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Summary

The thesis addresses the thermodynamics involved in describing the properties of aqueous

solutions of electrolytes and of mixtures with ion exchanging materials. The work uses both

existing and new approaches for the description of these properties and also presents new data

for ion exchange isotherms and adsorption/swelling of several different ion exchange resins in

aqueous electrolyte solutions.

Chapter 1 is a short introduction to the thesis and describes some of the motivation for why

the work has been carried out.

Chapter 2 gives a short introduction to the area of aqueous electrolyte thermodynamics

including the most important definitions for the understanding of the following chapters. The

basic thermodynamic models based on the theory of Debye and Hückel are shortly introduced

and examples of more comprehensive models are given.

Chapter 3 deals with the volumetric properties of aqueous electrolyte solutions. Different

theoretical approaches for description of these properties are discussed. A modification of the

Masson equation combined with Young’s rule based on ion specific parameters is applied to

volumetric data for different mixtures of salts. The model is easily applied to multicomponent

mixtures, and it is shown that the relative errors of the predicted results in both ternary and

quaternary systems are well within the experimental accuracy of the data.

In chapter 4 the phase behavior of aqueous electrolyte solutions is dealt with. The Extended

UNIQUAC model is used for describing the vapor - liquid equilibria, solid - liquid equilibria

and thermal properties of aqueous solutions of electrolytes in the presence of phosphoric and

nitric acid. The model parameters are regressed on the basis of a large amount of experimental

data and there is a good agreement between calculated and experimental data points.

Chapter 5 introduces the basic principles of ion exchange equilibria. The different phenomena

connected with the equilibria between an ion exchanging material and aqueous solutions of

electrolytes are presented. The different theoretical approaches to describing these types of

equilibria are discussed.
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Chapter 6 deals with modeling of ion exchange isotherms using a model treating the ion

exchanger and counter-ions as a solid solution. The approach is very simple and gives only

information about the selectivity of the ion exchanging material. New ion exchange isotherm

data is presented for the H+ - K+ and H+ - Ca++ systems. The approach is applied to both new

data and data found in literature, and the results are reasonable accurate.

Chapter 7 presents new experimental data for the distribution of solvent and ions between an

aqueous solution and several different ion exchange resins. The data is modeled using the

Extended UNIQUAC model for describing the thermodynamic properties of the two aqueous

phases combined with an elastic term taking the elastic properties of the resin structure into

account. The model is able to produce good predictions, and the deviations between model

results and experimental data are all within the experimental error.

Chapter 8 gives a general conclusion of the work completed in this thesis.
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Resumé på dansk

Der mærkes i stigende grad en interesse fra industrien for termodynamiske værktøjer som kan

bruges til beregning samt forudsigelse af de fysiske og kemiske egenskaber af vandige

opløsninger af salte samt i blandinger med ionbyttende materialer. Disse typer systemer

indgår i både den traditionelle kemiske industri, men også i høj grad inden for bioteknologien

hvor mange oprensningsprocesser foregår i vandige opløsninger med en høj saltkoncentration.

En af de store fordele ved udviklingen af præcise termodynamiske værktøjer er, at man ud fra

relativt få eksperimentelle data kan opbygge en model til beskrivelse af hele det relevante

område af parametre. Hermed kan det eksperimentelle arbejde reduceres betragteligt. Især ved

beskrivelse af opløsninger med mange komponenter vil en relevant model medføre en

betydelig reduktion i arbejdet med beskrivelse af de termodynamiske egenskaber af hele

systemet.

Denne afhandling bruger både nye og eksisterende metoder til at beskrive de termodynamiske

egenskaber af de nævnte systemer. De volumetriske egenskaber af de vandige

elektrolytopløsninger bliver i afhandlingen beskrevet vha. en ny model baseret på en

modifikation af Masson ligningen kombineret med Young’s blandingsregel. Til beskrivelse af

damp-væske ligevægte, faststof-væske ligevægte samt termiske egenskaber af blandingerne

bliver The Extended UNIQUAC model brugt. Modellen bliver i afhandlingen udvidet til også

at kunne beskrive ligevægte mellem saltopløsninger og polystyren ionbyttere med forskellig

grad af krydsbinding. Arbejdet viser at man vha. de anvendte modeller kan forudsige både

graden af ionbytning samt den totale absorptionen af ioner og vand i ionbytteren på baggrund

af få datapunkter.





