 29.93* -81.19* 1.00 0.75 0.5 3.0

MgI2 -5678* 29.84* -67.95* 10.93 5.32 3.8 5.0
CaI2 -579.6* 112.8* -88.96* 5.81 2.99 1.1 2.0
SrI2 -619.0* 103.7* -86.13* 4.42 3.29 1.0 2.0
BaI2 -547.7* 108.0* -79.46* 3.61 2.76 0.4 2.0

LiNO3 -544.3* 40.94* -18.18* 2.59 1.47 2.4 24.0
NaNO3 -37.42* 79.75* -22.67* 1.22 0.40 2.1 10.8
KNO3 151.5* 38.83* -17.25* 1.31 1.09 0.5 3.8
RbNO3 139.8* 34.85* -12.45* 2.91 2.05 0.5 4.5
CsNO3 207.2* 39.80* -6.332* 0.88 0.92 0.1 1.5

Mg(NO3)2 -1420* 44.39* -41.20* 7.91 3.20 2.0 5.1
Ca(NO3)2 -227.2* 88.69* -52.30* 6.80 2.72 3.3 7.8
Ba(NO3)2 184.8* 79.60* -53.56* 3.37 0.43 1.4 0.4
Sr(NO3)2 -16.30* 318.39* -47.82* 4.79 1.74 3.9 4.0
Li2SO4 -303.0* 35.88* -61.41* 1.96 1.62 5.9 3.2
Na2SO4 80.69* 70.03* -68.53* 2.93 3.67 6.5 4.4
K2SO4 126.9* 70.37* -56.30* 2.94 0.72 5.0 0.7
Rb2SO4 -17.17* 62.54* -38.06* 1.47 1.40 2.1 1.8
Cs2SO4 -142.7* 33.82* -23.18* 1.70 1.18 1.7 1.8
MgSO4 4.340* 72.37* -71.04* - 6.15 7.8 3.6
CaSO4 14.65* 70.03* -82.51* 13.69 - 6.5 0.0153
Average 4.3 2.3 2.1

Table 6.7: Salt-specific parameters at 25◦C when ν is included in the parameter estimation. Using
ion-specific co-volume parameters and ion diameters from Table 6.4. * indicates a fitted
parameter.
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6.5.3. Improving the Ion-Specific Parameters

The salt-specific parameters also enables an examination of the optimal temperature dependence
of the interaction parameter ΔUiw. When data is available at elevated temperatures, it was
found that the form in Eq. (6.15) would give reasonable fits to the experimental data:

ΔUiw/R = u0
iw + u

(1)
iw T + u

(2)
iw lnT (6.15)

Figure 6.12 shows the correspondence of the fitted temperature dependence of NaCl with ν =
52.90 uiw = −250.8K, u(1)

iw = 12.52, and u
(2)
iw = −4294. It is believed that the T-dependence

can be improved either by improving the physics of the model, or by setting up more advanced
correlations of the parameters, but this would require the inclusion of SLE-data as many salts
do not contain osmotic/activity coefficient data beyond 25◦C.
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Figure 6.12: T-dependence of Osmotic Coefficient and Activity Coefficients of NaCl with Salt-Specific
Parameters. The colored lines are correlations from the e-CPA EoS at different tempera-
tures.

6.5.3 Improving the Ion-Specific Parameters

During the parameterization of salt-specific parameters it was shown that it was possible to
extend the applicability range of the model up to the solubility limit by including the volume
used in the NRTL/Huron-Vidal mixing rule. The next step is to fit ion-specific parameters
ν and u0 by first performing a sequential procedure used in Section 6.5.2 (with results shown
in Appendix D.1) and then performing a global optimization including all salts. Before the
ion-specific parameters parameters can be optimized through a gradient-based scheme, it is
advantageous to normalize the parameters. It is noted that while the ion-specific parameters
are not unique due to the linear mixing rules in Eq. (6.10) and Eq. (6.12) giving rise to the
following combinations of solutions:

νi = ν̃i + zicv (6.16)

(νw + νi) u0
iw = (νw + ν̃i) ũ0

iw + zicU (6.17)

Normalized parameters ν̃ and ũ0
iw can be obtained by finding the coefficients cv and cU and

subtracting them from the original parameters. Figure 6.13 shows how the parameters depends
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Figure 6.13: Parameter trend with ionic charge
used for obtaining the normalized
ion-specific parameters in Table 6.8.

Ion ν̃i ũiw c̃i
[cm3/mol] [K] [cm3/mol]

H+ 6.99 -251.10 37.5
Li+ 18.34 -1245.4 -13.7
Na+ 22.66 71.54 -26.7
K+ 34.62 309.0 -33.5
Rb+ 47.33 265.9 -32.2
Cs+ 60.40 268.4 -35.4

Mg++ 25.50 -2373 -23.2
Ca++ 31.91 -1081 -29.2
Sr++ 34.40 -452.4 -47.7
Ba++ 48.12 391.7 -59.4

F– -3.04 -3958 -14.5
Cl– 8.29 -1443 -25.8
Br– 28.38 -779.6 -28.7
I– 39.50 -726.4 -33.1

NO–
3 32.64 -220.5 -17.5

SO4−– 71.24 64.84 -55.7

Table 6.8: Normalized ion-specific parameters for
the different ions. Note that the param-
eters have a reasonable trend in terms
of volume and energy and that all new
Peneloux parameters are negative, as
they account for ion-solvent association.

on the ionic charge, and Table 6.8 shows the normalized parameters.

In the following sections, the ν̃ notation for the normalized parameters is omitted as all parame-
ters have been normalized. After normalization it is possible to further improve the parameters
by performing a simultaneous regression of all salts. The parameter regression is performed
using the volume parameter vi and the combined energy parameter (vw +vi)uiw as independent
variables. Furthermore, the Newton step is modified in order to remove any trend with ionic
charge:

Δx(k) = Δx̃(k) + zic
(k)
x (6.18)

In practice, this is done by modifying MATLAB’s snls function, which determines the step of
the lsqnonlin method. Parameters are summarized in Table 6.9 and the results are shown in
Table 6.12.

In order to further improve the correspondence with the experimental data, it was attempted
to include the ion diameter in the simultaneous parameter regression (see Appendix D.3. This
would generally reduce the deviation from the experimental data, but as it was noted that
this procedure could lead to unphysical trends in the ion sizes, it was decided not to use this
approach in the final parameterization. The unphysical ion diameters were shown to have a
negative impact on predictions in multicomponent mixtures. The discussion of using the ion
diameter in the parameterization is presented in Appendix D.3. Furthermore, it was decided
to limit the range of data used in the parameter regression to up to 6 mol/kg, in order to get
the best performance for the desired applications to gas solubility and gas hydrate formation in
brines, and to make the modeling results more easily comparable with literature on e-EoS, that
most often are only concerned with concentrations up to 6 mol/kg. The suggested parameter
estimation scheme for e-CPA is shown in Figure 6.14.
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6.5.4. Temperature Dependence

Ion σ b0 ṽi u0
iw ci

[Å] [cm3/mol] [cm3/mol] [K] [cm3/mol]
H+ 3 0.0 9.809* 836.3* 0.7
Li+ 2.08 11.35 7.732* -2314* -14.7
Na+ 2.356 16.49 1.891* -1512* -20.3
K+ 2.798 27.63 1.071* -496.7* -24.2
Rb+ 2.89 30.44 -0.09152* -851.9* -23.0
Cs+ 3.139 39.01 -0.9733* -743.4* -23.8

Mg++ 2.09 11.51 13.36* -4183* -24.1
Ca++ 2.422 17.92 15.08* -2156* -26.0
Sr++ 2.64 23.21 13.50* -1407* -39.0
Ba++ 3 34.05 10.87* -334.4* -46.8

F– 2.63 22.94 24.57* -674.4* -21.0
Cl– 3.187 40.83 8.783* -2269* -22.6
Br– 3.373 48.40 8.076* -4416* -23.4
I– 3.647 61.18 11.34* -4079* -27.3

NO–
3 3.16 39.80 29.35* 401.9* -14.7

SO4−– 3.815 70.03 -10.08* -2006* -47.2

Table 6.9: e-CPA parameters for different ions when all parameters were optimized simultaneously to
osmotic and activity coefficient data at 25◦C. Results are summarized in Table 6.12. *
indicates a fitted parameter.

Figure 6.14: Procedure for estimating ion-specific parameters.

6.5.4 Temperature Dependence

It is possible to introduce temperature-dependent parameters for the water-ion interaction to
improve the correspondence at other temperatures. It is suggested to use a linear T-dependence
of the water-ion interaction parameters ΔUiw = ΔUwi = u0

iw+uTiw(T −298.15). The parameters
are shown in in Table 6.11 and the results are summarized in 6.12. The parameters were
improved by fitting the temperature-dependent parameters uTiw independently initially and then
let all parameters (ν, u0

iw and uTiw) be optimized simultaneously leading to the final parameters
shown in Table 6.11. Results for the prediction and correlation are summarized in Table 6.12.
Figures of the T-dependency for all salts are presented in Appendix D.2, while the results at
25◦C for different anions are shown in Figures 6.15-6.20, while the freezing point depression
results are shown in Figure 6.21. The freezing point temperature at a given salt concentration
is calculated from the water activity and the change in Gibbs energy was determined from Eq.
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(6.19):

ln aw(T,msalt) =
Δfus

RTfus

(
1 − Tfus

T

)
+

ΔfusC
0
p

R

(
Tfus
T

− ln
Tfus
T

− 1
)

+
ΔCTp Tfus

R

(
T

Tfus
− Tfus

T
+ 2 ln

Tfus
T

) (6.19)

Where the enthalpy of fusion at Tfus = 273.15K is ΔfusH = 6001.4 J/mol with the change in
heat capacity at ΔfusCp = ΔfusC

0
p + ΔfusC

T
p (T − Tfus), in which the change in heat capacity

at Tfus is ΔfusC
Tfus
p = 38.03 J/mol/K with a small T-dependence ΔfusC

T
p = −0.146 J/mol/K2

[176].

6.6 Summary

This chapter explored the development of a practical engineering electrolyte CPA equation of
state based on the theoretical background from the previous chapters. It was shown that the
electrolyte CPA EoS can be parameterized using either salt or ion-specific parameters with
good agreement with experimental data for osmotic and activity coefficients. An overview of
the results is presented in Table 6.10.

ΔUiw/R νiw Type Parameters Results T-range [K] m-range [mol/kg]
Fitted u0

iw Predicted Ion Table 6.4 Table 6.5 298.15 0-6
Fitted u0

iw Predicted Salt Table 6.6 Table 6.6 298.15 0-6
Fitted u0

iw Fitted Salt Table 6.7 Table 6.7 298.15 0-Solubility
Fitted u0

iw Fitted Ion Table 6.9 Table 6.12 298.15 0-6
Fitted u0

iw + uTiw Fitted Ion Table 6.11 Table 6.12 240-473.15 0-Solubility

Table 6.10: Summary of parameter estimation results.

It was shown that it would be necessary to account for ion-solvent association to obtain good
correspondence with the apparent molar volume V φ

0 . In this work it was decided to fit a
Peneloux volume-correction to experimental data for the density in order to develop a simpli-
fied electrolyte EoS, that can be used as a reference to assess the impact of including other
physical interactions or parameters. The final ion-specific EoS shown in Table 6.11 includes
four adjustable parameters:

• The NRTL/Huron-Vidal volume ν

• Two parameters for the T-dependent interaction energy between water and salt ΔUiw/R =
u0
iw + uTiw(T − 298.15)

• A Peneloux volume correction term c

The first three parameters are adjusted to water and salt activity data, whereas the Peneloux
volume correction can be fixed from the density of the salt at the solubiity limit. The ion
diameter and co-volume is obtained from crystallographic ion radii shown in Table 6.1 and
furthermore the Born radius is adjusted to match the hydration free energy at 25◦C shown in
Table 6.2.
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Ion σ b0 ν u0
iw uTiw ci

[Å] [cm3/mol] [cm3/mol] [K] [-] [cm3/mol]
H+ 3 0.0 -5.345* -5496* 33.44 1.4
Li+ 2.08 11.35 0.7758* -3848* -0.6412 -15.5
Na+ 2.356 16.49 2.848* 241.5* -12.62 -25.1
K+ 2.798 27.63 2.006* 1247* -7.387 -32.5
Rb+ 2.89 30.44 -1.840* 860.0* -37.13 -28.8
Cs+ 3.139 39.01 -5.566* -1323* -64.62 -24.6

Mg++ 2.09 11.51 -2.029* -11991* -33.72 -22.6
Ca++ 2.422 17.92 16.55* -157.5* 8.353 -30.0
Sr++ 2.64 23.21 19.10* 377.0* 1.864 -46.8
Ba++ 3 34.05 54.76* 1044* 1.162 -61.3

F– 2.63 22.94 27.38* -1121* 2.181 -13.1
Cl– 3.187 40.83 13.94* -1911* 4.489 -22.2
Br– 3.373 48.40 17.00* -2113* -2.086 -25.2
I– 3.647 61.18 19.50* -2352* -7.080 -28.5

NO–
3 3.16 39.80 15.51* -314.4* 0.4739 -12.6

SO4−– 3.815 70.03 -0.03378* 6041* -15.25 -53.9

Table 6.11: e-CPA parameters for different ions when all parameters were optimized simultaneously
with all water activity data recalculated as osmotic coefficients. Results are summarized
in Table 6.12. * indicates a fitted parameter.
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Salt RAD [%] γ∗
± Np. RAD [%] Φ Np. RAD [%] aw Np. m-range T-range

Table 6.9 6.11 γ∗
± 6.9 6.11 6.9 6.11

NaF 6.83 6.27 47 8.39 7.91 24 0.29 0.24 8 1.0 269-308
KF 2.61 2.00 28 2.82 0.93 49 0.48 0.44 6 6 251-357
RbF 5.54 6.07 24 2.44 2.64 17 - - - 3.5 298.15
CsF 11.5 4.01 24 6.53 1.16 17 - - - 3.5 298.15

HCl 7.71 2.66 180 1.69 0.87 42 1.39 1.11 44 6 246-353
LiCl 3.83 2.08 47 2.95 3.41 270 3.69 0.27 76 6 243-473
NaCl 7.70 4.70 704 2.31 1.99 862 0.68 0.74 177 6 253-473
KCl 1.68 2.14 216 2.88 3.49 282 0.31 0.19 103 6 262-445
RbCl 5.76 6.44 28 3.57 4.09 84 0.52 0.33 34 6 263-343
CsCl 2.12 1.06 145 5.74 3.06 198 0.62 0.38 26 6 264-473

MgCl2 8.94 13.59 49 7.14 5.40 305 1.69 1.18 130 6 240-473
CaCl2 10.22 10.95 97 15.7 7.85 666 18.9 4.78 192 6 222-473
SrCl2 4.47 4.18 38 3.99 3.52 90 0.45 0.69 41 4.03 267-444
BaCl2 3.93 4.64 19 6.93 3.78 161 0.19 0.26 30 3.02 268-444

HBr 3.51 3.37 72 2.92 0.97 22 - - - 6 298-398
LiBr 6.66 4.43 38 4.05 2.91 102 0.96 0.09 19 6 243-373
NaBr 7.43 2.53 149 4.43 1.75 135 0.83 0.39 70 6 252-374
KBr 4.03 3.08 32 4.27 3.36 63 0.53 0.29 64 6 261-343
RbBr 4.14 2.01 27 2.58 1.86 53 - - - 5.0 298.15
CsBr 4.80 2.02 27 3.28 1.93 53 - - - 5.0 298.15

MgBr2 12.95 12.15 60 6.47 5.98 61 2.96 1.77 13 5.8 230-323
CaBr2 10.38 14.23 61 11.03 7.45 173 2.64 1.72 67 6 221-473
SrBr2 6.64 5.17 40 4.86 4.44 28 0.49 0.61 41 3.3 251-343
BaBr2 6.33 3.85 55 5.27 4.10 30 1.16 0.44 48 3.4 254-343

HI 4.57 4.73 28 2.24 1.64 37 - - - 6 298.15
LiI 4.07 3.90 23 3.28 2.47 84 3.29 0.38 10 6 248-343
NaI 8.55 5.27 32 3.76 2.12 51 1.57 0.37 51 6 250-362
KI 5.89 5.47 33 3.62 2.78 54 2.84 0.80 31 4.9 257-298
RbI 3.30 2.38 27 3.41 2.63 53 - - - 5.0 298.15
CsI 2.11 1.49 23 1.73 1.58 - - - - 3.0 298.15

MgI2 9.17 8.14 41 4.81 4.32 52 5.14 3.31 5 5.0 226-298
CaI2 8.27 7.67 38 5.55 3.09 38 7.13 3.65 44 6 208-343
SrI2 9.57 7.56 38 3.09 2.47 28 1.00 0.65 44 4.2 264-343
BaI2 15.37 8.18 38 5.53 1.48 28 2.32 0.58 19 3.3 240-298

LiNO3 9.28 8.83 28 4.94 3.56 144 3.72 0.40 42 6 273-378
NaNO3 4.54 7.07 31 2.75 4.25 154 1.74 0.49 33 6 255-373
KNO3 0.70 1.49 24 4.62 1.66 156 12.8 0.77 13 6 270-422
RbNO3 1.53 5.51 26 0.97 4.24 50 - - - 4.5 298.15
CsNO3 0.84 7.04 19 0.92 5.76 29 - - - 1.5 298.15

Mg(NO
3
)

2
7.94 9.40 78 4.56 3.20 174 2.22 2.56 75 6 241-413

Ca(NO
3
)

2
8.26 10.13 78 26.11 6.46 71 8.80 3.63 92 6 243-413

Sr(NO
3
)

2
7.63 7.57 78 5.16 5.27 18 0.12 0.18 9 4.0 266-318

Ba(NO
3
)

2
4.23 6.70 60 0.80 8.90 6 0.01 0.08 4 0.4 273-318

Li2SO4 4.78 6.73 36 1.60 5.00 57 0.40 0.23 55 3.08 263-298
Na2SO4 5.76 0.90 31 7.72 4.74 163 0.32 0.10 35 4.44 272-398
K2SO4 4.66 1.94 24 3.50 3.28 80 0.076 0.04 13 0.96 272-373
Rb2SO4 2.70 3.09 31 7.00 7.69 13 - - - 1.80 298.15
Cs2SO4 5.43 2.53 31 12.07 4.62 13 - - - 1.80 298.15
MgSO4 - - - 10.47 7.38 131 0.18 0.20 26 5.0 268-448
CaSO4 13.73 13.68 7 - - - - - - 0.015 298.15

Average 6.17 6.01 3268 5.14 3.74 6293 2.51 2.78 (2.17) 2.16 2025

Table 6.12: Deviations from experimental data with parameters from Table D.3 and the number of
points Np.
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Figure 6.21: Predicted freezing point temperatures.
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Chapter 7

Results and Discussion

Chapter 6 explored different options for parameterizing the electrolyte CPA (e-CPA) EoS. It
was demonstrated that it is possible to determine parameters for ions or for each salts. The
salt-specific parameters will provide the highest accuracy if only a single salt is going to be stud-
ied, but may also be used in salt mixtures. The ion-specific parameters can also be estimated
simultaneously to all salts, in which case the results inevitably become "best on average" and
may have deviations for individual salts. It was furthermore decided that while the ion diameter
could be adjusted to obtain better correlations with experimental data, this would introduce
inconsistencies in the parameter trends, which could lead to worse predictive behavior. The
final model uses the Huron-Vidal/NRTL volume parameter νi as well as a linear temperature
dependence in the ion-water interaction ΔUiw/R = u0

iw + uTiw(T − 298.15) for each ion.

This chapter the predictive capabilities of the e-CPA EoS is investigated by using the final
ion-specific parameters shown in Table 6.11 p. 133 are used to predict data that was not in-
cluded in the parameter estimation. The investigation will include only a limited selection of
salts (and salt mixtures) in order to apply the model to a diverse set of applications including
vapor-liquid, liquid-liquid, liquid-solid, liquid-liquid-solid, and even three-liquid-solid equilib-
rium in mixed solvents.

