CERE – SEMINAR

Thursday 16 December 2021 09:00 to 10:00 a.m.

"CO2 impact on FeCO3 solubility"

By

Randi Neerup, CERE-Chemical Engineering

Abstract

 $FeCO_3$ is a natural occurring mineral. However, it is highly associated with CO_2 corrosion in industrial processes, which leads to production losses and shutdowns due to maintenance. Besides being associated with corrosion issues $FeCO_3$ is also a related to CO_2 storage.

The CO_2 corrosion initiates as gaseous CO_2 dissolves in aqueous solutions and diffuses to the steel surface. Here it reacts electrochemically with iron. Fe²⁺ is released and reacts with the carbonates in the aqueous solutions to form FeCO₃. Under the right conditions, FeCO₃ precipitates on the steel surface and creates a protective barrier for further corrosion.

Carbonate mineralization occur when CO_2 -charged water is injected into basaltic rock here it promote the dissolution of basalt liberating Ca^{2+} , Mg^{2+} , and Fe^{2+} and precipitation of e.g. FeCO₃ occurs.

Detailed information on the impact of CO_2 on the FeCO₃ solubility and the solubility of FeCO₃ in aqueous solutions containing salts is needed to better predict the CO_2 corrosion and understanding of carbonate mineralization. In this study, the solubility of FeCO₃ is measured as a function of temperature, CO_2 pressure, and salts (NaCl, KCl, CaSO₄, HCl). Preliminary results show that the temperature has little to no impact on the solubility. The FeCO₃ solubility is influenced by CO_2 . Results shows that the solubility increases up to CO_2 pressure of approximately 1.5 bar where a maximum is reached.