Chapter 1. Introduction
___________________________________________________________________________

� �

1. Introduction

___________________________________________________________________________

A short introduction is given to the thesis and some of the motivation and application of the work addressed in

the thesis are explained. The introduction is very general and a more thorough introduction to the different

subjects and methods is given in the different chapters. In the back of the thesis a list of notation is given which

could hopefully help the reader through the thesis.

___________________________________________________________________________

Aqueous solutions of electrolytes play an important role in both laboratories and in many

industries e.g. the mineral, oil and pharmaceutical industry. In nature electrolytes are

substantial in both geothermal systems and in the biological processes of all living organisms.

There is therefore an increasing interest for the creation of tools for accurate description of the

properties of these types of solutions. During the last decade, great progress has therefore

been made in the development of thermodynamic models for electrolyte solutions. Some of

these works are more or less successful extensions of existing thermodynamic models like the

NRTL, UNIQUAC, SRK and Wilson models, but new equations of states are also under

development.

One of the industries where a growing interest is seen for the application of thermodynamic

models for electrolytes is the fertilizer industry. One example of where the fertilizer industry

lacks a precise tool, is in the calculation of densities. Having a precise model for the density

of different electrolyte solutions would help in designing process tubes and pumps, but a

precise model could also make use of on-line density measurements for determining the

composition of a process stream. However, very few models exist for description of the

volumetric properties of multicomponent electrolyte solutions. The majorities of the existing

models are very complex, involves a high amount of parameters and can only in a few cases

be applied to multicomponent systems. The first part of this thesis therefore deals with a

simple relation for accurately description of these kinds of properties. The intention of the

presented model is to accurately predict the volumetric properties of multicomponent

electrolyte solutions from binary data with the fewest parameters possible.

Another example of where there is a need for improvement, is when calculating solid-liquid

equilibria (SLE). With a tool for prediction of the solubilities of different salts it would for

example be possible to predict at which temperature it would be optimal to run a crystallizer



Chapter 1. Introduction
___________________________________________________________________________

� �

for production of KNO3. However, production of fertilizer salts like KH2PO4 and KNO3 most

often involves highly acidic solutions. At present time no parameters exist for description of

the solubility of multicomponent electrolyte solutions in acidic environments. Therefore, the

second part of the thesis deals with the description of these types of solutions. The Extended

UNIQUAC model is a thermodynamic model developed at the IVC-SEP and has previously

been applied with success to many different water/alcohol – salt systems. The purpose of the

second part of this thesis is therefore to try to apply the Extended UNIQUAC model to the

highly acidic solutions that appears in the production of KH2PO4 and KNO3 salts.

Like in the area of electrolytes a growing interest has developed in the description of the

thermodynamics of ion exchange systems. One of the reasons for this is that in many

instances ion exchange technology can successfully substitute the large-scale industrial

separation/concentration processes that do not satisfy modern ecological standards.

Description of the equilibrium between multi ionic solutions and ion exchanging materials is

essential for the development and optimization of ion exchange processes. However, the

progress in improving the tools for describing these kinds of equilibria has not seen the same

development as for the area of electrolyte solutions. Many new models are to a high extend

empirical and are still based on the first approaches introduced in the early 50’s.