7.1 Temperature and Pressure Dependence of SLE, Volume,

and Excess Properties

Solid-liquid equilibrium provides the best source for temperature-dependent data for a wide
range of salts. It is therefore of interest to see how well e-CPA performs when it is applied
to prediction of solid-liquid equilibrium. Figure 7.1 shows that the e-CPA model has a good
correspondence with the experimental data, and also illustrates that it may be possible to use
the ideal gas reference state even for solid-liquid equilibrium. The failure to obtain the solubil-
ity at higher/lower temperatures is ascribed to problems in the representation of the activity
coefficient at higher temperatures and salt concentrations, indicating that the current repre-
sentation of ΔU/R with a linear T-dependence is not sufficient to provide a correlation over
wider ranges of temperature. This problem requires further attention and possibly extension
of the model in order to be able to use the solid-liquid equilibrium data as a reliable data source.

Pitzer et al. (1984) [324] developed a reference model for sodium chloride as a function of
temperature and pressure. Figure 7.2 shows the temperature and pressure dependence of the
excess enthalpy of NaCl, which increases the confidence in the temperature dependence, at least
at high temperatures and low molalities. Figure 7.3 shows that the e-CPA model has excellent
representations of the trends from the reference model. The model extrapolates well to high
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7.1. Temperature and Pressure Dependence of SLE, Volume, and Excess Properties
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Figure 7.1: Temperature dependence of NaCl solubility using the aqueous standard state adopted from
Extended UNIQUAC by K. Thomsen [13] and the ideal gas reference state. The aqueous
standard state parameters for ions were taken from Table 4.4. The ideal gas formation
energies were taken from Table B.7-B.9 in Appendix B. The solid NaCl uses ΔfG

o =
−384.14kJ/mol, ΔfH

o = −411.15 kJ/mol and Cp = 50.5 J/mol/K.

temperatures whereas the structure-dominated region at low temperatures are described with
less accuracy using e-CPA. The temperature and pressure dependence of the apparent molar
volume is illustrated in Figure 7.4, from which it is evident that while the simple representation
with a Peneloux volume translation does provide the correct trends, the simplification fails at
high temperatures. It is suggested that e-CPA model will have to be extended with ion-solvent
association to handle the low-temperature regime. This could also improve the correspondence
with the apparent molar volume at high temperatures, as the model for ion-solvent associa-
tion will also affect the concentration-dependence of the static permittivity, which may in turn
correct the deficiencies at high temperatures and concentrations.
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Figure 7.2: Pressure and temperature dependencence of excess enthalpy of NaCl in water at 0.1, 1,
and 6 molal. Legend applies to all figures.
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7.1. Temperature and Pressure Dependence of SLE, Volume, and Excess Properties 145
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Figure 7.3: Effect of pressure on mean ionic activity coefficients of NaCl in water at 0.1, 1, and 6 molal.
Figure shows relative change compared to the solution at the vapor pressure of water (or
1 bar below 100◦C).
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Figure 7.4: Pressure and temperature dependencence of apparent molar volume of NaCl in water at
0.1, 1, and 6 molal.
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7.2. Mixed Salt Solid-Liquid Equilibrium and Osmotic Coefficients

7.2 Mixed Salt Solid-Liquid Equilibrium and Osmotic

Coefficients

As the parameters were obtained by fitting only to pure salt data, it is important to validate how
well these parameters work in the case of mixed salts. Figure 7.5 shows the activity coefficients
of mixed chloride salts, indicating that the mixed salt solutions are reasonably well described
with the ion-specific parameters.
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Figure 7.5: Osmotic coefficients in aqueous solution of KCl+NaCl (left) with R = mNaCl/mKCl and
KCl+NaCl+MgCl2 (right) of mixtures of Water+KCl+NaCl+MgCl at 25◦C and R = 0.752.
Data from [325].

Figure 7.6 shows the solubility of NaCl as a function of the HCl concentration, as well as
the density of the saturated solution. The solubility and density of NaCl are slightly over-
estimated, but display reasonable trends and are overall satisfactory.

Figure 7.7 shows the osmotic coefficient of pure NaCl and Na2SO4 calculated from the ion-
specific parameters shown in Table 6.11 within a reasonable accuracy. However, a good rep-
resentation of the pure compounds with ion-specific parameters does not guarantee that the
mixture is modeled correctly, as evidenced by Figure 7.8 showing the SLE diagram and osmotic
coefficients of mixtures of Na2SO4 and NaCl. The salt-specific parameters were determined by
setting the size parameter νi equal to the co-volume parameter bi and the salt-water interaction
parameter was adjusted to match the solubility of NaCl and Na2SO4 ·10 H2O. The water-ion in-
teraction parameter for Na+ was defined as zero whereas ΔUiw = −453.3K and ΔUiw = 179.9K
for Cl– and SO2–

4 , respectively. This resulted in an excellent representation of the salt mixture,
indicating that the model should be capable of handling this.

It is evident from Figure 7.8 that the ion-specific parameters from Table 6.11 fall short and
cannot predict the salt mixture. This problem is somewhat surprising, as the ion-specific pa-
rameters displayed an excellent performance in the case of the pure salts (see Figure 7.7) and
from these results the conclusion must be that pure salt data for osmotic coefficients and ac-
tivity coefficients are insufficient for the parameterization of ion-specific (or even salt-specific)
parameters. It was found that this was especially true when the NRTL/Huron-Vidal volume
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Figure 7.6: Solubility and Density of Saturated Salt Mixtures of NaCl+HCl (Data from [326–328]).
Aqueous standard state parameters were as in Figure 7.1.

parameter νi was included in the parameter estimation, and while it may improve the correspon-
dence with the osmotic and activity coefficients for the pure salt, it can introduce an unphysical
mixing behavior unless mixed salt data is included in the parameter estimation. Therefore, it
is recommended that mixed salt and SLE-data should be included in the parameter estimation
in the future.

Nevertheless in all following sections the ion-specific parameters from Table 6.11 will be ap-
plied, in order to show how the model handles different calculations for single-salt mixtures.

7.3 Salting out of Light Gases and Non-electrolytes

The Cubic Plus Association has been applied to modeling of aqueous and mixed solvent systems
with emphasis on hydrocarbons and light gases, such as CO2, H2S, and N2 [1, 82, 83, 172, 202].
Since 2003 the CPA equation of state has been developed in the Joint Industry Project "Chem-
icals in Gas Processing" (CHIGP) [330] project in terms of modeling, parameterization, and
experimental investigation related to vapor-liquid-liquid equilibrium and gas hydrate formation
in complex mixtures containing water, oil, natural gas, alcohol, glycols, acid gases, and other
chemicals. The parameters obtained in the CHIGP project can be adopted directly for use
with the e-CPA model and Table 7.1 summarizes the binary interaction parameters used in this
study.

Salts will typically decrease the solubility of gases in water and the magnitude of this decrease
is often characterized using the Setschenow constant kSis of component i in salt s, as defined by
Eq. (7.1):

kSis = lim
mS→0

1
mS

log
S0
i

Si
(7.1)

The Setschenow constants in different salts have been determined and collected by various
authors (see e.g. [331–334]). They are generally tabulated as salt-specific parameters and are
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Figure 7.7: Osmotic coefficients of NaCl and Na2SO4 at 25◦C. Data from the CERE Electrolyte
Database [13]. Legends and ordinate axis apply to both figures. Ion indicates that ion-
specific parameters from Table 6.11 were used, whereas Salt indicates that the γm

± parameter
was fitted to solubility data for the pure salt in water.

Binary Binary interaction Solvation
Water-N2 kij = 1.0741 − 368.3/T None

Water-CH4 kij = 0.7988 − 236.5/T None
Water-CO2 kij = 0.0046 + 0.331 · 10−3T One negative site on CO2

βij = 16.4 · 10−3. εij/kB = 1707.9K.
Water-Pentane kij = 0.0615 None
Water-Octane kij = −0.0165 None
Water-Benzene kij = 0.0355 One negative site on Benzene.

βij = 79 · 10−3. m-CR1.
Water-Methanol kij = −0.09 Elliott combining rule
Water-Ethanol kij = −0.11 Elliott combing rule

Water-Propan-1-ol kij = −0.08 Elliott combining rule
Methanol-CO2 kij = 0.0479 One negative site on Benzene.

βij = 19.6 · 10−3. εij/kB = 1489K.
Methanol-CH4 kij = 0.0528 None

Table 7.1: CPA binary interaction parameters used in this report. T in K.

therefore not directly applicable to an equation of state based on ion-specific parameters. Nev-
ertheless, Aasberg-Peterson et al. [93] used Setschenow constants at low temperature to develop
a predictive scheme for salt-solute interaction coefficients for an electrolyte equation of state.

Perez-Tejeda et al. (1990) attempted to determine ion-specific Setschenow constants [335],
which could be used to provide prediction of ion-specific interaction parameters. As this exrcise
generally requires knowledge of the solubility in a large number of salts it is beyond the scope of
this model validation. As shown in Chapter 6, the binary interaction may (as a first approxima-
tion) be defined from salt-specific parameters. This is also possible for salt-solute interactions.
While the ion-gas interaction parameters may be improved by including experimental data for
different salts, this flexibility of the e-CPA EoS makes it possible to obtain effective ion-specific
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Figure 7.8: Solubility of NaCl, Na2SO4, and Na2SO4 · 10 H2O and osmotic coefficient of mixtures
of NaCl and Na2SO4 at 25◦C. Data from the CERE Electrolyte Databank [13] Rard et
al. (2003)[329]. The aqueous standard state parameters for ions were taken from Table
4.4. The solid NaCl uses ΔfG

o = −384.14kJ/mol, ΔfH
o = −411.15 kJ/mol and Cp =

50.5 J/mol/K, solid Na2SO4 uses ΔfG
o = −1270.2kJ/mol, ΔfH

o = −1387.1 kJ/mol
and Cp = 128.2 J/mol/K, and finally the Glauber salt Na2SO4 · 10 H2O uses ΔfG

o =
−3646.9kJ/mol, ΔfH

o = −4327.3 kJ/mol and Cp = 492.2 J/mol/K. Ion indicates that
ion-specific parameters from Table 6.11 were used, whereas Salt indicates that the ΔUiw

parameter was fitted to solubility data for the pure salt in water.

parameters from the salt-specific parameters using Eq. (7.2):

ΔUsg
RT

=
va (bg + νa)

(va + vc) bg + vcνc + vaνa

ΔUag
RT

+
vc (bg + νc)

(va + vc) bg + vcνc + vaνa

ΔUcg
RT

(7.2)

Salting out constants used in this study are summarized in Table 7.2, and Figure 7.9 shows the
linear correlation between ΔUsg/R = u0

sg and the Setschenow coefficient.

Salt-CO2 interaction parameter ΔUsg/R [K]
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Figure 7.9: The effect of ΔUSG (solid line) on kS

for CO2 in NaCl and exp. ks = 0.095
kg/mol.

Solute kSis @ 25◦C ΔUsg/R
[kg/mol] [K]

NaCl
N2 0.134 453.4

CH4 0.139 376.6
CO2 0.095 -34.30

Pentane 0.221 -240.9
Benzene 0.195 -203.8
Toluene 0.235 -243.2

CaCl2
CO2 0.375 305.3

Table 7.2: Salting out constants for selected
salts and solutes [332, 333, 335,
336]
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7.3. Salting out of Light Gases and Non-electrolytes

By matching the Setschenow coefficient of CO2 in NaCl and CaCl2, the e-CPA EoS shows
excellent predictions of the solubility at elevated temperatures and pressures as shown in Fig-
ure 7.10-7.11. It is evident that the solubility is systematically underestimated and the degree
of under-estimation increases with the salt concentration, indicating that adjusting the salt-gas
interaction coefficient could improve the results. The same procedure was used to calculate
the solubility of N2 and CH4 in water+NaCl (see Figure 7.13). Figure 7.12 shows that this
method can also be used for hydrocarbons and aromatics. Overall, it may be concluded that
the e-CPA provides satisfactory predictions. The results may in all cases be improved by fitting
the interaction parameters to experimental data (including e.g. a temperature dependence).

title4

Pressure [bar]

So
lu

bi
lit

y
C

O
2

[m
ol

/k
g

so
lv

en
t]

6 mol/kg NaCl

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Pressure [bar]

So
lu

bi
lit

y
C

O
2

[m
ol

/k
g

so
lv

en
t]

4 mol/kg NaCl

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pressure [bar]

So
lu

bi
lit

y
C

O
2

[m
ol

/k
g

so
lv

en
t]

2.5 mol/kg NaCl

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Pressure [bar]

So
lu

bi
lit

y
C

O
2

[m
ol

/k
g

so
lv

en
t]

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

40 C
60 C
80 C
120 C
140 C
160 C

[337]
[99]

Figure 7.10: Solubility of CO2 in Water with 0.5, 2.5, 4, or 6 mol/kg NaCl from 40-160◦C. Data from
Rumpf et al. [337] and Kiepe et al. (2002) [99]. The deviations are significantly larger
at high salt concentrations, indicating that the salt-water interaction coefficient may be
improved. Legends apply to all figures.
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Figure 7.13: Solubility of methane and nitrogen in Water+NaCl at 51.5, 102.5, and 125◦C and with
0, 1 and 4 mol/kg NaCl. Data from O’Sullivan and Smith (1970) [341].
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7.3.1. Mixed Solvents

7.3.1 Mixed Solvents

As shown in Chapter 5, the electrolyte CPA model coupled with the new model for the static
permittivity provides an excellent representation of the static permittivity of mixtures, making
it suitable for mixed-solvent electrolyte applications. When dealing with mixed solvents, there
is limited data concerning mean molal activity coefficients or osmotic coefficients. The most
common data available at elevated temperatures is in fact solid-liquid equilibrium. The solubility
of the salt in the pure solvent is used to predict the salt-solvent interaction parameters. The
solubility of NaCl and NaBr in methanol and ethanol are summarized in Table 7.3: The salt-

Solvent Methanol Ethanol
Solubility [wt%] ΔUsa/R [K] Solubility [wt%] ΔUsa/R [K]

NaCl 1.375 -344.9 0.055 -167.1
NaBr 14.938 -706.6 2.496 -626.3

Table 7.3: Solubility of different salts in water, methanol, and ethanol at 25◦C [342] and the calculated
salt-alcohol interaction coefficient ΔUsa. The aqueous standard state parameters for ions are
shown in Table 4.4. The solid NaCl uses ΔfG

o = −384.14kJ/mol, ΔfH
o = −411.15 kJ/mol

and Cp = 50.5 J/mol/K, and solid NaBr uses ΔfG
o = −350.83kJ/mol, ΔfH

o = −362.51
kJ/mol and Cp = 51.4 J/mol/K [13].

alcohol interaction coefficient is calculated using the solubility of the salt in the pure solvent,
which provides quite satisfactory predictions of the solubility in the mixed solvent as shown in
Figure 7.14 and 7.15. While the temperature dependence is reasonable for NaCl, the solubility
of NaBr at 50◦C in pure water or methanol is not predicted satisfactorily, which also affects the
solubility in the mixed solvent. Figure 7.16 shows that the e-CPA model can also predict the
solubility of NaCl and NaBr in the non-aqueous mixture of methanol and ethanol.
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Figure 7.14: Solubility of NaCl in water with methanol and ethanol. The salt-alcohol interaction
parameter was fitted to data for pure methanol/ethanol at 25◦C and the solubility in the
mixture is predicted by the model (see Table 7.3). Data from Pinho and Macedo (1996)
[343].
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7.3.2. Solubility of CO2 in Water+Methanol
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Figure 7.15: Solubility of NaBr in water with methanol and ethanol. The salt-alcohol interaction
parameter was fitted to data for pure methanol/ethanol at 25◦C and the solubility in the
mixture is predicted by the model (see Table 7.3)l. Data from Pinho et al. (1996, 2005)
[342, 343].
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Figure 7.16: Solubility of NaCl and NaBr in (non-aqueous) mixtures of methanol and ethanol. The
salt-alcohol interaction parameter was fitted to data for pure methanol/ethanol at 25◦C
and the solubility in the mixture is predicted by the model (see Table 7.3). Data from
Pinho et al. [342].

7.3.2 Solubility of CO2 in Water+Methanol

Once all interaction parameters have been established for NaCl-methanol, and NaCl-CO2 it is
possible to predict the solubility in a mixed solvent consisting of water + methanol. The results
are summarized in Figure 7.17 showing that the model captures all trends within an acceptable
accuracy for the gas solubility. However, it also appears that the mixtures containing significant
parts of methanol and NaCl over-estimates the solubility of CO2. While the situation could
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7.3.3. Gas Hydrate Formation Pressure

possibly be improved through parameter optimization, it could also mean that a more detailed
chemical treatment that includes the speciation of CO2 and ion pairing of NaCl in the mixed
solvent would be needed to provide satisfactory predictions. Further validation is also needed
for the CO2-water and CO2-methanol interaction and cross-association parameters in order to
eliminate errors in the representation of the solubility in the mixed solvent. Future investigations
must also include the solubility in other mixed solvent solutions and with other gases and salts
to see if this discrepancy is a general problem.

7.3.3 Gas Hydrate Formation Pressure

As a final application of the e-CPA model, this section presents calculations for the gas hydrate
dissociation pressure with a structure I methane clathrate. The calculation procedure is identical
to that of Folas [202], and will only be presented in brief. The hydrate phase is calculated from
the van der Waals-Platteeuw model, in which the fugacity of water in the hydrate phase can be
calculated using Eq. (7.3):

fHw = fEHw exp

(
μHw − μEHw

RT

)
(7.3)

The fugacity of water in the empty hydrate may be calculated from Eq. (7.4):

fEHw = PEHw φEHw exp

⎛
⎜⎝

P∫
PEH

w

V EH
w

RT
dP

⎞
⎟⎠ (7.4)

In which PEHw is the vapor pressure of the empty structure I hydrate in [atm] is calculated from
Eq. (7.5) from Sloan [345] and the volume of the structure I hydrate phase in [cm3/mol] is
calculated from Eq. (7.6) from Avlonitis (1994)[346]:

lnPEHw = 17.44 − 6003.9
T

(7.5)

V EH
w = 22.35 + 3.1075 · 10−4 (T − 273.15) + 5.9537 · 10−7 (T − 273.15)2

+1.3707 · 10−10 (T − 273.15)3
(7.6)

The change in chemical potential from the empty hydrate to the hydrate with CH4 as a guest
molecule is calculated from Eq. (7.7):

μHw − μEHw
RT

= vs ln
(
1 − Θs

CH
4

)
+ vl ln

(
1 − Θl

CH
4

)
(7.7)

Where vs and vl are the number of cavities per water molecule (vs = 1/23 and vl = 3/23 for
structure I hydrates). Θs

CH
4

and Θl
CH

4
denote the occupancy of the large and small cavities,

and are in the case of a single gas calculated from the Langmuir-equation in Eq. (7.8).

ΘCH
4

=
CCH

4
fCH

4

1 + CCH
4
fCH

4

(7.8)

The Langmuir constant CCH
4

is calculated from the simplified method by Parrish and Prausnitz
[347] that uses different parameters for the small and large cavities using the parameters from
Karakatsani [348]:

CsCH
4

=
1
T

exp
(

1970
T

)
C lCH

4
=

0.316
T

exp
(

2048
T

)
(7.9)

Calculations for the gas hydrate formation pressure with structure I methane clathrate were
performed and they are summarized in Figure 7.18 showing excellent predictions of the gas
hydrate formation pressure, even in a mixed solvent with water, methanol, and NaCl.
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7.4. Salt Effect on Liquid-Liquid Equilibrium
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Figure 7.18: Effect of NaCl on CH4 structure I gas hydrate formation pressure. The black line consists
of 20wt% methanol with 0.9 mol/kg NaCl. Data was obtained from the NIST Hydrate
Database [355].

7.4 Salt Effect on Liquid-Liquid Equilibrium

Salts may induce a two-phase liquid-liquid split in an otherwise miscible solution of water + alco-
hol. This peculiar effect was first reported by Timmermans [356] in 1907 and analyzed by Frank-
forter and Frary (1913) [357]. The e-CPA results with the system water+propan-1-ol+NaCl
shown in Figure 7.19-7.20 using the salt-propanol interaction coefficient ΔUsp/R = −86.28K
predicted from the solubility of NaCl in propanol (0.124 g/kg)
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Figure 7.19: Distribution of NaCl and propanol in LLE at 25◦C. Data from de Santis et al. (1976)
[358].
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Figure 7.20: Salt-induced liquid-liquid equilibrium of water and propanol at 25◦C. Data from de Santis
et al. (1976) [358].

The situation may be alleviated by adjusting either the water-propanol interaction coeffi-
cient/association parameters to the liquid-liquid data, rather than the vapor-liquid data which
was used to estimate the current value of the binary interaction parameter. In this case, the
propanol-salt interaction coefficient was adjusted to give a better representation of the exper-
imental data for the liquid-liquid equilibrum ΔUsp/R = −450K. Still, as evident from Figure
7.19, the model fails to obtain a good description of the solubility of salt in the polar phase,
indicating that the model should be extended to include ion-ion association, which is expected
be more prevalent in the propanol-rich phase than in the water-rich phase due to the lower
static permittivity.

Salts may also cause the appearance and disappearance of phases in multicomponent mitx-
ures. While the data is scarse, measurements of the water-propan-1-ol-NaCl-octane mixture
was performed by Negahban et al. (1986) [359]. They mixed equal volumes of water, propanol,
and octane at 25◦C and added NaCl after which measurements of the distribution of chemicals
was conducted. In order to model this system, the propanol-octane binary interaction coefficient
kij was correlated to experimental data as shown in Figure 7.21.

Furthermore, the n-octane-NaCl Setschenow constant was estimated to be ks = 0.321mol/kg
by extrapolating the data for the C1-C6 alkanes, from which the salt-octane interaction coef-
ficient ΔUos/R = −451.5K was obtained. Figure 7.22 shows the distribution of chemicals in
the two- or three-phase equilibrium predicted by e-CPA. A relatively poor agreement with the
solubility of propanol in the octane-rich phase is obtained if the kij for octane-propanol based
on vapor-liquid equilibrium is used. If the kij is adjusted to -0.0065 good agreement with all
phases can be obtained (this does not affect the VLE much in comparison to the pure prediction
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Figure 7.21: Correlation of Propanol-Octane Vapor-Liquid Equilibrium. Data from [360, 361].

kij = 0 as evident from Figure 7.21. It is not unusual that the kij from liquid-liquid equilibrium
differs from the optimal vapor-liquid equilibrium kij , but it requires further investigations on
the parameters for the salt-free mixtures in order to determine whether adjusting the kij can be
justified. The result after adjusting the kij parameter is quite satisfactory with this type of data,
as e-CPA can not only catch the three-liquid equilibrium, but also the range of salt concentra-
tions where the three phases exist. Still, the amount of water in the octane-rich phase is greatly
underestimated by e-CPA, which could be due to the kij of water-propanol being adopted from
vapor-liquid equilibrium data. In order to shed further light on this complex system, it is
suggested to perform a more detailed investigation of the distributions in water-alcohol-alkane
liquid-liquid equilibrium systems in the absence of salts. While such investigations have been
done extensively for water-methanol in the past, less work has been done targeting alcohols
such as propanol and butanol.

7.5 Summary and Discussion

In this chapter, the electrolyte CPA approach was validated against data not included in the
parameter estimation. The model investigated was the simplest formulation of an electrolyte
CPA equation of state that was based on the Debye-Hückel and Born terms for electrostatics
and using the new theory for the static permittivity and neglects ion-solvent association as
well as ion-ion association. While the model has an approximate description of the physical
interactions, the results show that the model is still capable of providing a good description
for a variety of applications, especially for vapor-liquid equilibrium and gas hydrate formation
pressures in mixed solvents.

As discussed in Chapter 1, Cobble and Murray (1981) suggested that structural effects will
be dominating at low temperatures, where as the electrical field (and therefore the static per-
mittivity) will provide the main contribution to the thermodynamic behavior of electrolyte
solutions at high temperatures. In the intermediate region near room temperature both effects
will play a role. The results in Figures 7.3-7.4 fits well in this picture as the model was shown to
give a good description of the pressure-dependence of the activity coefficients, excess enthalpy
and apparent molar volumes with increasing deviation at low temperatures where the struc-
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Figure 7.22: Distribution in three-liquid equilibrium with NaCl+propanol+water+octane to the cal-
culated solubility limit of NaCl (ca. 10.5 wt%). Data from Negahban et al. (1986)
[359].

ture of the fluid becomes dominating. Deviations were also higher in concentrated solutions,
which may be related to the simplified description of the reduction in the static permittivity as
discussed in Chapter 6. In order to justify the inclusion of ion-solvent association in a future ver-
sion of the electrolyte CPA EoS, it must be shown to improve the pressure-dependent properties.

The ion-specific parameters developed in Chapter 6 were shown to work satisfactorily for mixed
chloride salts in Figures 7.5-7.6 but failed to provide a good description of a mixture of NaCl-
Na2SO4 (see Figure 7.8), despite a good description of the osmotic coefficients and activity
coefficients of the pure salts (see Figure 7.7). However, it was shown that this is not a defect of
the model but rather of the ion-specific parameters, since simple salt-specific parameters esti-
mated solely from the solubility of the pure salts provided an excellent prediction of the mixed
salt SLE. It is evident that more work is needed in order to improve the parameterization of the
model, and it is recommended that future approaches would also include solid-liquid equilibrium
of mixed salts.

The remaining modeling work was focused on validating the model for single-salt solutions
and therefore utilized salt-dependent interaction parameters. A complete electrolyte CPA
model should use ion-specific parameters and ion-specific interaction parameters with solute
compounds, but in this work the focus was on validating the approach for many possible ap-
plications to identify other weaknesses in the presented model. The results were based on the
ion-specific parameters, as these would still provide a good description in the absence of other
salts.

It was shown that the Setschenow coefficients for salting out of non-electrolytes at 25◦C, 1
bar provided an excellent basis for defining the salt-solute interaction coefficients, which could
be used to predict the gas solubility up to high temperatures and pressures (see Figures 7.10-
7.13). Excellent predictions are obtained (at least up to 4 molal solutions), but these may in the
future also be improved by adjusting the salt-solute interaction coefficient to the experimental
data, and possibly by defining temperature-dependent parameters.
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By fixing the salt-alcohol interaction coefficient to the solubility of the salt in pure alcohol,
the model is capable of predicting the solubility in the water-alcohol mixture or even a non-
aqueous mixture of two alcohols as evident from Figures 7.14-7.16 without fitting additional
parameters. The temperature dependence of the solubility in the mixed solvent could however
not be predicted from the solubility at 25◦C, and requires further parameterization. While
other groups have succesfully correlated the salt solubility in mixed solvents, only Simon et al.
(1991) [92] have shown a similar prediction without introducing additional solvent-dependent
parameters.

Using the NaCl-CO2 and NaCl-methanol interaction parameters estimated from Setschenow
coefficients and salt solubility, respectively, it was possible to predict the solubility of CO2 in a
mixed solvent of water+methanol with NaCl as shown in Figure 7.17. While the model captures
the trends of the system, the modeling results show some unsatisfactory deviations in the mixed
solvent at high salt concentrations, and further work is needed to determine the source of this
error. This defect could be related to the model parameters, experimental data, or be due to
a more fundamental problem with the model that requires further improvements of the physics
of the model.

In Figure 7.18, the e-CPA model was also used to calculate the gas hydrate formation pres-
sure for the structure I methane hydrate. It was shown to give excellent predictions of the
effect of salts and mixed solvents on the formation pressure of the hydrate. Generally, it
seems that the model provides good predictions of vapor-liquid equilibrium and may also be
applied to solid-liquid equilibrium. The temperature dependence of the model must however be
improved/correlated in order to provide a satisfactory representation of solid-liquid equilibrium.

Activity coefficient models such as electrolyte NRTL, Extended UNIQUAC, and the OLI Mixed
Solvent Electrolyte have all been applied to modeling of liquid-liquid equilibrium systems of wa-
ter+alcohol, whereas only a few electrolyte EoS have been used for this type of application (e.g.
Gmehling et al. (2006) [102], and Sadowski et al. (2013) [120]). In all cases, additional param-
eter estimation has been necessary to provide a good description of liquid-liquid equilibrium.
The e-CPA model was shown to predict a liquid-liquid phase split of water-propanol-NaCl.
The model was however shown to underpredict the amount of propanol in the aqueous phase,
and also the amount of salt in the propanol-rich phase. The situatoin could be improved by
modifying the propanol-NaCl interaction coefficient, but this did not significantly improve the
distribution of salt between the water and alcohol phases. This problem indicates that ion
pairing is required in order to properly predict the liquid-liquid equilibrium. The neutral ion
pairs will be more prevalent in the propanol-rich solution as it has a lower static permittivity.
The effect of ion pairing will increase the solubility of NaCl in the least polar phase.

Finally, the model was applied to a three liquid-phase equilibrium of water-propanol-octane-
NaCl. The system is very sensitive to the interaction parameters, and it was shown that the kij
for propanol-octane derived from vapor-liquid equilibrium data did not result in a satisfactory
agreement with the solubility of propanol in the octane-rich phase. Furthermore, the solubility
of H2O in the octane phase was also under-estimated, indicating that the water-propanol kij
may not be optimal for this system. Further work should investigate the mutual solubilities in
salt-free ternary solutions of water-alcohol-alkane to validate the current CPA parameters for
this type of phase equilibrium. The next step will then involve improving the distribution of
salt in the liquid-liquid equilibrium for water-alcohol-salt mixtures; presumably by accounting
for the effect of ion-ion association.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

An electrolyte extension of the Cubic Plus Association equation of state has been developed
during the course of this PhD project. A comprehensive literature review revealed that while
the field of electrolyte equations of state had been investigated by many groups over the past
thirty years, it had not yet reached a concensus on the approach needed to develop an electrolyte
equation of state. A systematic research effort was therefore performed in order to harmonize
the approach to modeling of electrolyte mixtures within an equation of state. During this work,
it was shown that:

• Electrostatic interactions can be modeled through primitive and non-primitive electrolyte
models. The full Debye-Hückel equation yields similar results as the implicit non-restricted
mean spherical approximation [161]. A complete model should also take into account ion-
ion association and the dipole-charge interactions between ion pairs and free ions.

• The static permittivity is the most important property for primitive electrolyte models.
It should be seen as a shielding effect for the Coulombic interactions in the fluid, and is
a property that depends on all components in the mixture. A simple correlation of the
static permittivity may not provide the correct physical behavior, which can impact the
performance of the EoS, and possibly introduce non-physical volume roots.

• Conversion from the McMillan-Mayer to the Lewis-Randall framework is not needed when
a physical model is used for the static permittivity that takes into account all components
in the mixture and thereby indirectly provides a description of the direct correlation
functions of all molecules in the mixture.

• The EoS must include a model for the Gibbs energy of hydration, such as the Born model.
This model provides the main driving force at infinite dilution for ions towards the most
polar phase, and none of the other terms of the equation of state can provide a similar
description of the fugacity coefficient at infinite dilution.

• Ion-solvent association is important for representing the partial molar volumes of elec-
trolytes as well as the decrease in the static permittivity with the salt concentration.
Ion-ion association is more prevalent in solutions with a low static permittivity and re-
duces the effective ionic strength of the mixture.

A new model was developed to predict the static permittivity as a function of temperature,
pressure, and composition [162, 163]. In this work, the Onsager-Kirkwood-Fröhlich framework
for the static permittivity was extended to handle associating compounds. When this new
model is coupled with a modern equation of state that explicitly accounts for association and
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hydrogen bonding, it provides an excellent basis for correlating the permittivity of pure com-
pounds using 1-2 parameters. The static permittivity of binary and ternary mixtures was then
predicted (without adjusting any parameters) over wide ranges of temperature, pressure, and
composition. By accounting for ion-solvent association the model could also predict the decrease
in the static permittivity caused by the presence of salts.

The simplest possible electrolyte extension to the CPA equation of state was parameterized
for 16 ions and 55 salts. It was shown that volumetric data required a Peneloux volume trans-
lation term when the model neglects ion-solvent association. It was also shown that the Huron-
Vidal/NRTL mixing rule could be used to enable the use of the model with either salt- or
ion-specific parameters. The ion-specific parameters were shown to not always give good pre-
dictions for mixed anions, in spite of the model having good agreement with the experimental
data for pure salts.

It was shown that Setschenow coefficients at 25◦C and 1 bar could be used to determine salt-
solute interaction parameters. When the interaction parameter had been determined, the simple
model provided quite satisfactory predictions of the solubility of light gases, hydrocarbons, and
aromatics as a function of temperature, pressure and salt concentration.

For mixed solvent applications, the alcohol-salt interaction parameter was fitted to the sol-
ubility of a salt in the pure alcohol at 25◦C. Using this approach it was possible to predict the
solubility in a mixture of water+alcohol or even the non-aqueous mixture of methanol+ethanol,
but the temperature dependence was not accurately predicted by this approach requiring further
investigations. Reasonable predictions were obtained when the model was used to calculate the
CO2 solubility in a mixture of water, methanol, and NaCl, but some discrepancy was observed
in the more concentrated solutions. The model was also shown to give excellent predictions for
the gas hydrate formation pressure for the methane structure I hydrate. All in all, the model
shows good potential for applications to phase equilibrium and gas hydrate formation in relation
to oil and gas production.

The model was also tested against liquid-liquid equilibrium in the system containing water,
propan-1-ol, and NaCl. It was shown that while the model predicts the existence of the liquid-
liquid equilibrium as well as the salt solubility in the mixture, it does not accurately determine
the distribution of alcohol in the water-rich phase, or the amount of salt in the alcohol-rich
phase. By adjusting the salt-propan-1-ol interaction coefficient it was possible to improve the
correspondence for the distribution of alcohol, but not the salt. After improving the liquid-liquid
equilibrium, the model was applied to the three-liquid phase equilibrium with water, propan-1-
ol, octane, and NaCl. The model predicts the presence of three liquid phases when NaCl is added
to equal volumes of water, propan-1-ol, and octane at 25◦C, but does not properly account for
the solubility of water or propan-1-ol in the octane-rich phase. If the propan-1-ol-octane binary
interaction parameter was adjusted, the model provides a good description the distribution of
chemicals in all phases, except for the amount of water in the octane-rich phase. These prob-
lems may in fact be related to the distribution of chemicals in the salt-free mixture and requires
a systematic investigation of the distribution of chemicals in the water-alcohol-alkane system
with the CPA EoS.

8.2 Future Work

The first step towards improving the e-CPA EoS will be to improve the parameterization and
the ion-specific parameters by including solid-liquid equilibrium and mixed salt data. The op-
timal functional form for the temperature dependence of the ion-water interaction parameters
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should also be determined.

Ion-specific interaction paramters with gas molecules must be determined in order to provide
an ion-specific framework for predicting gas and hydrocarbon solubility in mixed solvents con-
taining salts. This could be done using the Setschenow coefficients or through parameterization
against the available experimental data for gas solubility in salts.

Ion-specific interaction parameters with alcohols and glycols should also be determined. The
Electrolyte database must be extended to include more data for the solubility of salts in the
non-aqueous solvents, and the model should be validated for SLE in mixed salts up to elevated
temperatures.

The framework for the electrolyte CPA equation of state may furthermore be improved by
accounting explicitly for ion-solvent and ion-ion association. However, in order to justify the
additional complexity caused by the introduction of these terms these models must be compared
to the results from the simplest possible e-CPA. It is therefore important to further develop the
current e-CPA approach and apply it to a variety of industrially important systems.
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Appendix A

Description of PhD Activities

A.1 Attended Conferences

Contributions at international conferences

• 2011

– 25th ESAT, St. Petersburg, Russia. Poster: An Electrolyte CPA Equation of State
for Applications in the Oil- and Gas Industry. B Maribo-Mogensen, G M Kontoge-
orgis, K. Thomsen

– 8th ECCE, Berlin, Germany. Oral: Development of a CAPE-OPEN Compatible
Library for Thermodynamic Models and Unit Operations using .NET., B Maribo-
Mogensen, G M Kontogeorgis, K Thomsen

– SAFT2011, Pau, France. Poster: An Electrolyte CPA Equation of State for Appli-
cations in the Oil- and Gas Industry. B Maribo-Mogensen, G M Kontogeorgis, K
Thomsen

• 2012

– NIST ThermoSymposium, Boulder, Colorado, USA. Oral: Recent Applications of
the CPA Equation of State for the Petroleum and Chemical Industries, B Maribo-
Mogensen, G M. Kontogeorgis, I Tsivintzelis, M Riaz, M Michelsen and Erling Stenby

– NIST ThermoSymposium, Boulder, Colorado, USA. Oral: Comparison of Debye-
HÃ1

4ckel and the Mean Spherical Approximation for Electrolyte Equations of State,
B Maribo-Mogensen, G M Kontogeorgis and K Thomsen

• 2013

– PPEPPD 2013, Iguazu, Argentina. Poster: Modeling of Dielectric Properties with an
Associating Equation of State. B. Maribo-Mogensen, G M Kontogeorgis, K Thomsen

– Thermodynamics 2013, Manchester. UK. Oral: The Electrolyte CPA Equation of
State, B. Maribo-Mogensen, G M Kontogeorgis, K Thomsen.

– CAPE-OPEN Annual Meeting, Lyon. Dissemination of University Research Through
CAPE-OPEN, B Maribo-Mogensen

– AIChE 2013, San Francisco, USA. Oral: Dissemination of University Research Through
CAPE-OPEN, B Maribo-Mogensen.

– AIChE 2013, San Francisco, USA. Posters: Modeling of Thermodynamic, Volumet-
ric, and Electrical Properties With the Electrolyte CPA Equation of State, and Mod-
eling of Dielectric Properties of Complex Fluids With the Electrolyte CPA Equation
of State, B Maribo-Mogensen, G Kontogeorgis and K Thomsen
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A.2. List of Publications

A.2 List of Publications

Publications in internationally recognized journals as first or second author

• 2012

– Comparison of the Debye-Hückel and the Mean Spherical Approximation Theories
for Electrolyte Solutions, B Maribo-Mogensen, G M Kontogeorgis, and K Thomsen,
Ind. Eng. Chem. Res., 2012, 51 (14), pp 5353-5363

– Process simulation of CO2 capture with aqueous ammonia using the Extended UNI-
QUAC model, V Darde, B Maribo-Mogensen, W J M van Well, E H Stenby, K
Thomsen, International Journal of Greenhouse Gas Control, Volume 10, September
2012, pp 74-87

– Approach to Improve Speed of Sound Calculation within PC-SAFT Framework, X
Liang, B Maribo-Mogensen, K Thomsen, W Yan, G M Kontogeorgis, Ind. Eng.
Chem. Res., 2012, 51 (45), pp 14903-14914

• 2013

– Modeling of Dielectric Properties of Complex Fluids with an Equation of State, B
Maribo- Mogensen, G M Kontogeorgis, K Thomsen, J. Phys. Chem. B (2013), 117
(2), pp 3389-3397

– Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of
State, B Maribo-Mogensen, G M Kontogeorgis, K Thomsen, J. Phys. Chem. B, 117
(36), pp. 10523-10533

– Solids Modelling and Capture Simulation of Piperazine in Potassium Solvents, P
L Fosbøl, B Maribo-Mogensen, K Thomsen, GHGT-11, Kyoto. Energy Procedia
(2013), 37, pp 844-859

• Pending in 2014

– Process Design of Industrial Triethylene Glycol Processes using the Cubic Plus As-
socation (CPA) Equation of State, A Arya, B Maribo-Mogensen, I Tsivintzelis, GM
Kontogeorgis (submitted)

– Development of an electrolyte CPA Equation of State for strong electrolytes, B.
Maribo-Mogensen, GM Kontogeorgis, K Thomsen (to be finalized)

A.3 Attended Courses

• Optimization and Data Fitting (2010)

• Constrained Optimization (2010)

• Multivariate Statistics (2010)

• Statistical Thermodynamics for Chemical Engineering (2010)

• Thermodynamic Models , Fundamentals and Computational Aspects (2010)

• Knowledge-based entrepreneurship (2012)

• Exploring Quantum Physics (2013)
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A.4. Teaching and Supervision

A.4 Teaching and Supervision

• Assistant teacher in Applied Colloid and Surface Chemistry (2010)

• Assistant teacher in Mathematical Models in Chemical Engineering (2011, 2012) + devel-
opment of course material for Maple

• Assistant teacher in Thermodynamic Models - Fundamentals and Computational Aspects
(2012, 2014) + development of course material and plugins for MATLAB

• Co-supervisor: Towards the development of a polar CPA equation of state, by MSc student
Daniel K. Eriksen (2012)

• Supervision of research assistants and student helpers in relation to programming and
process design with commercial simulators
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Appendix B

Standard States for Electrolyte

Models

B.1 Volumetric properties

If a pressure-dependent aqueous standard state is used, the volume-dependence of the equation
of state becomes less important, as the main contribution to the apparent molar volume of
electrolytes is from the transfer of the solute from the ideal gas (B.1).