In this thesis one of the ambitions is to apply the knowledge of aqueous electrolyte

thermodynamics to ion exchange systems in hope of gaining a deeper understanding of how

to approach the modeling of ion exchange equilibria. One area, where thermodynamic

modeling could help in designing industrial processes, is in the description of ion exchange

isotherms. The selectivity of one ion over another is very dependent on e.g. the concentration

of the solution. However, when dealing with multicompont solutions, comprehensive

experiments should be performed to investigate the entire range of concentrations. A model

that could accurately predict multicomponent ion exchange selectivities from binary data

would limit the amount of needed experiments enormously. In the latter part of this thesis the

objective is to describe ion exchange isotherms. In this part mainly existing models are used,

but by using the knowledge of aqueous electrolyte thermodynamics developed in the first part

of the thesis, the ambition is to both simplify the approach and to make the modeling more

consistent. In addition new experimental data is measured that could verify the capabilities of

the proposed model.
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Another important aspect of ion exchange equilibria is the absorption of solutes and solution

in the ion exchange particles. This phenomenon is e.g. very important in the regeneration step

of the ion exchange process. During regeneration a highly concentrated solution of salt is

passed through the ion exchange column to convert the ion exchanger into the desired form.

Subsequently the column is rinsed with pure water and it is desirable to use the smallest

amount of water as possible. However, the amount of water used in the washout of the

column is dependent on the absorption of salt in the ion exchange particles. The intention of

the last part of the thesis is to address the absorption phenomenon. Only very few data exist in

open literature describing this type of equilibria and the data that can be found is of varying

quality. New procedures should therefore be developed for determining this type of equilibria

and a suitable amount of data should be obtained for the development and testing of a

thermodynamic model.
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2. Thermodynamics of Electrolyte Solutions

___________________________________________________________________________

A short introduction is given to the area of aqueous electrolyte thermodynamics including the most important

definitions for the understanding of the following chapters. The basic thermodynamic models based on the

theory of Debye and Hückel are shortly introduced and examples of more comprehensive models are given.

___________________________________________________________________________

2.1 Introduction

The first modern theory for the thermodynamics of electrolyte solutions was proposed by

Arrhenius3. He assumed that when an electrolyte is dissolved into water it dissociates into

positive ions (cations) and negative ions (anions). If an electric force field is applied to the

solution, the ions will move freely; the cations will move towards the anode and the anions

towards the cathode. The degree of dissociation depends on the type of electrolyte and its

concentration in the solvent. If an electrolyte fully dissociates into ions when brought in

contact with a polar solvent, it is defined as a strong electrolyte contrary to a weak electrolyte

that only partially dissociates.

Since the work of Arrhenius, the area of aqueous electrolyte thermodynamics has been a

subject of great interest for many scientists. Lately, an even larger effort has been made to

fully understand the thermodynamics of these systems due to their high importance in

industrial relations. This chapter gives a basic overview of the most important theories of the

thermodynamics of electrolyte solutions. The chapter mainly deals with the definitions needed

for fully understanding the following chapters in the thesis. For a more detailed description of

the area of aqueous electrolyte thermodynamics, the reader is referred to the PhD. thesis of

Thomsen1 and the textbook of Pitzer2.

2.2 Thermodynamic functions

The basic thermodynamic functions of electrolyte solutions are slightly different from those

of non-electrolyte solutions due to the presence of charged species. In the following, the basic

thermodynamic functions of electrolyte solutions are listed.
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The number of negatively charged ions and positively charged ions are always equal in a

solution of electrolytes. This leads to the electro neutrality criteria:

0i im z =� [2.1]

where mi is the molality of ion i (mol/kg) and zi is the charge of ion i.

The Gibbs free energy of a solution could be written in terms of the sum of the chemical

potentials µ:

1 1

ions w ionsN N N

i i w w i i
i i

G n n nµ µ µ
+

= =

= = +� � [2.2]

The deviation from the ideality of the chemical potential of water and the different ions could

be described by the equations:

ln( )i i i iRT mµ µ γ∇ ∇= + [2.3]

0 0ln( )w w w wRT xµ µ γ= + [2.4]

Where iγ ∇ is the molal activity coefficient, iµ∇ is the chemical potential of the ion, i , in the

standard state based on the asymmetrical convention and the molality scale. 0
wµ is the

chemical potential of pure water and 0
wγ is the rational, symmetrical activity coefficient of

water.