ΔhydV
aq
i = V aq

i =
(
∂ΔhydG

∂P

)
(B.1)

Eq. (B.1) gives the apparent molar volume at infinite dilution. Figure B.1 shows a representative
behaviour of the apparent molar volume of electrolytes at 25◦C: Figure B.1 shows that the largest
contribution to the apparent molar volume is from the standard state hydration free energy
ΔhydG

o, and that linear or quadratic behavior is observed as a function of concentration.
The relationship between the pure solute (e.g. a solid) and the ideal gas reference state is given
by Eq. (B.2)

ΔfG
aq
i (T, P ) = ΔfG

ig
i (T, P0) + ΔhydG

aq
i = ΔfG

∗
i (T, P ) + ΔsolGi (B.2)

Ionic species are formed by dissociation from an original neutral molecule. The Gibbs energy
of formation of that original molecule must be related through Eq. (B.3):

ΔfG
aq
AvBw

= vΔfG
aq
Aw+ + wΔfG

aq
Bv− (B.3)

Thus it is not possible to determine the formation energies of the ionic species individually
without making an extrathermodynamic assumption. The conventional approach is to define
the aqueous standard state relative to the hydrogen ion. To distinguish between the true
formation energy and the relative formation energy for the aqueous solids, the conventional
standard state relative to hydrogen is denoted with the superscript o instead of aq shown in Eq.
(B.4) and (B.5):

ΔfH
o
H+ (Tref ) ≡ 0 ΔfG

o
H+ (Tref ) ≡ 0 ΔSoH+ (Tref ) ≡ 0 (B.4)

Cop,H+ (T ) ≡ 0 V o
H+ (T ) ≡ 0 (B.5)

The conventional standard state provides the following relationship between the "true" aqueous
properties of the ion Mz carrying charge z, and the properties relative to hydrogen as shown in
Eq. (B.6) and Eq. (B.7):

ΔfX
o
Mz (conv) =

(
Xaq

Mz − 1
v
X•

Mv

)
− z

(
Xaq

H+ − 1
2
X

•

H2

)
X = G,H,A (B.6)
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B.1. Volumetric properties

Figure B.1: Representative behaviour of the apparent molar volume as a function of square root of
ionic strength.

Xo
Mz (conv) = Xaq

Mz − zXaq
H+ X = S,Cp, V (B.7)

Above applies to all physical properties shown in Eq. (B.5). The superscript o indicates neutral
species. As long as the same convention is used and the system has an overall charge balance,
the choice of the reference state does not matter as the contribution from the hydrogen ion will
be balanced out when calculating the total energy/heat capacity. By the use of an extrather-
modynamic conditions (i.e. that the Gibbs energy of hydration of tetraphenylarsonium and
tetraphenylborate ions is set equal) one can derive a different reference state that attempts to
incorporate the absolute hydration energy and entropy of the hydrogen ion[217]. While it is
possible to obtain values, it is more sensitive to experimental errors and is impractical as these
large ions will disintegrate at higher concentrations.

Standard state properties for the enthalpy of formation and the aqueous standard state en-
tropy is available online in the CO-DATA collection [206], or in the CRC Handbook of Physics
and Chemistry [207], where the values appear to be adopted from Marcus (1997) [214]. In the
Extended UNIQUAC model, the formation energies were adopted from Wagman et al. (1982)
[208]. A comparison of the values for selected ions is shown in Tables B.2-B.4. The standard
state formation Gibbs energies can be measured using voltaic or galvanic cells. The electro-
motive force E may be measured at different concentrations and this may be related to the
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B.1. Volumetric properties

ΔfG
form Y. Marcus[214] CRC [207] K. Thomsen [2]

H+ 0 0 0
Li+ -293.3 -293.3 -293.31
Na+ -261.9 -261.9 -261.905
K+ -283.3 -283.3 -283.27

Mg2+ -454.8 -454.8 -454.8
Ca2+ -553.6 -553.6 -553.58

F– -278.8 -278.8 -278.487
Cl– -131.2 -131.2 -131.228

SO2–
4 -744.5 -744.5 -744.53

NO–
3 -111.3 -111.3 -111.25

OH– -157.2 -157.2 -157.25

Table B.1: Standard state Gibbs free energy of formation in water at 25◦C from different sources. Unit
is kJ/mol. CODATA does not provide Gibbs energy of formation.

ΔfH
form Y. Marcus [214] CRC [207] CODATA[206] K. Thomsen[2]

H+ 0 0 0 0
Li+ -278.5 -278.5 -278.47±±0.08 -278.49
Na+ -240.1 -240.1 -240.34±0.06 -240.12
K+ -252.4 -252.4 -252.14±0.08 -252.38

Mg2+ -466.9 -466.9 -467.0±0.6 -466.85
Ca2+ -542.8 -542.8 -543.0±1.0 -542.83

F– -332.6 -332.6 -335.35±0.65 -333.051
Cl– -167.2 -167.2 -167.080±0.1 -167.159

SO2–
4 -909.3 -909.3 -909.34±0.4 -909.27

NO–
3 -207.4 -207.4 -206.85±0.4 -207.36

OH– -157.2 -157.2 -230.02±0.04 -230.2

Table B.2: Standard state heat of formation in water at 25◦C from different sources. Unit is kJ/mol.

standard state E0 by extrapolation to 0 molal as shown in Eq. B.8:

E = E0 − RT

veF
ln

(∏
i

avi
i

)
(B.8)

ve Stoichiometric coefficient of the electrons in the half-cell reactions
ai Activity of component i

By using the standard hydrogen cell electrode H/H+ as the anode or cathode, the Gibbs en-
ergy of formation can be directly calculated from ΔfG = −veFE0. Care must be taken in the
extrapolation towards 0 molal, as the activity coefficients are very non-linear [2].

For the standard state heat capacity (i.e. the temperature dependence of the standard state
properties), the data is less reliable. Marcus e.g. cites ideal gas heat capacities for Mg++ and
Ca++ and the values by K. Thomsen[2] differ for several of the other ions. However, the tem-
perature dependence is of high importance and the optimal way of establishing this must be
determined.

The approach used e.g. by K. Thomsen [2] in Extended UNIQUAC is to evaluate the aqueous
heat capacity is correlated relative to the hydrogen ion. Extended UNIQUAC uses Eq. (B.9),
which was suggested by Helgeson et al. [299]. This results in the non-monotonic behaviour for

Page 197 of 270

220



B.1. Volumetric properties

So Y. Marcus[214] CRC[207] CODATA[206]
H+ 0 0 0
Li+ 13.4 13.4 12.24±0.15
Na+ 59 59 58.45±0.15
K+ 102.5 102.5 101.2±0.2

Mg2+ -138.1 -138.1 -137±4
Ca2+ -53.1 -53.1 -56.2±1

F– -13.8 -13.8 -13.8±0.8
Cl– 56.5 56.5 56.60±0.2

SO2–
4 20.1 20.1 18.5±0.4

NO–
3 146.4 146.4 146.7±0.4

OH– -10.8 -10.8 -10.9±0.2

Table B.3: Standard state entropy in water at 25◦C from different sources.

Cop Y. Marcus[214] CRC[207] K. Thomsen[75]
H+ 0 0 0
Li+ 68.6 68.6 68.6
Na+ 46.4 46.4 35.767
K+ 21.8 21.8 6.1055

Mg2+ 20.79 - -18.635
Ca2+ 20.79 - -32.809

F– -106.7 -106.7 -102.95
Cl– -136.4 -136.4 -126.17

SO2–
4 -293 -293 -267.76

NO–
3 -86.6 -86.6 -60.969

OH– -148.9 -148.5 -133.63

Table B.4: Standard state heat capacity in water at 25◦C from different sources. CODATA does not
provide heat capacities. Unit is J/mol/K.

different valency salts as shown in Figure B.2:

Cp = A+BT +
C

T − 200
(B.9)

Note that the due to the standard state convention where H+ has zero heat capacity, Eq. (B.9)
includes the true heat capacity of the hydrogen ion as shown in Eq. (B.10). The T-dependent
correlation shown in Eq. (B.9) must therefore capture the temperature and pressure dependence
from the heat of hydration of the ion and that of H+ as shown in Eq. (B.10):

Caqp,Mz (T ) ≈ Cigp,Mz (T, Pr)+ΔhydCp,Mz (T, P )−z×
(
Cigp,H+ (T, Pr) + ΔhydCp,H+ (T, P )

)
(B.10)

In order to correctly represent the heat capacity and apparent molar volume of the electrolytes
over wider temperature and pressure ranges, a pressure-dependent standard state must be used
- alternatively, the ideal gas standard state with an equation of state capable of representing
the hydration free energy can be applied.

The geochemical community has developed several models available for the standard state
properties of ions at wide ranges of temperature and pressure. Most famous is the Helgeson-
Kirkham-Flowers, HKF [203]. The HKF package is implemented in the software SUPCRT92
[209]. Another similar model is the SOCW [210]. Common to these models are that they are
build on correlations of measured apparent molar volume and heat capacities. The HKF and
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Figure B.2: Standard state heat capacities as calculated with Eq. (B.9).

SOCW model both have the limitation that they cannot be used at temperatures below -30
degrees due to a divergence of the heat capacity correlation. Furthermore, these approaches
require determination of a large number of parameters and therefore require a large amount of
high-quality data.

B.1.0.1 Unified Electrolyte Theory

In a recent approach by Djamali and Cobble [204, 205, 224, 225] called the Unified Electrolyte
Theory (UET), the standard state properties of a set of electrolytes are described over wide
ranges of temperatures and pressures using a simple approach that corrects the Born hydration
energy by a non-Born hydration energy using only two parameters. They related the standard
state Gibbs energy of hydration to effects due to Born and non-Born-type hydration effects, as
well as changing the standard state from a hypothetically ideal gas to a liquid with density ρo

as shown in Eq. (B.11):

ΔhydG = ΔBornG+ Δnon−BornG+ ΔSSG (B.11)

The Born contribution is given by Eq. (B.12):

ΔBornG = −NAe
2

4πε0

∑
i

viz
2
i

2RB,i

(
1 − 1

εr

)
(B.12)

The non-Born contributions are collected in an enthalpic term CH and entropic term CS using
Eq. (B.13):

Δnon−BornG = CH − CST (B.13)

And finally, the standard state term in Eq. (112) is from converting between an hypothetically
ideal gas at po = 1bar, to the hypothetically ideal mo = 1molal aqueous solution with do as the
density of the pure solvent in g/cm3.

ΔSSG = vRTref ln
(
modoRTref

1000po

)
(B.14)
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Note that the above equation is equivalent to adding the natural logarithm of the compressibility
factor. The total Gibbs energy of hydration is calculated using Eq. (B.15):

ΔhydG (T, P ) =
(

ΔhydG (Tref , Pref) − vRTref ln
(
modoRTref

1000po

)
− CH + TrefCS

)
F1 (D)

−CST + CH + vRT ln
(
modoRT

1000po

) (B.15)

Where the function F (εr) is given as Eq. (B.16):

F1 (εr) =
1 − εr (T, P )

1 − εr (Tref , Pref)
εr (Tref , Pref)
εr (T, P )

(B.16)

It is noted that by Djamali and Cobble use the Born radius as an effective radius that calculated
from the Gibbs energy of hydration from Eq. (B.17):

1
RB

=
∑
i

viz
2
i

Ri
=

8πε0

NAe2

ΔhydG (Tref , Pref ) − vRTref ln
(
modoRTref

1000po

)
− CH + TrefCS

1
εr(Tref ,Pref) − 1

(B.17)

It is evident that Eq. (B.17) can be used to rewrite Eq. (B.15) as shown in Eq. (B.18):

ΔhydG (T, P ) =
1

4πε0

NAe
2

2RB

(
1

εr (T, P )
− 1
)

+ CH − CST + vRT ln
(
modoRT

1000po

)
(B.18)

Their approach is therefore equivalent to using the two parameters CH and CS to fix the
temperature-dependence of the non-Born contributions to the hydration energy and subse-
quently calculate the Born radius from the standard state Gibbs energy at 25◦C using Eq.
(B.15). Their approach is quite successful for the following selection of salts over wide temper-
ature ranges (up to above the critical temperature of water):

HCl, NaCl, CsCl, HReO4, NaReO4, NaOH, BaCl2, CoCl2, CuCl2, GdCl3, NaNO3, NH4Cl,
NaB(OH)4, Na(HCO3), Na(HSO4), Na(H2PO4), Na2SO4, Na2CO3, Na2(HPO4), Na3PO4

Djamali and Cobble use the Unified Electrolyte Theory from Eq. (B.11) to calculate the stan-
dard state Gibbs energy, the equilibrium constant for dissociation of water, sulfuric, phosphoric,
carbonic, and boric acid. Furthermore, they calculate the temperature-dependence of the stan-
dard state volume (given the standard state molar volume at the reference conditions), entropy,
and heat capacity (from the ideal gas heat capacity) with promising results again up to high
temperatures and pressures.

The standard state properties from the Unified Electrolyte Theory are also suited for han-
dling solid-liquid equilibrium mixed solvents as shown by Djamali et al. [224] when coupled
with a simple correlation for the mean ionic activity coefficient of the salts. Djamali et al.
[225] presented results for the solubility of BaSO4 with 1 molal NaCl in mixtures of water
and ethylene glycol as well as water and methanol as a function of temperature and pressure.
It is evident from Figure B.3 that the pressure can have a significant effect on not only pure
component properties but also chemical equilibrium. The origin of the temperature/pressure-
dependence captured by the UET is due to the Born term which depends on the behaviour of
the dielectric constant, and a complete model should be able to take this into account. This is
also relevant when dealing with mixed solvents or liquid-liquid equilibria of electrolytes, where
the Born term provides the main driving force for the phase distribution.

The UET was also used to capture the temperature- and pressure dependence of the apparent
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Figure B.3: Temperature dependence of the H2O<
−−>H+ + OH– dissociation reaction [204].

Figure B.4: Apparent molar volume and heat capacity of HCl [204].

molar volume and heat capacity as shown in Figure B.4: Finally, they used a semi-empirical
model for calculation of the activity coefficients in mixed solvents and were able to predict the
solubility of NaCl in mixed solvents at high temperatures as shown in Figure B.5. Figure B.5
indicates that if the dielectric constant can be modeled as a function of temperature, pressure,
and composition, the standard state properties could be obtained using e.g. the UET, and the
equation of state can then be used to determine the excess properties.

B.2 Conversion Between Standard States

There are many different standard states that define the chemical potential. The total chemical
potential is given by Eq. (B.19):

μi = μ−◦
i +RT ln a−◦

i (B.19)

Where μ−◦
i and a−◦

i are the standard state chemical potential and activity, respectively. The
different reference states and the expression for the activity are summarized in Table B.5:
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Figure B.5: Solubility of NaCl in mixtures of water (1) and methanol (2) [225].

Reference state μ−◦ a−◦ Symmetrical Concentration basis
Ideal gas μig xiϕ̂iP Yes Mole fraction

Symmetric rational μx xiγi Yes Mole fraction
Asymmetric rational μ∞x xiγ

∗
i No Mole fraction

Symmetric molal μm miγi Yes Molality
Asymmetric molal μ∞m miγ

∗
i No Molality

Symmetric concentration μc ciγi Yes Concentration
Asymmetric concentration μ∞c ciγ

∗
i No Concentration

Table B.5: Overview of reference states and concentration scales

Note that the activity and fugacity coefficient does not depend on the standard state for the
concentration basis. The activity coefficient is defined in Eq. (B.20) [182]:

γi (T, P,n) ≡ ai
xi

=
fi (T, P,n)
xifi (T, P )

=
ϕ̂i (T, P,n)
ϕ̂i (T, P )

(B.20)

Similarly, the infinite dilution activity coefficient is defined in Eq. (B.21):

γ∞
i (T, P, nk) = limni=0γi (T, P,n) (B.21)

The asymmetric activity coefficient γ∗
i is defined in Eq. (B.22):

γ∗
i =

γi (T, P,n)
γ∞
i (T, P, nk)

=
ϕ̂i (T, P,n)
ϕ̂∞
i (T, P, nk)

(B.22)

Where Eq. (B.23) defines the fugacity coefficient of component i at infinite dilution in single
solvent k

ϕ̂∞
i (T, P, nk) = limni=0ϕ̂i (T, P,n) (B.23)

There are a variety of methods to convert between the concentration basis using the following
identities:

ci = xicmi =
xim0

xw
m0 =

1
Mw

(B.24)
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It is found that the conversion between the standard states can be obtained using Eq. (B.25)
and Eq. (B.26):

μxi = μmi +RT lnm0 −RT lnxw = μci +RT ln ρ (B.25)

μ∞x
i = μ∞m

i +RT lnm0 = μ∞c
i +RT ln ρw (B.26)

Furthermore, it is found that conversion to the ideal gas standard state can be done using Eq.
(B.27) and Eq. (B.28):

μigi = μxi −RT ln
(
ϕi (T, P )

P

P0

)
︸ ︷︷ ︸

Pure component fugacity

(B.27)

μigi = μ∞x
i −RT ln

(
ϕ̂∞
i (T, P, nk)

P

P0

)
︸ ︷︷ ︸

Fugacity at infinite dilution in solvent k

(B.28)

Following Eq. (B.25)-(B.28), the conversion can be performed explicitely provided that the
model uses the mole-fraction or molality scale or asymmetric properties.

The reference state is typically selected at 298.15K and 1 bar. It is however important to
realize that the different reference states are related through standard thermodynamic routes,
and so the ideal gas Gibbs energy may be transformed into the aqueous state using the following
steps:

1
2H2(g) −−⇀↽−− H(g)ΔG = ΔformG

ig (B.29)

H(g) −−⇀↽−− H+(g) + e− ΔG = IE (B.30)

H+(g) −−⇀↽−− H+(aq)ΔG = ΔsolvationG (B.31)

The value of the solvation free energy may be calculated from the equation of state using Eq.
(B.32):

ΔsolvationG = −RT ln
(
ϕ̂∞
i (Tref , Pref , nk)

P

P0

)
︸ ︷︷ ︸

Fugacity of H+ at infinite dilution in solvent k

(B.32)

Resource on ion solvation models: [369]. Another resource using a continuum solvent model
coupled with quantum chemical calculations [379].

Note that the total change in Gibbs energy by transfering a neutral molecule from the gas
phase to the liquid phase is given by the Gibbs energy of hydration [114]:

ΔH(g)→H+(aq)G = IE + ΔsolvationG = ΔhydG (B.33)

The relationship of Eq. (B.33) to to the Born model for ion hydration is obtained by setting the
ion charging in vacuum equal to the ionization energy. This enables calculation of the equivalent
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Figure B.6: Contributions to the chemical potential at infinite dilution from different terms.

Born radii, which was also done by Born in his original paper [45]. He noted that the energy of
charging of a sphere in a medium with uniform dielectric constant εr is given by Eq. (B.34):

Ucharging =
1

4πεrε0

∑
i

niz
2
i

di
(B.34)

Whereas the ionization energy is a constant and therefore takes on the same value in all phases,
Eq. (B.32) shows that the equation of state must be able to quantify the Gibbs energy of
solvation. To get a general idea on the values of this Gibbs energy of solvation, the contribution
from ion charging in the liquid phase (with dielectric constant εr) can be calculated. Three
cases are set up to evaluate the contributions at infinite dilution at 0◦C from the different terms
of the EoS:

• Vapor - volume from ideal gas equation, εr = 1

• Oil - modeled as liquid decane, εr = 2

• Water - εr = 80

Figure B.6 shows the individual contributions from different terms of the equation of state to
the reduced chemical potential μi

RT =
(
∂Ar/RT
/∂ni

)
T,V,nj �=i

of the ions at infinite dilution. This

demonstrates the importance of the solvation term in the equation of state, as it provides a
significantly larger driving force towards the polar phase compared to the SRK term, which
cannot provide a sufficiently large difference between the water and oil phases (at least not
without fitting large binary interaction parameters).

B.3 Ideal Gas Reference State

The ideal gas reference state is well defined for many compounds and may either be measured
or calculated. In order to calculate the ideal Gibbs energy of formation, there is a need to
evaluate the enthalpy of formation and the absolute ideal gas entropy:

ΔformG
ig
H+ (Tref ) = ΔformH

ig
H+ (Tref ) − TrefS

ig
H+ (Tref ) (B.35)

The ideal gas heat of formation at 298.15K is calculated through Eq. (B.36):

H ig
form (Tref ) = H ig

form (0K) +
∫ Tref

0
CpdT (B.36)

The ideal gas heat of formation of ions in the gas phase is related to the adiabatic ionization
energy (IE) for cations and the adiabatic electron affinity (EA) for anions:

ΔfH
ig
H+ = ΔfH

ig
H + IEH+ − ΔfH

ig
e− (B.37)
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ΔfH
ig
OH− = ΔfH

ig
OH − EAOH + ΔfH

ig
e− (B.38)

The definition of the enthalpy of formation of the electron depends on the convention[219]. The
ion convention (IC) adopts ΔfH

ig
e− = 0 and is primarily used in mass spectroscopy and the ion

physics/chemistry community, while the thermodynamic community typically use the electron
convention (EC) uses ΔfH

ig
e− = 5

2RTref
1. Values may be reported using either convention,

and it is therefore important to keep an eye on what convention is used by the given data
source. The change in Gibbs energy/enthalpy due to a reaction is however independent of the
convention when the reaction obeys the principle of charge neutrality and as long as the same
convention for the pure component formation energies is used.

An overview of the different database for ion energetic and their convention is presented in
NIST Webbook [219] and replicated in Table B.6: The conversion between the two conventions

Compilation Convention Is integration of Cp included (Eq. (B.36))? Integrated Cp
[kJ/mol]

Molecules/Ions Electrons
JANAF Ta-
bles

Electron Yes Yes 6.197

Gurvich et al. Electron Yes Yes 6.197
NBS Tables Electron No Yes 6.197
Rosenstock et
al.

Ion Yes - -

GIANT Ion Yes - -
NIST
Database
19A Version
1.09

Ion Yes - -

NIST
Database
19A Versions
2.0 / 3.05

Ion No - -

NIST
Database
19B

Ion Yes - -

NIST Web-
Book

Ion Yes - -

NIST CC-
CBDB

Ion Yes - -

Table B.6: Sources for ionization energies and electron affinities and their respective conventions for
the enthalpy of formation for the electron.

is obtained using Eq. (B.39) where z is the charge:

ΔfH
IC
Mz (Tref ) = ΔfH

EC
Mz (Tref ) − z × 6.197

kJ
mol

(B.39)

CO-DATA [206] has published ideal gas formation energy/entropy for different compounds as
shown in Table B.7: It may be possible to determine the entropy and ideal gas heat capacity

1In fact, the electron convention using Δf Hig

e−

= 5

2
RTref arises from incorrect use of Boltzmann statistics to

evaluate the integrated heat capacity; when using the Fermi-Dirac rather than Boltzmann statistics [364].
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ΔfH
ig
[

kJ
mol

]
@ 0K ΔfH

ig
[

kJ
mol

]
@ 298.15K S◦

[
J

mol×K

]
@ 298.15K Cp

[
J

mol×K

]
H 211.8±0.006 217.998±0.006 114.717±0.002 20.785±0.0067
Li 153.1±1.0 159.3±1.0 138.782±0.010 20.785±0.0335
Na 101.3±0.7 107.5±0.7 153.718±0.003 20.785±0.01
K 82.803±0.8 89.0±0.8 160.341±0.003 20.785±0.01

Mg 140.90±0.8 147.1±0.8 148.648±0.003 20.785±0.01
Ca 171.6±0.8 177.8±0.8 154.887±0.004 20.785±0.01
F 72.862±0.3 79.38±0.3 158.751±0.004 21.861±0.0134
Cl 115.029±0.008 121.301±0.008 165.190±0.008 21.036±0.0134

SO4 - - - -
NO3 - - - -
OH - - - -

Table B.7: The ideal gas reference state for a selection of neutral molecules Data taken from CODATA
(2013).

from statistical thermodynamics. By assuming independence of the translational, vibrational,
rotational, and electronic to the molecular partition function, Eq. (B.40) is obtained:

Q = QtransQrotQvibQelec (B.40)

Each of the contributions to Eq. (B.40) may be calculated separately, and from this it is
possible to determine the reference state properties. For simple monatomic ions, there are
no contributions from vibrational or rotational motion and this approach simply yields the
contributions from translational energies:

Cigp = 5/2 R = 20.785J/mol · K (B.41)

H ig
form (Tref ) −H ig

form (T = 0) =
∫ Tref

0
Cigp dT = 5/2 RTref (B.42)

S◦
ref = R

(
3
2

ln
(

2πmkBTref
h2

)
+ ln

kBTref
Pref

+
5
2

)
(B.43)

ΔGigform = ΔH ig
form − TrefΔSo (B.44)

For polyatomic molecules the calculation becomes more complex as the vibrational, rotational,
and possibly electronic contributions must be taken into account. Analytical solutions are
possible for certain molecular configurations, but in general, the molecule geometry may be
calculated with quantum chemical methods. There are several methods available for obtaining
the ideal gas reference state for ions. One option is to calculate the reference state from the
neutral molecule, and then use the principal ionization reactions in Eqs. (B.45)-(B.46) with
literature values for the ionization energy (IE) or electron affinity (EA):

A −−⇀↽−− An+ + ne− (B.45)

B + ne− −−⇀↽−− Bn− (B.46)

Recommended values for IE and EA are available for many ions in the NIST CCCBDB [218]
and CRC Handbook of Chemistry and Physics [207]. Note that the 2nd ionization/electron
affinity is always higher than the first. To calculate the enthalpy of formation, the ionization
energy and the enthalpy of formation of the neutral species are needed. The data in Table B.8
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ΔfH
ig Sig Cig

p IE / EA Ion ΔfH
ig
ion Orig.

Source[
kJ

mol

] [
J

mol×K

] [
J

mol×K

]
[eV]

[
kJ

mol

]
H 218 114.7 20.79 13.6 H+ 1530.1 CODATA

[206] /
NIST
[218]

Li 159.3±1 138.8 20.79 5.392 Li+ 679.55 CODATA
[206] /
NIST
[218]

Na 107.5±0.7 153.7 20.79 5.139 Na+ 603.34 CODATA
[206] /
NIST
[218]

K 89±0.8 160.2 20.79 4.341 K+ 507.85 CODATA
[206] /
NIST
[218]

Mg 147.1±0.8 148.7 20.79 Mg/Mg+:
7.646

Mg++ 2336 CODATA
[206] /
NIST
[218]

Mg+/Mg++:
15.04

Ca 177.8±0.8 154.9 20.79 Ca/Ca+:
6.113

Ca++ 1912.9 CODATA
[206] /
NIST
[218]

Ca+/Ca++:
11.87

F 79.38±0.3 158.8 22.75 3.401 F– -248.87 CODATA
[206] /
NIST
[218]

Cl 121.31±0.1 165.19 21.84 3.613 Cl– -227.29 CODATA
[206] /
NIST
[218]

SO4 -245.7±15 - - SO4/SO4-
: 5.1±0.1

SO–
4 -737.8±12 Wang et

al. (2000)
[401]

SO4-
/SO4–:
-1.69*

SO4−– -574.7±18 McKee
(1996)
[220]

NO3 73.7±1.4 252.62 46.93 3.937 NO–
3 -306.16 NIST-

JANAF
[215]

OH 37.36±0.13 183.74 29.89 1.828 OH– -139.02 [394]

Table B.8: Ideal gas enthalpy of formation at 25◦C for the neutral molecules from NIST CCCBDB
and the resulting ideal gas of formation for the ions using the ion convention. For SO4, the
ideal gas energy of formation can be calculated backwards from the ideal gas enthalpy of
formation of the SO–

4 radical and the electron affinity. The 2nd electron affinity for SO4

was calculated with B3LYP/6-311+G(2d)+ZPC basis set, which calculates the first electron
affinity to 5.28eV (ca. 1.8 kcal/mol from the experimental value within uncertainties - not
completely satisfactory, but it’s the best value available).
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[J/mol/K] Cp S◦ Ion Cp S◦ ΔCp ΔS◦ Method
H 20.79 114.7 H+ 20.79 108.95 0 5.75 Translation
Li 20.79 138.8 Li+ 20.79 133 0 5.8 Translation
Na 20.79 153.7 Na+ 20.79 148 0 5.7 Translation
K 20.79 160.2 K+ 20.79 154.6 0 5.6 Translation

Mg 20.79 148.7 Mg++ 20.79 148.7 0 0 Translation
Ca 20.79 154.9 Ca++ 20.79 154.9 0 0 Translation
F 22.75 158.8 F- 20.79 145.6 (1.96) 13.2 Translation
Cl 21.84 165.19 Cl- 20.79 153.4 (1.05) 11.79 Translation

SO4 66.27 267.55 SO4– 66.27 267.55 0 0 B3LYP (6-31G*)
NO3 46.93 252.62 NO3- - 261.5 - -8.88 B3LYP (6-31G*)

44.85 257.8 2.08 -5.18 LSDA (6-31G*)
OH 29.89 183.74 OH- 29.1 173.64 0.79 10.1 Translation + rotation

Table B.9: Ideal gas heat capacity and entropy from the NIST CCCBDB [218] at 298.15K. Note that
the values for F– and Cl– ions are equal to the theoretical ideal gas monatomic heat capacity,
and are therefore not believed calculated with the same method as for the uncharged species.

uses the ion convention: The ideal gas enthalpies in Table B.8 neglects changes in the heat
capacity from the neutral molecule to the ion. Albeit a reasonable assumption for atomic ions,
this may not always be the case for polyatomic ions. In such cases, insight can be provided
by computational chemistry, where recently significant advances have been made in calculating
thermophysical properties from ab initio methods. Table B.9 summarizes results obtained from
these methods found in the NIST CCCBDB for different ions. Eq. B.47 may be used to correct
the values in Table B.8 to include the change in heat capacity as calculated in Table B.9.

ΔfH
ig
M+ − ΔfH

ig
M = IEM+ +

∫ Tref

0
ΔCpdT ≈ IEM+ + ΔCpTref (B.47)

It is unclear why there are some ions in Table B.9 that undergo a change in entropy and
heat capacity, while some do not. Most likely this is not a physical effect and is simply due
to calculations being done with different assumptions. Unfortunately, it makes it unreliable to
take values directly from these tables, and it is therefore necessary to recalculate these values.

B.4 Accurate Thermochemistry from Ab Initio Methods

The aim of extrapolated ab initio methods is to yield heat of formation and ionization potentials
within the chemical accuracy, which is defined as 1 kcal/mol in a 95% confidence interval. The
variation should therefore be within 0.5 kcal/mol for thermochemical methods to give accept-
able results. This remains a challenge for single quantum chemistry methods such as CCSD(T),
but has been achieved by using e.g. the focal-point extrapolation methods, the Weizmann (Wn)
family, and the high-accuracy extrapolated ab initio thermochemistry (HEAT) protocol. Such
goal has been achieved for molecules consisting of light components from the first few rows of
the periodic table [373, 376, 391].

The energy/entropy difference may be computed through the atomization scheme shown in
Eq. (B.48), which builds up molecules from it’s atomic constituents and then determine en-
ergy/entropy changes through its atomization reaction.

CH4
−−⇀↽−− C + 4H (B.48)
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The HEAT paradigm [376] is based on the atomization scheme calculates the total ground state
energy of atoms and molecules using:

ΔE = ΔE∞
HF +ΔE∞

CCSD(T) +ΔECCSDT +ΔEHLC +ΔErel +ΔESO +ΔEDBOC +ΔEZPE (B.49)

ΔE∞
HF Hartree-Fock limit energy (restricted HF for closed shells and unre-

stricted HF for open shells)

ΔE∞
CCSD(T)

Estimate for CCSD (T ) correlation energy.

ΔECCSDT+
ΔEHLC

account for deficiencies in electron correlations in the CCSD (T )
model

ΔErel accounts for scalar relativistic effects via perturbation theory
ΔESO accounts for differences in treatment of the ground-state energy and

the weighted average of spin orbits
ΔEDBOC is the diagonal Born-Oppenheimer correction (includes the contribu-

tion of core effects)
ΔEZPE accounts for the vibrational zero-point energy

One limitation of the protocols based on atomization reactions is that they become less accu-
rate for larger molecules (>10 atoms) and the inaccuracies will increase with the number of
atoms and it is deemed as unrealistic that an atomization scheme such as HEAT can calculate
formation enthalpies of e.g. benzene within chemical accuracy [376]. Harding et al. (2008)
[376] notes that abandoning or altering the separate treatment of the core and valence electrons
(Born-Oppenheimer) is needed if the field is to progress towards larger molecules through at-
omization reactions.

Another approach is to use isodesmic reactions to achieve partial error cancellation [396]. This
involves coming up with hypothetical reaction schemes where the bond hybridization are con-
served in the reaction. This works favourably in terms of error cancellation and has been used
since the 1970s to devise information of thermochemistry through simple models [396]. Ho-
modesmic reaction schemes improve of the isodesmic approach by also ensuring that there is no
change in the number of hydrogen joined to the carbon atoms. The latter comes with higher
accuracy, but also longer computation times.

So far, all known work on electrolyte systems has used the aqueous reference state. This is
mainly due to two reasons:

• The thermodynamic models employed have mainly been based on activity coefficients

• Using the ideal gas reference state requires accounting for the Gibbs energy of solvation

However, none of the above points are show-stoppers for using the ideal gas as the reference
state in e-CPA, if the residual properties can be calculated to a reasonable accuracy. The most
widely used model for ion solvation is attributed to Max Born (1920) [45]. The model was
developed to estimate the Gibbs energy of solvation by transferring an ion from the vapour
phase to the liquid phase. The electrical work required to charge a sphere and the electrical
field is given by Eq. (B.50):

W =
∫ zie

0

∫ ∞

ri

E (r) drdq E (r) =
1

4πεrε0

qi
r2

(B.50)

Evaluating the integral in Eq. (B.50) yields Eq. (B.51):

Wi =
e2

8πεrε0

z2
i

Ri
(B.51)
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IE / EA [eV] Ion rBorn [Å] rMarcus [Å] rBorn

rMarcus
rBorn − rMarcus [Å]

H 13.6 H+ 0.53 - - -
Li 5.392 Li+ 1.34 0.69 1.93 0.64
Na 5.139 Na+ 1.4 1.02 1.37 0.38
K 4.341 K+ 1.65 1.38 1.2 0.28

Mg Mg−−>Mg+: 7.646 Mg++ 1.27 0.71 1.79 0.56
Mg+−−>Mg++: 15.04

Ca Ca−−>Ca+: 6.113 Ca++ 1.6 1 1.6 0.6
Ca+−−>Ca++: 11.87

F 3.401 F– 2.11 1.33 1.59 0.78
Cl 3.613 Cl– 1.99 1.81 1.1 0.18

SO4 5.1±0.1 SO–
4 1.41 - - -

5.1-1.69 SO4−– 8.44 2.3 3.67 6.14
NO3 3.937 NO–

3 1.83 1.79 1.02 0.04
OH 1.828 OH– 3.94 1.33 2.96 2.6

Table B.10: Ionic radii as calculated from Eq. (B.51) and measured ion diameters Marcus (1997)[214].

Born (1920) [45] estimated the solvation radius Ri by setting the work required to charge the ion
in vacuum equal to the ionization energy or electron affinity of a range of molecules using Eq.
(B.51) - note that this approach neglects change in the ideal gas entropy. Table B.10 presents
the radii calculated from Eq. (B.51): The differences between the measured ion diameters and
the calculated Born radius is often interpreted as being due to the inclusion of the solvation
shell surrounding the molecules [216].

The Born term takes into account the effect of ion charging, but not the effect of reorienta-
tion of the solvent molecules in the vicinity of the ion. Israelichvili (2011) [316] derives the
interaction energy between ion and dipoles for the first shell using (Eq. (B.52)):

w1 (r) = −(zie)μj cos θ
4πε0εrr2

(B.52)

Where cos θ is obtained from the maximum attraction (i.e. 0◦when the dipole is near a cation
and 180◦for anions). This gives Eq. (B.53) for the interaction energy:

w1 (r) = − e |zi|μj
4πε0εrr2

(B.53)

The interaction energy with the subsequent shells are calculated from Eq. (B.54):

w2 (r) = − e2z2
i μ

2
j

6(4πεrε0)2kBTr4
= w1 (r)

(
e |zi|μj

24πεrε0kBTr2

)
(B.54)

Note that while Eq. (B.53) follows the same functional behaviour as the Born-term (inverse
proportional to the dielectric constant), the 2nd term has a different behaviour and also depends
on the temperature. However, as this is only included for the outer hydration shells and the
energy decreases with the distance cubed, the dominating term may be assumed to be from
the inner hydration shell. If this is the case, the total interaction energy may be calculated by
including the first shell contributions from:

W =
∑
i

niNA

(
e2

8πεrε0

z2
i

ri
−Nijw1 (ri + rw)

)
≈
∑
i

βiniNA

(
e2

8πεrε0

z2
i

ri

)
(B.55)

That is, if an empirical parameter in water is fitted, it may be possible to determine the hydra-
tion free energy. This parameter is expected to be between 0 and 1 (as the contribution from
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hydration by the dipoles is negative). This is well in line with the observation that the hydration
free energies calculated with the Born model are too large. Eq. (B.55) justifies fitting a Born
radius to take into account the effect of ion solvation including the hydration shell. However,
when the solvent is no longer water, the energy from the solvation shell could change.

There are also experimental sources available for the enthalpy of hydration. Marcus (1986) [217]
reviewed different sources for the enthalpy of solvation of various ions, and showed that the en-

thalpy and entropy of hydration of the H+ ion was given by: ΔhydH =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1098 ± 5

− 1091 ± 10

− 1104 ± 17

− 1103 ± 7

[
kJ

mol

]
ΔhydS

o ≈

−131 ± 1 J
mol×K The relatively similar standard hydration enthalpies were determined from ex-

trapolation methods, measured via electrode potentials and from the so-called TATB extrather-
modynamic assumption, where the enthalpy of hydration of three molecules of similar size and
charge are defined as equal, enabling determination of other ions from the lattice enthalpy and
heats of solution of salts with tetraphenyl ions and suitable counterions [217]:

ΔhydH
o
[
(C6H5)4As+

]
= ΔhydH

o
[
(C6H5)4P+

]
= ΔhydH

o
[
B (C6H5)−

4

]
(B.56)

So, in order to convert between normal the aqueous standard state and the ideal gas standard
state, it is necessary to apply the following correction at 25◦C (where z is the charge of the ion:

ΔfH
ig
Mz︸ ︷︷ ︸

Idealgas

+ ΔhydH
aq
Mz︸ ︷︷ ︸

Truehyd.energy

= ΔfH
aq
Mz︸ ︷︷ ︸

Conventional
AqueousS.S.

+z × ΔfH
aq
H+︸ ︷︷ ︸

Trueformation
enthalpyofH+

(B.57)

When the true hydration energy is available, the conventional standard state formation enthalpy
can be calculated as shown in Table B.11. Good agreement with the values presented by K.
Thomsen for is observed all ions but sulphate. If the 2nd ionization energy is back-calculated
from the conventional standard state, EA

(
SO−

4 → SO−−
4

)
= −0.1eV is obtained, and this value

is significantly less than -1.6eV obtained from quantum chemical calculations [220]. By using
the back-calculated value, a Born radius rBorn = 5.76Åcan be calculated, and this is closer to
the crystallographic radius. The aqueous standard state entropy of the different components
was investigated by Marcus [217]. By using measured values for the absolute entropy of the
hydrogen ion in the aqueous standard state, Marcus [217] recalculated the standard state using
Eq. (B.58).

SoMz(g)︸ ︷︷ ︸
Idealgas

+ ΔhydS
o
Mz︸ ︷︷ ︸

Hydration
entropy

= SoMz(aq)︸ ︷︷ ︸
Conventional
AqueousS.S.

+z SoH+(aq)︸ ︷︷ ︸
Absolute

entropyofH+

(B.58)

The absolute entropy of the hydrogen ion in water was calculated from various methods and
the recommended value was set to −22.2 ± 1.2 J

mol×K . Using this value and the aqueous standard
state entropies shown in Table B.3 Marcus [217] calculated the entropy of hydration.
The Gibbs energy of formation in the aqueous phase was analyzed by Marcus [216], who also
used a Born-type model for calculation of the hydration free energy. The Gibbs energy of
formations are related using Eq. (B.59):

ΔfG
ig
Mz︸ ︷︷ ︸

Idealgas

+ ΔhydGMz︸ ︷︷ ︸
Freeenergyof

hydration

= ΔfG
aq
Mz︸ ︷︷ ︸

Conventional
AqueousS.S.