2.2.1 Apparent Molal Relative Enthalpy

Measurements of the heat of dilution yield differences in the apparent molal relative enthalpy

of the salt. Therefore this is a very convenient factor for the determination of the temperature

dependency of the activity coefficients.

By differentiation of the activity coefficient of the ions with respect to temperature at a

constant pressure and a constant composition, the following equation is obtained:

,
2

,

ln i ni

P n

L

T RT

γ ∇� �∂ = −� �∂� �
[2.5]
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where ,i nL is the so-called relative molal enthalpy of the ion at the specified composition. A

similar expression for the relative molal enthalpy of water could be found from differentiation

of the water activity coefficient.

The apparent relative molal enthalpy ,nLφ of a salt is found by summarizing the relative molal

enthalpy of all species:

, ,
1

ions wN N

s n i n
i

n L n Lφ φ

+

=

= � [2.6]

2.2.2 Apparent Molal Heat Capacity:

The apparent molal heat capacity of a salt can be measured by e.g. microcalorimetric

methods. It is defined in the following manner:

solubility

,
, ,

1,

ionsN
n

p i p i
iP n n

L
C C

T
φ

φ ν ∇

==

∂� �= +� �∂� �
� [2.7]

The differentiation of ,nLφ is taken at a constant composition that equals the solubility of the

salt in water. ,p iC∇ is the heat capacity of the ion at infinite dilution.

2.2.3 Apparent Molar Volume

The apparent molar volume could be measured directly from volume expansion experiments

or be found from density data. The definition of this expression is:

0
w w

V
s

V n V

n
φ −= [2.8]

where 0
wV is the partial molar volume of pure water at the given temperature and pressure.

A more comprehensive description of the volumetric properties of aqueous electrolyte

solutions is given in chapter 3.
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2.2.4 Mean Activity Coefficient

The mean molal activity coefficient of an electrolyte solution is the geometrical mean of the

activity coefficients in the solution:

1

ln ln
ionsN

i i
i

n nγ γ ∇
±

=

= � [2.9]

where n is the total moles of ions. The sum applies for all ionic components.

2.2.5 Osmotic Coefficient

The water activity coefficient is close to unity in dilute aqueous electrolyte solutions.

Therefore, in order to report the water activity without a considerable number of significant

digits, the osmotic coefficient Φ is introduced:

0

1

ln( )
ions

w
w wN

i
i

n
x

n
γ

=

Φ = −
�

[2.10]

At infinite dilution the osmotic coefficient has a limiting value of unity.

2.3 Chemical Equilibrium

The thermodynamics of electrolyte solutions are further complicated by the fact that ionic

reactions occur in the aqueous phase. Ions can react and be in one or more solid phases. Vast

amounts of solid-liquid equilibrium data for many salts at varying temperatures exist in the

literature. This section deals with how the solubility product is connected with other

thermodynamic relations.

2.3.1 Solubility Product

The solubility product of a salt can be found from the standard chemical potential of all the

different componets and the activity coefficients of the aqueous components. Consider a solid

salt dissociating into n moles of water, χ cations and ζ anions with corresponding ionic

charges zC and zA:

2 2
C Az zC A nH O C A nH Oχ ζ χ ζ↔ + + [2.11]
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At equilibrium the chemical potential of the solid salt equals the sum of the chemical

potentials of the constituents:

2 2
z zC AC A nH O H OAC

n
χ ζ

µ χµ ζµ µ= + + [2.12]

The activity of the solid salt is equal to unity; hence the chemical potential is equal to the

standard chemical potential.