+z ΔfG
aq
H+︸ ︷︷ ︸

Absoluteformationfree
energyofH+(aq)

(B.59)

The Gibbs energy of hydration can be calculated from the e-CPA from the change in Gibbs en-
ergy at infinite dilution from Eq. (B.32). In order for the definition of the aqueous heat capacity
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Ion ΔfH
ig

[kJ/mol]
ΔhydH

ig

[kJ/mol]
ΔfH

aq

[kJ/mol]
ΔfH

aq,conv

[kJ/mol]
ΔfH

aq,conv

(K. Thom-
sen)

H+ 1530.1 -1103 427.05 0
Li+ 679.55 -531 148.55 -278.5 -278.49
Na+ 603.34 -416 187.34 -239.71 -240.12
K+ 507.85 -334 173.84 -253.21 -252.38
Mg++ 2336 -1949 386.97 -467.13 -466.85
Ca++ 1912.9 -1602 310.9 -543.2 -542.83
F- -248.87 -510 -758.77 -331.72 -333.051
Cl- -227.29 -367 -594.3 -167.24 -167.159
SO4- -737.8±12
SO4– -574.7±18 -1035 -1609.7 -755.64 -909.27
NO3- -306.16 -325 -631.17 -204.11 -207.36
OH- -139.02 -520 -659.01 -231.96 -230.243

Table B.11: Calculation of conventional standard state aqueous formation enthalpy from the ideal gas
enthalpy and the heat of hydration. Ideal gas formation enthalpies were taken from Table
B.10. Hydration energies were taken from Marcus [214]

of the hydrogen ion to be zero at all temperatures, the heat capacity must be compensated in
a similar way. The aqueous state heat capacity may be calculated using:

Cigp,Mz︸ ︷︷ ︸
Idealgas

+ ΔhydC
ig
p,Mz︸ ︷︷ ︸

Hydrationheat
capacity

= Caqp,Mz︸ ︷︷ ︸
Conventional
AqueousS.S.

+z Caqp,H+︸ ︷︷ ︸
Absoluteheat

capacityofH+(aq)

(B.60)

Eq. (B.60) has several important implications for the heat capacities of aqueous electrolytes.
By isolating the conventional heat capacity, it is evident that the aqueous standard state heat
capacity is given by Eq. (B.61):

Caqp,Mz = Cigp,Mz + ΔhydCp,Mz − z × Caqp,H+ (B.61)

So when the heat capacity is correlated using the functional form given by Eq. (B.9), this
includes all of the above contributions; the ideal gas contribution (which is fairly constant), the
hydration contribution, as well as the contribution from the true heat capacity of the hydrogen
ion (that is, ideal gas + hydration). While this is possible to do when data is available, it
is very difficult to predict the values going into the correlation as it contains many different
contributions of different signs, which was also evident from the behaviour shown in Figure B.2.
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Appendix C

Computational Aspects

This chapter discusses the implementation of the e-CPA equation of state and includes details
on the derivations and the computational aspects.

C.1 Unconstrained Minimization of Helmholtz Energy for the

Implicit MSA

This work presents an alternative method based on an unconstrained minimization of the
Helmholtz energy, as shown in (C.1):

minΓQ =
V Γ3

3π
− 1
kBT

V e2

4πεrε0

N∑
i

ρizi

[
Γzi + ησi
1 + σiΓ

]
(C.1)

At the solution, the gradient of Eq. (C.1) is zero, meaning that Eq. (4.28) is fulfilled. This
simultaneously fulfills the MSA closure equation given by Eq. (4.22). The initial estimate
is generated based on assuming Ni in Eq. (4.22), and subsequently minimize Eq. (C.1) by
converging the iterative Newton scheme shown in Eq. (C.2) within a specified absolute or
relative tolerance on Γ.

Γ(k+1) = Γ(k) −
(
∂Q

∂Γ

)
V,T,n

(
∂2Q

∂Γ2

)−1

V,T,n

(C.2)

From the solution of Eq. (C.1) it is simple to obtain the first and second order derivatives of
MSA against any variable a or b, as shown in Eqs. (C.3)-(C.4):

∂

∂a

(
AMSA

RT

)
T,V,n

=
∂

∂a
(Q)T,V,n,Γ +

∂

∂Γ
(Q)T,V,n,Γ

(
∂Γ
∂a

)
T,V,n

=
∂

∂a
(Q)T,V,n,Γ (C.3)

∂2

∂a∂b

(
AMSA

RT

)
T,V,n

=

(
∂2Q

∂a∂b

)
T,V,n,Γ

+

(
∂2Q

∂Γ∂a

)
T,V,n,Γ

(
∂Γ
∂b

)
T,V,n

(C.4)

The sensitivity of Γ wrt. b can be obtained using a linearization of the gradient at the solution
as shown in Eq. (C.5):(

∂Q

∂Γ

)
V,T,n

=
(
∂Q

∂Γ

)
V,T,n

+

(
∂2Q

∂Γ2

)
V,T,n

(
∂Γ
∂b

)
= 0 (C.5)

The MSA equations are then solved using the following scheme:

• Calculate the initial estimate from assuming Ni = 0 in Eq. (4.22)
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• Perform three damped successive substitution steps using Eq. (4.22)

• Set the maximum value of Γ from the relation (2Γ)2 ≤ κ2

• Solve the iterative Newton scheme from Eq. (C.2) until a reasonable convergence is
obtained
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C.2 Derivation of the Multicomponent Onsager-Kirkwood

Equation

The equation for the dielectric constant of multi-component mixtures with association (Eq.
(5.4)) was presented by by Hasted (1972) [154]. In this section the equation will be derived
following the procedure by Buckingham (1956) [153].

The investigated system consists of a large sphere of homogeneous isotropic material with the
relative static permittivity εr that is exposed to an uniform electrical field E0e, where E0 is a
measure of the strength and e is a unit vector in the direction of the field. The static permittivity
is calculated from Eq. (C.6):

εr − 1
εr + 2

=
1

3ε0V

(
∂

∂E0
〈M · e〉

)
E0=0

(C.6)

M constitutes the sum of the total molecular electrical moments given by Eq. (C.7)

M =
∑
i

mi (C.7)

To avoid the effect of the electrical field on the derivative is taken at the limit where E0 = 0.
The property 〈M · e〉 relates the mean moment of a small macroscopic sphere with volume V
at the center of the large sample. The statistical mechanical average over all configurations τ
indicated by the brackets is defined by Eq. (C.8):

〈X〉 =

∫
X exp (−βU (τ,E0)) dτ∫
exp (−βU (τ,E0)) dτ

(C.8)

Where U (τ,E0) is the total potential energy of the system for configuration τ subject to the
external field strength E0. It is related through Eq. (C.9):

∂U (τ,E0)
∂E0

= −M (τ,E0) · e (C.9)

Where M is the electrical moment of the large sphere at the configurations τ .Insertion of Eq.
(C.8) into Eq. (C.6) yields Eq. (C.10):

εr − 1
εr + 2

=
1

3ε0V

[〈
∂M · e

∂E0

〉
+

1
3kBT

〈M · M〉
]

(C.10)

The term
〈
∂M·e
∂E0

〉
may be related to the mean polarizability of the inner sphere and can be

related to the high-frequency dielectric constant, such that Eq. (C.10) may be rewritten as Eq.
(C.11):

εr − 1
εr + 2

− ε∞ − 1
ε∞ + 2

=
〈M · M〉
9ε0kBTV

(C.11)

If the central sphere had been in a vacuum instead of in the interior of a larger sphere Eq.
(C.11) may be written as Eq. (C.12):

εr − 1
εr + 2

− ε∞ − 1
ε∞ + 2

=

〈
M2
〉

0

9ε0kBTV
(C.12)

Eq. (C.12) was also obtained by [397]. It is possible to expand
〈
M2
〉

0 into the powers of the
molecular polarizabilities. If the total electrical moment is given by the sum of the gas moment
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and the induced moment, it may be shown that mi = μ0i + m′
i , yielding the expansion in Eq.

(C.13):

〈
M2
〉

0
=
∑
i

〈(
μ0i + m′

i
) · M

〉
0

=
∑
i

〈μ0i · M〉0 +
∑
i

∑
j

〈
μ0i · m′

j
〉

0 +
∑
i

∑
j

〈
m′

i · m′
j
〉

0

(C.13)

When all molecules are of the same kind, Eq. (C.13) can be transformed into Eq. (C.14):〈
M2
〉

0
= N〈μ01 · M〉0 +N

〈
μ01 · M′

〉
0 +O

(
α2

0

)
(C.14)

Where the error is in the order of the square of the molecular polarizability. 〈μ01 · M〉0 evaluates
as Eq. (C.15):

〈μ0 · M〉0 =
9εr

(2εr + 1) (εr + 2)
μ0 · m̄ (C.15)

Where m̄1 is the average molecular moment of molecule 1 at fixed positions/orientations.
〈μ01 · M′〉0 becomes Eq. (C.16):

〈
μ0 · M′

〉
0 =

3 (2εr + ε∞)
(2εr + 1) (ε∞ + 2)

μ0m̄ − μ0 · μ0 (C.16)

Inserting Eq. (C.16) into Eq. (C.12) yields Eq. (C.17):

3 (εr − ε∞)
(εr + 2) (ε∞ + 2)

=
N

9kBTV

[
1

(2εr + 1)

[
9εr

(εr + 2)
+

3 (2εr + ε∞)
(ε∞ + 2)

]
μ0 · m̄ − μ0 · μ0

]
(C.17)

Buckingham [153] concludes that a rigorous description of the static permittivity of a polar
fluid requires two interaction moments m̄ and μ̄0. Onsager [150] assumes absence of short-
range directional forces between molecules, and thus μ0 · μ̄0 = μ2

0, and furthermore determines
the total moment from the relation in Eq. (C.18):

m =
(2εr + 1) (ε∞ + 2)

3 (2εr + ε∞)
μ0 (C.18)

Inserting Eq. (C.18) into Eq. (C.16) yields 〈μ0 · M′〉0 = 0. Buckingham[153] notes that Eq.
(C.18) is a good approximation for many liquids but is inaccurate in imperfect gases. Assuming
that 〈μ0 · M′〉0 = 0 is also true for a mixture, Eq. (C.14) can be simplified as:〈

M2
〉

0
=
∑
i

〈μ0i · M〉0 (C.19)

Using Eq. (C.16) Eq. (C.19) is expanded yielding Eq. (C.20):

〈
M2
〉

0
=

9εr
(2εr + 1) (εr + 2)

∑
i

Ni

∑
j

〈μ0,i · mj〉 (C.20)

Additionally, if Eq. (C.18) is introduced (whereby it is assumed that there is no local variation
in ε∞ near the central sphere compared to the medium) into Eq. (C.20), Eq. (C.21) is obtained:

〈
M2
〉

0
=

3εr
(2εr + ε∞)

(ε∞ + 2)
(εr + 2)

∑
i

Ni

∑
j

〈μ0,i · μ0,j〉 (C.21)
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Introducing Eq. (C.21) into Eq. (C.12) yields a multi-component version of the Onsager
equation:

(εr − ε∞) (2εr + ε∞)

εr(ε∞ + 2)2 =
1

9ε0kBTV

∑
i

Ni

∑
j

〈μ0,i · μ0,j〉 (C.22)

Eq. (C.22) is equivalent to Eq.(C.23), where μ′
0,j is introduced as the concentration of all

surrounding molecules:

(εr − ε∞) (2εr + ε∞)

εr(ε∞ + 2)2 =
1

9ε0kBTV

∑
i

Ni

⎛
⎝μ2

i,0 +
∑
j

〈
μ0,i · μ′

0,j

〉⎞⎠ (C.23)

From which it is trivial to deduce the g-factor shown in Eq. (5.11) p. (5.11).
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C.3 Derivation of Dipolar Projections

While the problem of molecular geometry may be considered trivial, the number of different
results for the same configuration found in literature suggests that it is important to show a
detailed description of the procedure used to determine the bonding angles in this work. This
section shows the general method used to determine the tetrahedral bonding angles in this
work, and furthermore includes examples on how this is done in practice for different groups
of molecules. The treatment builds on the work by Tripathy and De (2008)[400]. cos γ can
be calculated from the projection of the dipole moment of a de-central molecule μD onto the
central molecule μC using Eq. (C.24):

〈cos γ〉 =
〈μC · μD〉
μCμD

(C.24)

If free rotation is assumed around the hydrogen bond, Eq. (C.24) in terms of the dipole moment
in the direction of the hydrogen-bond μH towards the other molecule:

〈cos γ〉 =
μH · μD
μCμD

(C.25)

It becomes useful to define the dipole moment of the central molecule may be determined from
the two-dimensional molecular geometry around a central oxygen atom using Eq. (C.26):

μC = μOHδOH + μRδOR (C.26)

In which δOH = (0, 1) and δOR = (sinϕC , cosϕC). The dipole moment of the central molecule
(μC) is calculated from the identity shown in Eq. (C.27):

μ2
C = μ2

OH + μ2
OR + 2μOHμOR cosϕC (C.27)

The projected dipole moment in the direction of the hydrogen bond δH becomes μH = μOH +
μOR cosϕC . The dipole moment of the hydrogen bonded molecule can then be defined based
on the three-dimensional geometry around a central oxygen atom from Eq. (C.28):

μD = μOHδOH + μORδOR (C.28)

Where the unit vectors are given by δOH = (0, 0, 1) and δOR = (sinϕD, 0, cosϕD). Next, the
direction of the hydrogen bond δH is defined as Eq. (C.29) in the case of tetrahedral hydrogen
bonding, and Eq. (C.30) in the case of planar networks.

δH =

(
−1

2
sin θ,

√
3
4

sin θ, cos θ

)
(C.29)

δH = (− sin θ, 0, cos θ) (C.30)

Using Eq. (C.25) the expressions given by Eq. (C.31) and Eq. (C.32) for the tetrahedral and
planar networks are obtained:

〈cos γ〉 = − μH
μCμD

(
μOH,D cos θ + μOR,D

(
cos θ cosϕD − 1

2
sin θ sinϕD

))
(C.31)

〈cos γ〉 = − μH
μCμD

(μOH,D cos θ + μOR,D (cos θ cosϕD − sin θ sinϕD)) (C.32)

Where μH = μOH,C + μOR,C cosϕC . Eq. (C.33) and (C.34) may be used for pure components
as well as mixtures, and are valid for angles between proton donors and proton acceptors, and
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vice versa. For the tetrahedral network, the angle θ = 109.47◦ is used. For the planar network,
the angle θ = 120◦ is used.

〈cos γ〉 = −μOH + μOR cosϕ
μCμD

(
μOH cos θ + μOR

(
cos θ cosϕ− 1

2
sin θ sinϕ

))
(C.33)

〈cos γ〉 = −μOH + μOR cosϕ
μCμD

(μOH cos θ + μOR (cos θ cosϕ− sin θ sinϕ)) (C.34)
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C.4 Volume Root Solver

The task of the volume root solver is to determine a volume, where the pressure calculated from
the equation of state equals the specified pressure. A simple algorithm is to set up the objective
function shown in Eq. (C.60):

Q1 = P (V ) − Pspec = 0 (C.35)

A Newton-Rhapson scheme may be used to find the root from Eq.(C.36)

V (k+1) = V (k) −Q1/Q
′
1 (C.36)

Once the volume matches the pressure, the compressibility factor and the fugacity coefficients
can be calculated. Unfortunately, the simple Newton scheme shown in Eq. (C.36) will be able
to converge to either one of the three real roots that exists below the critical temperature as
shown in Figure C.1 for an example solution near the critical point of methane. In order to

Figure C.1: Pressure as a function of the reduced density for methane at 190K with pressure specified
at 4000Pa (in the region where a vapor phase exists). The maximum pressure where a
vapor phase can exist is named Pvap and the minimum pressure where a liquid phase exists
at is named Pliq.

provide reliable physical properties at all possible conditions to the process simulator, robust
numerical methods and algorithms for solving for the site fractions and volume roots must be
developed. However, the algorithms must also be computationally efficient, as they represent
the innermost loop in the process flow-sheet simulation. At any given pressure the equation of
state may return 1 or 3 volume roots (some EoS may yield even more (unphysical) volume roots,
but here focus is on the CPA EoS). Above the critical point only a single volume root is present.

The volume root solver must be able to handle requests for the vapor and liquid root in all
regions of the diagram. It is expected that the volume root solver to have the behavior sum-
marized in Table C.1:

While v is the natural variable used for the volume root search, it may be advantageous to
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Temperature T < Tc T > Tc
Pressure / Request Possible roots

P > Pvap Liquid root
Supercritical vaporPvap > P > Pliq Vapor, liquid, and unstable root

P < Pliq Vapor root

Table C.1: Expected volume root solver behavior. MT = 0 will always return the volume root with
minimum Gibbs energy.

use the variable X = b/v, as it limits the search space from 0 (gas) to 1 (liquid). Figure C.2
compares the convergence behavior using different objective functions (Eqs. (C.35)-(C.38)) in
terms of average no. of iterations to find a root starting the search from the vapor or liquid side
of ethane.

Q2 = (1 −X)Q1 = 0 (C.37)

minX
G

RT
=

A

RT
+
P specV

RT
⇒ Q3 =

(
∂G

∂X

)
= − B

X2

(
∂G

∂V

)
= −BQ1

X2
= 0 (C.38)

The objective function Q2 yields a less steep increase in the liquid side of the objective function

Figure C.2: Average no. of iterations from 100000 calculations for ethane from T= 10-1000K, P =
10Pa-100kbar

which improves the convergence behavior. The Newton directions taken with Eq. C.35 and Eq.
(C.37) are shown in Eq. (C.39) and Eq. (C.40), respectively:

ΔX1 = − Q1

Q′
1

(C.39)

ΔX2 = − (1 −X)Q1

(1 −X)Q′
1 −Q1

(C.40)

Note that the sign of the two directions are similar, except if (1 −X)Q′
1 < Q1. In that case,

the algorithm should revert to the original Newton step. In order to identify the vapor or
a liquid phase, the path from the initial estimate being either a vapor or a liquid is used.
The algorithm attempts to determine both roots when a liquid is requested, and if only one
root can be identified, it is assumed to be the supercritical vapor. Additionally, it is checked
whether ∂P

∂V > 0 and if so, the bounds are updated accordingly (Xmax = X for vapor search
and Xmin = X for liquid search). The calculated pressure for the vapor-side of a system
containing ethane, ethylene glycol and water is shown in Figure C.4. The maximum pressure
Pvap = 10.99732307 bar is slightly less than 11 bars, and this algorithm does indeed fail to
find a vapor root when the pressure is 0.02 Pa higher than the specified pressure. This gives us
confidence that the algorithm will return robust results.
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Figure C.3: Overview of the volume root solver used in e-CPA
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Figure C.4: Calculated pressure for an ethane (50%)-ethylene glycol(3.4%)-water(46.6%) system at
10◦C
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C.5 Apparent Components Approach

The Helmholtz free energy can be calculated at the true equilibrium composition n (ion-based)
and the apparent composition e (salt-based) (C.41):

A (T, V,n) = A (T, V, e) (C.41)

The chemical potential of apparent components are given by Eq. (C.42):

μappi =
(
∂A

∂ei

)
=
∑
j

(
∂nj
∂ei

)(
∂A

∂nj

)
=
∑
j

vij

(
∂A

∂nj

)
(C.42)

Where vij is the stoichiometric composition of ion j in salt i. The chemical potential consists of
the standard state chemical potential and the activity of the molecule as shown in Eq. (C.43):

μi (T, P ) =
(
∂A

∂ni

)
= μi (T, P0) +RT ln ai (C.43)

The standard state chemical potential of the fully dissociated apparent components is defined
as Eq. C.44:

μi,app ≡
∑
j

vijμj (C.44)

And thus, the apparent activity can be calculated from Eq. (C.45):

ln ai,app =
∑
j

vij ln aj (C.45)

It is evident that when using the ideal gas reference state, Eq. (C.46) can be used to calculate
the fugacity coefficient:

ln ϕ̂app
i = − ln

xapp
i P

P0
+
∑
j

vij ln
xjϕ̂jP

P0
(C.46)

The derivatives of Eq. (C.46) are calculated from the chain rule:(
∂ ln ϕ̂app

i

∂P

)
= − 1

P
+
∑
j

vij
P

+
∑
j

vij

(
∂ ln ϕ̂j
∂P

)
(C.47)

(
∂ ln ϕ̂app

i

∂T

)
=
∑
j

vij

(
∂ ln ϕ̂j
∂T

)
(C.48)

(
∂ ln ϕ̂app

i

∂ek

)
= −

(
∂ ln xapp

i

∂ek

)
+
∑
j

vij

(
∂ lnxj
∂ek

)
+
∑
j

vij

(
∂ ln ϕ̂j
∂ek

)
(C.49)

xapp
i Apparent mole fraction xappi = ei/eT

Where the derivative of the apparent composition is calculated from the total no. of moles
eT =

∑
i eiusing Eq. (C.50):(
∂ ln xapp

i

∂ek

)
=
δik
ek

− 1
eT

(C.50)
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The true composition is calculated as Eq. (C.51) from the stoichiometric factors vij and the
total true composition nT =

∑
j

∑
i
vijei and its derivative wrt. apparent composition is given by

Eq. (C.52):

xi =

∑
i
vijei

nT
(C.51)

(
∂ lnxi
∂ek

)
=
∑
j

(
∂nj
∂ek

)(
∂ lnxi
∂nj

)
=
vki
ni

− 1
nT

∑
j

vkj (C.52)

And thus, the second order compositional derivatives of the fugacity coefficients are given by
Eq. (C.53) :(

∂ ln ϕ̂app
i

∂ek

)
=

1
eT

− δik
ek

+
∑
j

vij

(
δik
ek

− vkj
nT

)
+
∑
j

∑
l

vijvkl

(
∂ ln ϕ̂j
∂nl

)
(C.53)
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C.6 Implementation of Generalized Cubic EoS

The Helmholtz energy for the general Cubic EoS may be written as:

ACubic

RT
= −nt ln (1 − β) +

D

ς2 − ς1
ln
(

1 + ς2β

1 + ς1β

)
(C.54)

The function β (V,n) = B/V determines the reduced density whereas the function D =
D (T,n) = RnTΓ is the attractive energy. The derivatives of beta are given by:

β =
B

V
βV = − β

V
βV V = −2βV

V
βi =

bi
V
βiV = −βi

V

The Huron-Vidal/NRTL mixing rule is given by Eq. (C.55):

a

b
=
∑
i

xi
ai
bi

− gE,∞

h (1)
(C.55)

Where h (β) is given by Eq. (C.56):

h (β) =
1

δ2 − δ1
ln
(

1 + ς2β

1 + ς1β

)
(C.56)

From the Huron-Vidal/NRTL mixing rule Eq. (C.57) is used to calculate the excess Gibbs
energy:

gE,∞

RT
=
∑
i

xi

∑
j
xjvj exp

(
−αjiΔUji

RT

)
ΔUji

RT∑
j
xjvj exp

(
−αjiΔUji

RT

) (C.57)

Where the volume of a molecule vi is typically set equal to the co-volume parameter, bi. Note
that the classical mixing rule for a as shown in Eq. (C.58) are recovered if the following values
for the parameters are used:

αji = 0Uii =
ai
bi
h (1)Uji =

(
2ai
bi

− aji
bj

)
h (1)

ΔUji = Uji − Uii =

(
ai
bi

− aji
bj

)
h (1) aij =

√
aiaj (1 − kij)

a

b
=
∑
i

xi
ai
bi

− 1
b

∑
i

xi

(
ai
bi

)∑
j

xjbj +
1
b

∑
i

xi
∑
j

xjaji =
1
b

∑
i

xi
∑
j

xjaji (C.58)

Note that it is also possible to let α = ΔUij = ΔUji = 0, in which case the so-called a/b mixing
rule shown in Eq. (C.59) is obtained. This mixing rule which has been shown to work well for
athermal mixtures [1]:

a

b
=
∑
i

xi
ai
bi

(C.59)
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C.7 Site Fraction Solver

When the site mole count as mj = φijni is introduced (where φij is the repeat factor of site j
on component i), the association term may be written as a constrained optimization problem:

minΞ
Arassoc

RT
=
∑
i

mi

(
ln Ξi − 1

2
Ξi +

1
2

)
(C.60)

s.t.
1
Ξi

= 1 +
1
V

∑
j

MjΞjΔij (C.61)

Mi [mol] Moles of the sites of type i
Ξi Fraction of site i which is not bonded to any other sites
Δij Association strength between component i and j

The Michelsen Q-function [321, 322] may then be derived by using the Wolfe Dual transform
[389, p. 347]:

max
Ξ,λ

L (Ξ, λ) = f (Ξ) − λT c (Ξ)

s.t.
∂L
∂Ξi

= 0, λi ≥ 0
(C.62)

Using Eq. (C.62) the Lagrangian for Eq. (C.60) and (C.61) in Eq. (C.63) is obtained:

L (Ξ, λ) =
∑
i

Mi

(
ln Ξi −

(
1
2

+ λ

)
Ξi +

(
1
2

+ λ

))
− λ

V

∑
i

∑
j

MiMjΞiΞjΔij (C.63)

The derivative of the Lagrangian wrt. site fractions Ξi is obtained in Eq. (C.64)

∂L
∂Ξi

= Mi

(
1
Ξi

−
(

1
2

+ λ

))
− 2λMi

V

∑
j

MjΞjΔ
ij = 0 (C.64)

Using the constraint in Eq. (C.61) leads to Eq. (C.65):(
∂L
∂Ξi

)
= Mi

(
1 − 2λ

Ξi
−
(

1
2

+ λ− 2λ
))

= 0 (C.65)

It is evident that above equation is satisfied when λ = 1/2. It is therefore possible to formulate
the equivalent maximization problem as Eq. (C.66)

max
Ξ

Q (Ξ) = L
(

Ξ, λ =
1
2

)
=
∑
i

Mi (ln Ξi − Ξi + 1) − 1
2V

∑
i

∑
j

MiMjΞiΞjΔ
ij (C.66)

At the solution, Ξ satisfies Eq. (C.61), and Eq. (C.66) reduces to Eq. (C.60). In order to
make a concice implementation in FORTRAN, it is noted that it is advantageous to define the
function h(V ) as well as matrix K as shown in Eq. (C.67):

h (V,n) =
g (V,n)
V

Kij = MiMjvij

[
exp

(
εij
kBT

)
− 1
]

(C.67)

Note that the matrix K only changes when the temperature or the composition changes, while
h changes when volume or compositon changes. Figure C.5 illustrates how the functions for the
association term are evaluated in the fugacity calculation. The function h(V, n) is recalculated
During each iteration of the volume root solver, whereas K is calculated before entering the
volume root solver. This minimizes the number of calculations required in comparison to the
Δij matrix, which would need to be recalculated upon every iteration. During the initial
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Figure C.5: Calculation of K(T,n) and h(V,n) functions and solution of site fractions during fugacity
calculation.

calculation for the volume root solver (where no solution to the site fractions Ξi is available),
the solution procedure is initialized using five steps in a damped direct substitution method
using the damping factor χ = 1/3 [322]:

Ξ(k+1)
i = χΞ(k)

i + (1 − χ)

(
1 +

h

Mi

∑
i

Ξ(k)
i Kij

)−1

(C.68)

Subsequently the Newton scheme shown in Eq. (C.69) is used to solve for the site fractions:

�Ξ(k+1) = �Ξ(k) − �H−1�g (C.69)

The gradient �g is given by:

gi =
(
∂

∂Ξi

Arassoc

RT

)
= Mi

(
1
Ξi

− 1
)

− hΣi (C.70)

Note that Eq. (C.70) is zero at the solution. The Hessian �H is given by Eq. (C.71):

Hij =

(
∂2

∂Ξi∂Ξj

Arassoc

RT

)
= −δijMj

Ξ2
j

− hKij (C.71)

Note that only the diagonal elements in Eq. (C.71) will change during the iterations. At the
solution, Eq. (C.71) can be approximated as Eq. (C.72) using Eq. (C.61):

H̃ij =

(
∂2

∂Ξi∂Ξj

Arassoc

RT

)
= −δij 1

Ξj
(Mj + hΣi) − hKij (C.72)

It is possible to show that Eq. (C.72) is negative definite [182] and therefore that the convergence
of the Newton solver is guaranteed, regardless of the quality of the initial estimate for the site
fractions. The matrix �A in Eq. (C.73) is introduced to avoid updating off-diagonal elements:

H−1 =
(
hAij

)−1 (C.73)
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The diagonal elements of the A matrix are then �Aii = −Ξ−1
i

(
h−1Mi + Σi

)
. From here, the

Newton step can be calculated from Eq. (C.74):

�ΔΞ = − �̃H
−1
�g = �A−1�b (C.74)

In which �b = h−1�g. The matrix �A is inverted using LDL defactorization. The next step can be
calculated using a simple line search to calculate the next step:

�Ξ(k+1) = �Ξ(k) + α �ΔΞ (C.75)

The full Newton step (α = 1) is usually taken; otherwise the value of α that ensures that
Ξ

(k+1)
i > 0.1Ξ

(k)
i is used.

C.7.0.2 Sensitivity of Helmholtz Energy to Solution of Site Fractions

In order to evaluate the sensitivity of the Helmholtz energy and its derivatives to the solution
of the site fractions Ξ, four possible versions of the association term were implemented. It was
noted that by assuming that the gradient g = 0, some of the derivatives can be simplified, and
these simplifications were introduced in case B and D.

• A) Derivatives based on Eq. (C.60)

• B) Derivatives based on Eq. (C.60) assuming zero gradient g = 0

• C) Derivatives based on Eq. (C.66)

• D) Derivatives based on Eq. (C.66) assuming zero gradient g = 0

The calculation is performed for 4 components with 10 sites at random conditions and determine
a reference solution for the site fractions by using a very strict tolerance close to machine
precision |ΔΞ| < 10−16. Subsequently, the tolerance was changed to |ΔΞ| < 1, i.e. that only
one Newton step will betaken after initializing with five successive substitutions and compare
the differences in the Helmholtz energy and their derivatives. The results are summarized in
Figure C.6-C.9 from which it is evident that model D is the optimal implementation, i.e. to use
the Michelsen Q-function Eq. (C.66) and assume a gradient of 0. The reason for this is that the
original (C.60) requires first order derivatives in site fractions (e.g. ∂Ξi/∂V ), which do not have
a sufficiently high accuracy when the system is far from the solution - the Michelsen Q-function
does not require this, and by furthermore assuming that the gradient is zero, it was observed
that better correspondence with the derivatives of the true Helmholtz energy is obtained.
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C.7. Site Fraction Solver 230

Figure C.6: Mean relative deviation in
Helmholtz energy. Models are
summarized on p. 229.

Figure C.7: Mean relative deviation in vol-
ume derivative of Helmholtz en-
ergy. Models are summarized on
p. 229.

Figure C.8: Mean relative deviation in tem-
perature derivative of Helmholtz
energy. Models are summarized
on p. 229.

Figure C.9: Mean relative deviation in
compositional derivative of
Helmholtz energy. Models are
summarized on p. 229.
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C.8 Calculation of Dielectric Constant

The static permittivity is evaluated from the solution of Eq. (5.4) p. 82 which is a 2nd degree
polynomial in εr. The root with εr > 1is given by Eq. (C.76):

εr =
1
4

(
ε∞ + Γ +

√
(ε∞ + Γ)2 + 8ε2

∞

)
(C.76)

Where the function Γ is a measure of the dipolar character of the fluid (shown in Eq. (C.77):

Γ =
1

kBT

NA

V ε0

(
ε∞ + 2

3

)2 N∑
i

nigiμ
2
i,0 (C.77)

Note that in the absence of dipolar molecules, εr becomes ε∞. In order to evaluate the deriva-
tives of Γ, it is necessary to calculate the derivatives of the Kirkwood g-factor given by Eq.
(5.47) p. 105. This involves evaluating the probability of association between each component
(from Eq. (5.25), which requires sensitivites of the solution to the site fractions with regards
to temperature, volume, and composition up to second order. These are evaluated using Eq.
(C.78) and Eq. (C.79):

�H�Ξa + �ga = 0 (C.78)

Where �Ξa = ∂�Ξ/∂a and �ga = ∂�g/∂a. Note that Eq. (C.78) can be calculated from the Hessian
at the solution

�gab + �Hb
�Ξa + �Ha

�Ξb + �ΞTa �HΞΞb + �H�Ξab = 0 (C.79)

Where the third order derivatives of the objective function, with regards to the site fractions is
given by Eq. (C.80), which is only non-zero when i = j = k.(

∂Hij

∂Ξk

)
=
δijk2Mk

Ξ3
k

= Dk (C.80)

Using Eq. (C.80), Eq. (C.79) can be simplified as shown in Eq. (C.81):

gab + HbΞa + HaΞb + Ξa ⊗ D ⊗ Ξb + HΞab = 0 (C.81)

Note that Eq. (C.81) requires calculation of the sensitivities Ξ.

The function Λ is defined in Eq. (C.82) to simplify the equations for obtaining the dielec-
tric constant and it’s derivatives:

Λ = ε∞ + EΓ (C.82)

In which Γ is given by Eq. (C.83)

Γ =
N∑
i

nigiμ
2
i,0 (C.83)

AndE is given by Eq. (C.84)

E =
1

kBT

NA

V ε0

(
ε∞ + 2

3

)2

(C.84)

After which the static permittivity can be obtained from Eq. (C.85)

εr =
1
4

(Λ + Y ) (C.85)
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In which the function Y is defined as Eq. (C.86):

Y =
√

Λ2 + 8ε2
∞ (C.86)

The infinite frequency permittivity ε∞ is calculated by isolating ε∞ from the Clausius-Mossotti
Eq. (C.87):

ε∞ =
2
∑
i
nTa0 + 3V ε0

3V ε0 −∑
i
nTa0

(C.87)
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Appendix D

Parameter Estimation

D.1 Results from Second Sequential Parameter Optimization

Table D.1 shows the fitted ion-specific parameters with the volume parameter ν and the ion-
water interaction energy ΔU iw/R = ΔUwi/R = u0

iw, and the predictions for other salts are
shown in Table D.2.

Ion Salt σ b0 ν u0
iw Peneloux RAD γ∗

± [%] RAD Φ [%] AAD Vapp [%]
F– KF 2.63 22.94 3.95* -7922* 23.0* 3.73 2.37 4.35
Cl– HCl 3.19 40.83 15.28* -4490* 11.7* 2.19 1.18 5.38
Br– KBr 3.37 48.40 35.37* -2693* 8.8* 0.54 0.29 0.60
I– KI 3.65 61.18 46.48* -2296* 4.4* 0.88 0.24 1.23

NO–
3 KNO3 3.16 39.80 39.64* -2055* 20.0* 0.27 0.65 0.38

SO—-
4 K2SO4 3.82 70.03 85.23* -1967* 19.4* 1.14 0.93 7.05

Li+ LiCl 2.08 11.35 11.35* 2319* -51.2* 10.6 5.01 1.7
Na+ NaCl 2.36 16.49 15.66* 3431* -64.2* 1.34 0.88 1.7
K+ KCl 2.78 27.62 27.62 2754* -71.0* 0.83 0.49 1.0
Rb+ RbCl 2.89 30.4 40.34* 2139* -69.7* 0.51 0.45 0.9
Cs+ CsCl 3.14 39.01 53.40* 1781* -72.9* 1.97 2.54 1.7

Mg++ MgCl2 2.09 11.51 11.51* 4105* -98.2* 10.7 6.18 3.9
Ca++ CaCl2 2.42 17.92 17.92* 4673* -104.2* 9.65 6.59 6.2
Sr++ SrCl2 2.64 23.20 20.41* 5144* -122.7 * 4.45 3.21 4.0
Ba++ BaCl2 3.00 34.05 34.13* 4652* -134.4* 5.35 2.36 1.8

Average 3.61 2.22 2.8

Table D.1: Parameters fitted to data up to solubility limit at 25◦C. Note that ν0 for K+ was set to b0,
as the correspondence with the data was already satisfactory without fitting ν0.
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Salt RAD γ∗
± [%] RAD Φ [%] AAD Vapp [%]

LiBr 56.42 16.6 0.9
LiI 39.2 18.2 1.3

LiNO3 122.5 18.8 2.6
Li2SO4 178.8 65.4 6.3

NaF 3.2 4.14 0.8
NaBr 4.34 3.27 1.8
NaI 8.08 5.06 0.3

NaNO3 4.83 4.94 1.2
K2SO4 4.68 17.1 5.0
RbF 2.13 1.86 1.0
RbBr 3.32 1.55 0.2
RbI 9.3 4.48 0.3

RbNO3 4.5 5.62 0.4
Rb2SO4 19.6 48.5 2.4

CsF 3.24 1.01 0.8
CsBr 2.79 2.32 -
CsI 8.52 4.78 -

CsNO3 6.13 6.67 0.04
Cs2SO4 24.7 64.6 2.1
MgBr2 96.6 20.2 2.0
MgI2 129 25.6 2.5

Mg(NO3)2 20.6 12.4 2.2
MgSO4 - 165 7.5
CaBr2 40.7 17.5 5.1
CaI2 37.7 19.7 0.9

Ca(NO3)2 - 44.4 4.0
CaSO4 14.5 - 6.5
SrBr2 15.4 10.5 1.7
SrI2 15.6 10.3 1.2

Sr(NO3)2 - 36.0 3.9
BaBr2 9.16 2.93 0.5
BaI2 17.1 9.6 1.1

Ba(NO3)2 1.92 5.81 1.5
Average 30.2 21.1 2.2

Table D.2: Predictions using the parameters from Table D.1 at 25◦C.
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D.2 Temperature Dependent Results

The following section presents results for all ions investigated in Chapter 6 using the parameters
from Table 6.11. Results are shown for each cation.
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Figure D.1: Osmotic coefficients of salts containing Hydrogen. Note that HNO3 was not included in
the fit, as it cannot be assumed to be fully dissociated.
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Figure D.2: Mean ionic activity coefficients of salts containing Hydrogen.
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Figure D.3: Apparent molar volume of salts containing Hydrogen.
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Figure D.4: Osmotic coefficients of salts containing Lithium.
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Figure D.5: Mean ionic activity coefficients of salts containing Lithium.
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Figure D.6: Apparent molar volume of salts containing Lithium.
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Figure D.7: Osmotic coefficients of salts containing Sodium.
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Figure D.8: Mean ionic activity coefficients of salts containing Sodium.
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Figure D.9: Apparent molar volume of salts containing Sodium.
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Figure D.10: Osmotic coefficients of salts containing Potassium.
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Figure D.11: Mean ionic activity coefficients of salts containing Potassium.
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Figure D.12: Apparent molar volume of salts containing Potassium.
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Figure D.13: Osmotic coefficients of salts containing Rubidium.
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Figure D.14: Mean ionic activity coefficients of salts containing Rubidium.
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Figure D.15: Apparent molar volume of salts containing Rubidium.
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Figure D.16: Osmotic coefficients of salts containing Cesium.
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Figure D.17: Mean ionic activity coefficients of salts containing Cesium.
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Figure D.18: Apparent molar volume of salts containing Cesium.
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Figure D.19: Osmotic coefficients of salts containing Magnesium.
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Figure D.20: Mean ionic activity coefficients of salts containing Magnesium.
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Figure D.21: Apparent molar volume of salts containing Magnesium.
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Figure D.22: Osmotic coefficients of salts containing Calcium.
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Figure D.23: Mean ionic activity coefficients of salts containing Calcium.
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Figure D.24: Mean ionic activity coefficients of salts containing Calcium.
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Figure D.25: Osmotic coefficients of salts containing Strontium.
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Figure D.26: Mean ionic activity coefficients of salts containing Strontium.
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Figure D.27: Apparent molar volume of salts containing Strontium.
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Figure D.28: Osmotic coefficients of salts containing Barium.
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Figure D.29: Mean ionic activity coefficients of salts containing Barium.
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Figure D.30: Apparent molar volume of salts containing Barium.
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D.3 On Using the Ion Diameter in the Parameterization

In order to reduce the solution space and obtain reasonable physical trends in the ion diameters
the cation diameters are kept fixed in the first round. In the next round, the anion diameters
are kept fixed. In the final round, all diameters are adjusted simultaneously. We use Eq. (6.9)
to calculate b0 from the fitted ion diameter. σ. Optimal parameters are shown in Table D.3
and the results are summarized in Table D.4.