2 2 2 2

0 0ln( )C A nH O C A nH O C A nH O C A nH ORT a
χ ζ χ ζ χ ζ χ ζ

µ µ µ= + = [2.13]

The chemical potential of the water and ions is given by:

0 0 0ln( ) ln( )w w w w w wRT a RT xµ µ µ γ= + = + [2.14]

ln( ) ln( )i i i i i iRT a RT mµ µ µ γ∇ ∇ ∇= + = + [2.15]

The solubility product of the salt is defined as:

( ) ( ) ( )
2

0
z z z zC C C CC A nH O w wC C C C

K m m x
χ ζ

χ ζ
γ γ γ∇ ∇= [2.16]

Substituting equations [2.13]-[2.15] in equation [2.16] gives:

2 2

0 0 lnz zC A w C A nH O C A nH OAC
n RT K

χ ζ χ ζ
χµ ζµ µ µ∇ ∇+ + − = − [2.17]

Eq. [2.17] states that activity coefficients could be regressed from experimental solubility

data, when values of the standard state chemical potential of the different components are

known.

2.3.2 Temperature Dependence

When dealing with systems at temperatures that are different from the standard states, the

temperature dependence of the solubility product needs to be taken into account. The

following section shows how this is dealt with in practice.

At constant pressure the Gibbs free energy, G, is given by:

G U PV TS≡ + − [2.18]
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,P n

G G H
S

T T

∂ −� � = − =� �∂� �
[2.19]

This equation could be rewritten to:

2
,P n

G H

T T T

∂� �� � = −� �� �∂ � �� �
[2.20]

This is also known as the Gibbs-Helmholtz equation.

The solubility product could be expressed in terms of the standard Gibbs free energy:

0 lnG RT K∆ = − [2.21]

Substituting this expression in the Gibbs-Helmholz equations:

0

2

ln

P

K H

T RT

∂ −∆� � =� �∂� �
[2.22]

Integration of this expression from the standard state temperature T0 to the actual temperature

T :

0

0
0

2ln ( ) ln ( )
T

T

H
K T K T dT

RT

∆= + � [2.23]

The temperature dependence of 0H∆ at a constant pressure is given by:

0
0
p

d H
C

dT

∆ = ∆ [2.24]

Where 0
pC∆ refers to the change in the heat capacity of the reaction [2.11].

Several different expressions have been proposed for describing the temperature dependency

of the partial heat capacity of ionic species. Most of these expressions are simple polynomials

while others are more complex equations based on theoretical considerations. Thomsen1 has

shown that the heat capacity of ions could be represented by a simple expression which will

be used in this thesis:
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0
,

i
p i i i

c
C a bT

T T Θ= + +
−

[2.25]

Where T Θ is a reference temperature of 200K. The a, b and c parameters of the expression are

usually found from a data reduction of experimental data.

The change in the heat capacity for reaction [2.11] could therefore be given by:

0
p

c
C a bT

T T Θ

∆∆ = ∆ + ∆ +
−

[2.26]

Insertion of this expression in eq. [2.24] followed by an integration gives an equation of the

change in the enthalpy for reaction [2.11] at a given temperature:

0 0 2 0 2
0

( ) ( ) 0.5 ( ( ) ) ln
T T

H T a T T b T T c
T T

Θ

Θ

−∆ = ∆ − + ∆ − + ∆
−

[2.27]

Using the above equation, an analytical expression for the solubility product at a given

temperature could be found:

( ) ( )

( ) ( )

0
0 0

0 0

20

0
0 0

1 1
ln ( ) ln ln 1

1 1
0.5 ln

T T
R K T R K T H T a

T T T T

T T c T T
b T T T

T T T T T

Θ
Θ Θ

Θ

� �� �= − ∆ − + ∆ + − +� � � �� � � �
� �− � �∆ − � �� �∆ + − − −� �� �� � � �� �� �

[2.28]

2.4 Modeling of Aqueous Electrolyte Solutions

The forces leading to non-ideality in electrolyte solutions are somewhat different from those

in non-electrolyte solutions. The physical, thermodynamic and transport properties of aqueous

electrolyte solutions depend on the forces acting between the various species. In these

solutions there are basically two different species; dissociated ions and molecules. Hence,

there are three different forces in the system; molecule-molecule, ion-ion and molecule-ion

interactions.