Ion σ b0 ν uiw Peneloux (νw + νi) ΔUiw/R/298.15
[Å] [cm3/mol] [cm3/mol] [K] [cm3/mol] [cm3/mol]

H+ 5.885* 0.0 -5.138* -1899* -0.1* -7.182
Li+ 2.323* 15.81 3.781* -3695* -21.4* -27.27
Na+ 1.721* 6.432 3.068* -1979* -14.8* -14.03
K+ 1.911* 8.808 3.803* -733.4* -11.3* -5.420
Rb+ 3.040* 35.44 4.470* -488.5* -38.0* -3.741
Cs+ 2.938* 31.98 9.160* -37.03 * -25.1* -0.3537

Mg++ 3.462* 52.32 -11.78* -47124* -67.6* -52.08
Ca++ 3.302* 45.42 4.850* -3022* -57.9* -23.61
Sr++ 2.990* 33.70 12.668* -1759* -57.6* -19.29
Ba++ 2.924* 31.54 51.376* 80.60* -63.0* 2.142

F– 2.332* 15.99 7.142* -3673* -0.4* -32.09
Cl– 3.165* 40.00 14.959* -719.8* -20.2* -8.558
Br– 3.633* 60.47 16.234* -1128* -35.9* -14.00
I– 3.867* 72.92 20.656* -1363* -40.5* -19.33

NO–
3 2.544* 20.77 23.200* 490.8* 8.1* 7.467

SO4−– 5.044* 161.9 -7.439* -11798* -130.9* -33.68

Table D.3: e-CPA parameters for different ions when all parameters were optimized simultaneously.
Final column shows that there is still a reasonable physical trend in the effective energy
parameter. The volume parameter increases with decreasing hydration. The diameters for
H+ and Li+ may indicate strongly bonded water or just reflect the fact that these ions are
typically very soluble and gets a slightly unphysical value to improve correspondence over
the entire interval.

D.4 Temperature Dependence

Page 266 of 270
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Salt RAD γ∗
± Np. RAD Φ Np. AAD Vapp Np. mmax

[%] γ∗
± [%] Φ [cm3/mol] Vapp

NaF 2.28 27 2.69 24 4.1 2 1.0
KF 3.25 41 1.62 29 1.3 48 17.5
RbF 5.78 24 2.82 17 6.4 13 3.5
CsF 5.20 24 1.53 17 6.2 13 3.5

HCl 4.76 88 2.10 64 3.3 118 16
LiCl 4.40 59 2.65 161 1.0 75 20
NaCl 1.94 53 1.53 231 1.6 23 6.2
KCl 3.13 63 1.75 114 1.3 19 5.0

RbCl 5.04 32 3.31 88 2.0 30 7.8
CsCl 2.50 63 3.87 217 3.9 44 11.4

MgCl2 4.38 49 2.80 166 6.7 23 6.0
CaCl2 4.09 71 3.83 339 11.5 41 10.5
SrCl2 3.63 42 3.04 92 7.4 8 4.0
BaCl2 5.59 19 2.29 108 4.4 5 1.8

HBr 3.82 51 2.10 27 3.8 32 11
LiBr 5.21 45 4.30 107 1.5 79 20
NaBr 3.99 60 0.77 110 2.1 36 9.5
KBr 3.13 32 1.75 48 1.3 21 5.7
RbBr 3.46 27 2.92 53 3.4 19 5.0
CsBr 0.86 27 1.16 53 5.9 19 5.0

MgBr2 9.65 60 2.63 47 5.1 21 5.6
CaBr2 7.03 61 4.65 69 9.8 35 9.2
SrBr2 4.66 40 3.66 28 7.8 7 2.1
BaBr2 5.08 55 4.90 30 0.9 8 2.4

HI 2.41 33 1.03 42 1.4 39 10
LiI 3.33 33 2.59 64 1.2 11 3.2
NaI 3.49 39 1.27 47 0.7 44 12
KI 3.85 7 2.72 54 1.1 17 4.6
RbI 3.32 27 3.80 53 1.7 19 5.0
CsI 3.92 23 3.17 41 4.3 11 3.0

MgI2 5.61 41 2.10 52 6.5 19 5.0
CaI2 6.55 38 2.46 37 21.3 7 2.0
SrI2 7.26 38 2.09 28 7.8 7 2.0
BaI2 7.91 38 1.31 28 1.2 7 2.0

LiNO3 6.36 43 1.54 128 0.9 79 20
NaNO3 3.11 34 3.03 122 0.5 42 8.3
KNO3 1.04 24 1.98 122 1.1 14 3.8
RbNO3 1.54 26 2.87 50 3.3 17 4.5
CsNO3 2.95 19 3.10 29 6.4 5 1.5

Mg(NO
3
)

2
6.00 13 3.74 146 6.2 19 5.1

Ca(NO
3
)

2
6.16 13 3.11 55 9.1 32 8.4

Sr(NO
3
)

2
6.37 13 3.62 18 3.7 13 4.0

Ba(NO
3
)

2
6.91 10 11.14 6 2.0 1 0.4

Li2SO4 3.18 38 4.40 51 10.4 11 3.2
Na2SO4 1.58 43 0.60 133 8.1 12 4.4
K2SO4 4.44 25 1.02 51 19.0 2 0.8
Rb2SO4 3.34 31 6.01 13 12.1 6 1.8
Cs2SO4 2.89 31 3.98 13 19.5 6 1.8
MgSO4 - - 5.16 70 13.4 10 3.6
CaSO4 17.05 7 - - 49.0 10 0.0152

Average 4.40 2.75 - 5.9

Table D.4: ]
Deviations from experimental data with parameters from Table D.3.
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Ion σ b0 ν u0
iw uTiw Peneloux

[Å] [cm3/mol] [cm3/mol] [K] [cm3/mol]
H+ 5.885 0.0 -5.138 -1899 82.90* -0.1
Li+ 2.323 15.81 3.781 -3695 5.952* -21.4
Na+ 1.721 6.432 3.068 -1979 -23.14* -14.8
K+ 1.911 8.808 3.803 -733.4 -10.46* -11.3
Rb+ 3.040 35.44 4.470 -488.48 -13.69* -38.0
Cs+ 2.938 31.98 9.160 -37.03 -8.178* -25.1

Mg++ 3.462 52.32 -11.78 -47124 -472.4* -67.6
Ca++ 3.302 45.42 4.850 -3022 96.81* -57.9
Sr++ 2.990 33.70 12.67 -1759 11.62* -57.6
Ba++ 2.924 31.54 51.38 80.60 -0.7562* -63.0

F– 2.332 15.99 7.142 -3673 4.802* -0.4
Cl– 3.165 40.00 14.96 -719.8 6.172* -20.2
Br– 3.633 60.47 16.23 -1128 4.989* -35.9
I– 3.867 72.92 20.66 -1363 1.400* -40.5

NO–
3 2.544 20.77 23.20 490.8 -1.263* 8.1

SO4−– 5.044 161.9 -7.439 -11798 34.51* -130.9

Table D.5: Temperature dependence of the e-CPA water-ion interaction parameter. σ, ν, and u0
iw were

all optimized at 298.15K and only uT
iw was optimized to the temperature dependence.

Ion σ b0 ν u0
iw uTiw Peneloux

[Å] [cm3/mol] [cm3/mol] [K] [cm3/mol]
H+ 9.160* 0.0 -0.6883* -6492* -12.62* 18.3*
Li+ 2.768* 26.76 5.775* -2880* 1.277* -16.4*
Na+ 2.237* 14.11 2.849* -1283* -15.00* -4.8*
K+ 2.482* 19.29 1.923* -23.02* -18.18* -4.0*
Rb+ 3.236* 42.74 1.222* -248.4* -28.26* -25.3*
Cs+ 3.070* 36.48 1.203* 84.77* -22.47* -9.1*

Mg++ 3.040* 35.42 4.863* -7567* -2.728* -18.0*
Ca++ 3.374* 48.44 9.947* -2518* 25.00* -28.1*
Sr++ 3.701* 63.94 10.52* -792.4* 19.21* -56.5*
Ba++ 3.843* 71.57 24.79* 1107* -3.447* -69.9*

F– 1.971* 9.662 12.12* -2750* 9.924* -13.8*
Cl– 2.583* 21.74 11.36* -1689* 8.328* -16.9*
Br– 3.202* 41.42 11.27* -2435* 10.51* -31.6*
I– 3.476* 52.99 12.52* -3406* 2.255* -32.5*

NO–
3 2.022* 10.42 20.80* 224.5* 1.431* 2.3*

SO4−– 3.273* 44.22 -5.175* -290.7* -49.06* -47.8*

Table D.6: e-CPA parameters for different ions when all parameters were optimized simultaneously to
data at all temperatures and we use the published ion diameters. Results are summarized
in Table D.8.
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Ion σ b0 ṽi ũ0
iw ũTiw Peneloux

[Å] [cm3/mol] [cm3/mol] [K] [cm3/mol]
H+ 14.18* 0.0 -1.892* -9676* -42.99* 25.3*
Li+ 2.805* 27.84 2.833* -4386* 2.185* -12.1*
Na+ 2.866* 29.70 -0.4768* -2344* -7.00* -16.1*
K+ 2.332* 16.00 0.1235* -472.8* -16.55* 6.2*
Rb+ 3.440* 51.35 1.478* -583.4* -20.02* -30.6*
Cs+ 3.557* 56.77 5.433* 18.44* -5.00* -29.7*

Mg++ 3.560* 56.92 -1.210 * -12396* -20.37* -29.8*
Ca++ 2.650* 23.46 11.69* -3882* -0.9025 * 7.7*
Sr++ 4.178* 91.98 12.91* -779.3* 9.177* -80.1*
Ba++ 3.902* 74.94 41.15* 434.8* 1.360* -62.6*

F– 2.164* 12.78 8.987* -4277* 2.819* -21.4*
Cl– 1.725* 6.477 15.17* -1219* 1.931* -5.7*
Br– 2.758* 26.46 15.14* -1481* -2.283* -21.6*
I– 3.048* 35.78 16.76* -1892* -9.481* -20.8*

NO–
3 1.991* 9.958 16.54* 523.4* -0.4297 * -1.7*

SO4−– 3.493* 53.77 0.2823* -6372* -13.40* -58.8*

Table D.7: e-CPA parameters for different ions when all parameters were optimized simultaneously to
data at all temperatures. Results are summarized in Table D.8.
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Salt RAD [%] γ∗
± Np. RAD [%] Φ Np RAD [%] aw Np. mmax T-range

Table D.5 6.11 γ∗
± D.5 6.11 D.5 6.11

NaF 2.38 (2.40) 3.67 47 2.69 (2.69) 5.82 24 0.15 (0.15) 0.20 8 1.0 269-308
KF 3.25 (3.25) 2.99 41 2.14 (2.15) 2.74 77 0.74 (0.92) 0.97 9 17.5 251-357
RbF 5.78 (5.78) 6.38 24 2.82 (2.82) 2.93 17 - - - 3.5 298.15
CsF 5.20 (5.20) 12.42 24 1.53 (1.53) 6.56 17 - - - 3.5 298.15

HCl 4.35 (7.98) 2.36 229 2.11 (2.11) 1.14 58 2.85 (2.08) 2.16 64 16.0 204-353
LiCl 4.40 (4.40) 4.86 59 2.65 (3.59) 2.69 385 3.30 (4.07) 3.07 106 25.7 207-473
NaCl 3.82 (8.40) 4.18 697 2.53 (2.77) 2.46 891 7.96 (0.80) 0.68 183 8.0 252-473
KCl 2.34 (2.34) 2.15 216 3.18 (3.29) 2.24 282 0.30 (0.31) 0.27 103 8.1 262-445

RbCl 5.04 (5.04) 4.27 32 3.31 (3.31) 2.47 88 0.31 (0.36) 0.24 37 7.8 263-343
CsCl 1.30 (1.32) 0.61 151 4.07 (4.08) 2.28 267 0.92 (0.98) 0.65 36 11.4 264-473

MgCl2 4.38 (4.38) 8.38 49 12.22 (12.92) 4.61 306 1.66 (1.18) 1.66 131 6.0 240-473
CaCl2 14.27 (14.02) 8.09 109 13.07 (24.27) 9.34 253 21.57 (21.25) 17.1 770 25.2 222-473
SrCl2 3.63 (3.63) 3.09 42 2.97 (4.07) 2.74 97 0.91 (3.98) 1.00 41 4.03 267-444
BaCl2 5.59 (5.59) 4.46 19 3.66 (3.89) 3.16 165 0.31 (0.15) 0.21 31 3.02 266-444

HBr 3.03 (3.31) 2.49 78 2.10 (2.10) 1.55 27 - - 27 11.0 298-398
LiBr 5.22 (5.22) 5.13 45 5.33 (4.46) 5.30 182 1.14 (0.40) 1.25 21 20.0 201-373
NaBr 3.93 (4.81) 4.32 156 2.13 (2.71) 1.98 202 0.47 (0.89) 0.54 80 11.6 246-374
KBr 4.13 (4.13) 3.07 32 3.13 (3.15) 3.09 63 0.45 (6.16) 0.49 64 6.2 261-343
RbBr 3.46 (3.46) 2.84 27 2.92 (2.92) 2.29 53 - - - 5.0 298.15
CsBr 0.86 (0.86) 1.28 27 1.16 (1.16) 1.01 53 - - - 5.0 298.15

MgBr2 9.66 (9.66) 9.63 60 4.44 (4.40) 4.89 62 0.90 (0.72) 2.89 13 5.8 230-323
CaBr2 7.04 (7.04) 8.29 61 10.20 (29.2) 7.65 176 4.11 (1.75) 2.11 67 11.1 221-473
SrBr2 4.67 (4.67) 4.10 40 3.66 (3.66) 3.33 28 0.82 (0.36) 0.96 41 3.3 251-343
BaBr2 5.08 (5.08) 4.04 55 5.27 (5.27) 3.77 30 0.59 (0.84) 0.75 48 3.4 254-343

HI 2.41 (2.41) 3.65 33 1.03 (1.03) 1.37 42 - - - 10.0 298.15
LiI 3.33 (3.33) 4.44 23 2.92 (2.92) 2.52 94 3.55 (2.08) 3.07 13 10.1 204-343
NaI 3.49 (3.49) 4.31 49 2.12 (2.69) 2.56 96 0.34 (1.59) 0.60 64 12.0 242-363
KI 3.85 (3.86) 3.84 33 2.72 (2.72) 3.31 54 2.24 (2.74) 2.48 35 5.8 255-298
RbI 3.32 (3.32) 3.16 53 3.80 (3.80) 3.56 - - - - 5.0 298.15
CsI 3.92 (3.92) 4.01 23 3.18 (3.18) 3.43 - - - - 3.0 298.15

MgI2 5.61 (5.61) 8.46 41 2.10 (2.10) 2.67 52 5.33 (4.16) 4.31 5 5.0 226-298
CaI2 6.55 (6.55) 6.43 38 2.41 (2.43) 3.73 38 8.30 (5.73) 7.07 45 6.9 208-343
SrI2 7.26 (7.26) 7.34 38 2.09 (2.09) 1.64 28 0.41 (0.85) 0.64 44 4.2 264-343
BaI2 7.91 (7.91) 6.61 38 1.31 (1.31) 1.52 28 2.01 (1.79) 2.50 19 3.3 240-298

LiNO3 6.36 (6.36) 6.46 43 3.08 (3.31) 3.18 221 2.23 (2.75) 2.21 71 20 273-378
NaNO3 5.46 (5.46) 7.89 34 3.47 (4.12) 2.33 144 1.75 (2.46) 2.36 33 10.8 255-373
KNO3 1.04 (1.04) 0.63 24 2.50 (4.73) 1.37 172 5.06 (5.63) 4.59 21 25.3 270-424
RbNO3 1.54 (1.54) 2.03 26 2.87 (2.87) 1.39 50 - - - 4.5 298.15
CsNO3 2.95 (2.95) 0.87 19 3.10 (3.10) 0.87 29 - - - 1.5 298.15

Mg(NO
3
)

2
6.60 (6.51) 7.79 78 4.31 (4.11) 4.33 174 11.2 (4.11) 5.33 75 14.6 241-413

Ca(NO
3
)

2
7.66 (7.19) 7.28 78 16.59 (21.64) 9.65 114 17.00 (7.78) 6.50 99 22.9 243-424

Sr(NO
3
)

2
7.50 (7.58) 6.16 78 3.62 (3.62) 3.81 18 0.33 (0.17) 0.49 9 4.0 266-318

Ba(NO
3
)

2
8.24 (8.19) 6.03 60 11.15 (11.14) 7.32 6 0.10 (0.10) 0.07 4 0.4 273-318

Li2SO4 3.51 (3.51) 2.69 38 4.73 (4.72) 2.09 57 0.58 (0.42) 3.52 58 3.52 250-298
Na2SO4 3.26 (3.26) 3.03 43 2.75 (3.82) 5.16 216 0.17 (0.20) 0.22 44 4.44 272-398
K2SO4 4.54 (4.53) 1.39 25 1.13 (1.09) 1.15 83 0.03 (0.03) 0.96 30 0.96 272-373
Rb2SO4 3.34 (3.34) 3.52 31 6.01 (6.01) 7.02 13 - - - 1.80 298.15
Cs2SO4 2.89 (2.89) 6.18 31 3.98 (3.98) 11.43 13 - - - 1.80 298.15
MgSO4 - - - 6.57 (38.6) 6.76 131 0.21 (0.30) 0.22 26 5.0 268.1-448
CaSO4 17.06 (17.06) 14.52 7 - - - - - 0.015 298.15

Average 4.95 (5.12) 4.93 3268 4.05 (5.59) 3.68 6293 2.51 (2.51) 2.78 (2.17) 2.16 2025

Table D.8: Deviations from experimental data with parameters from Table 6.11.

293



294



Center for Energy Resources Engineering 

Department of Chemical and 

Biochemical Engineering

Technical University of Denmark

Søltofts Plads, Building 229

DK-2800 Kgs. Lyngby

Denmark

Phone:	 +45 4525 2800

Fax:	 +45 4525 4588

Web: 	 www.cere.dtu.dk

ISBN :	 978-87-93054-40-0


	Bjørn Maribo-Mogensen_978-87-93054-40-0_Bagsiden
	Bjørn Maribo-Mogensen_978-87-93054-40-0_Forsiden


 
 
    
   HistoryItem_V1
   DefineBleed
        
     Range: all pages
     Request: remove bleed info
      

        
     0.0000
     1
     0.0000
     0.0000
     0
    
     0.0000
     Remove
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     0.0000
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1c
     Quite Imposing Plus 2
     1
      

        
     0
     1
     0
     1
      

   1
  

 HistoryList_V1
 qi2base




 
 
    
   HistoryItem_V1
   DefineBleed
        
     Range: all pages
     Request: remove bleed info
      

        
     0.0000
     1
     0.0000
     0.0000
     0
     0.0000
     Remove
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     0.0000
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1c
     Quite Imposing Plus 2
     1
      

        
     0
     1
     0
     1
      

   1
  

    
   HistoryItem_V1
   DefineBleed
        
     Range: all pages
     Request: remove bleed info
      

        
     0.0000
     1
     0.0000
     0.0000
     0
     0.0000
     Remove
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     0.0000
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1c
     Quite Imposing Plus 2
     1
      

        
     0
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   Join2Pages
        
      

        
     1
            
       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1c
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 17.717 x 12.598 inches / 450.0 x 320.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20120202081710
       1275.5906
       SRA3
       Blank
       907.0866
          

     Wide
     1
     0
     No
     705
     346
     None
     Up
     56.6929
     0.0000
            
                
         Both
         1
         AllDoc
         2
              

       CurrentAVDoc
          

     Uniform
     7.0866
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1c
     Quite Imposing Plus 2
     1
      

        
     0
     1
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.693 x 9.449 inches / 170.0 x 240.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20120209131207
       680.3150
       DTU_170x240
       Blank
       481.8898
          

     Tall
     1
     0
     No
     705
     346
    
     None
     Up
     56.6929
     0.0000
            
                
         Both
         1
         AllDoc
         2
              

       CurrentAVDoc
          

     Uniform
     7.0866
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1c
     Quite Imposing Plus 2
     1
      

        
     0
     296
     295
     296
      

   1
  

 HistoryList_V1
 qi2base