The short range forces between molecules have been studied in great detail for non-electrolyte

solutions and several different models, e.g. based on the local composition concept, have been

applied to these kinds of systems. The interactions between ions and molecules are dominated
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by electrostatic forces between permanent dipoles and ions. These forces are also short range

by nature. The ion-ion interactions are dominated by electrostatic forces which are much

larger in range than the previous forces mentioned. Therefore, these types of interactions are

dominant in dilute electrolyte solutions while the short range interactions give the major

contribution at higher concentrations.

2.4.1 The Debye-Hückel Limiting Law

Due to the fact of the long range ion-ion interaction forces, electrolytic systems can deviate

from ideality at even very low concentrations. Debye and Hückel were the first scientists to

describe the non-ideal behavior caused by the electrostatic forces in low concentration

electrolyte systems. According to the Debye-Hückel limiting law, the Gibbs excess energy of

an extremely dilute solution of electrolytes could be described by the equation:

3/ 24

3

E

w w DH m

ng
n M A I

RT
= − [2.29]

Mw is the molecular weight of water. Im is the ionic strength based on the molality scale and

ADH is the Debye-Hückel constant given by the expression:

3

04 2( )
w

DH
A r

F
A

N RT

ρ
π ε ε

= [2.30]

where F is the Faraday constant, NA is Avogadros number, R is the gas constant and T is the

absolute temperature in kelvin. rε is the relative permittivity of water, 0ε is the vacuum

permittivity and wρ is the density of water.

An expression of the activity coefficient of the ion i is found by taking the molar derivative of

eq. [2.29]:

2ln i DH i mA z Iγ ∇ = − [2.31]

In the original expression of Debye and Hückel, a factor a was introduced to describe the

ionic atmosphere potential in order to be able to account for the distance of the closest

approach. This resulted in what today is known as the extended Debye-Hückel expression

which describes the Gibbs excess energy in the following manner:
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2

3
4 ln(1 )

2

E
mDH

w w m m

b Ing A
n M b I b I

RT b

	 

= − + − +� �

� �
 �
[2.32]

Where the term b is given by:

2

0

2 w

r

F
b a

RT

ρ
ε ε

= [2.33]

An expression of the activity coefficients could be derived from eq. [2.32]:

2

ln
1

i m
i DH

m

z I
A

b I
γ ∇ = −

+
[2.34]

The mean activity coefficient of NaCl has been calculated using eq. [2.31] and [2.34] with an

a-parameter of 4.0Å. The results are compared with experimental data in figure 2.1. The

figure shows that the limiting law of Debye-Hückel only predicts the properties in very dilute

solutions. The extended model represents the data at higher concentrations. However, the

extended model has the drawback that the parameter for the distance of the closest approach,

a, should be estimated from experimental data.
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Figure 2.1. The mean activity coefficient of NaCl as function of molality. (�) exp. datapoints5.

(–) calculated by eq. (2.31), (--) calculated by eq. (2.34).
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2.4.2 Application of GE Models to Electrolyte Solutions

As seen in the previous section, the Debye-Hückel theory for aqueous electrolyte solutions

could only be applied successfully to systems with a low solute concentration. This limitation

of the Debye-Hückel theory arises mainly from the assumptions used when solving the

Poisson-Boltzmann equation.

Quite a few improvements of the Debye-Hückel expression have been proposed. The first

comprehensive work was presented by Pitzer6,7 in 1973. He developed a model based on an

expansion of the Debye-Hückel theory, but including terms for the short-range interactions.

This model has subsequently been applied with success in describing the thermodynamics of

many different electrolyte solutions and the model is still widely accepted in the academic

world.

Another successful approach to the description of aqueous electrolyte thermodynamics is the

extension of traditional GE models. The local composition concept has been used by several

researchers for developing models of short range forces between molecules. Lately, quite a

few of these models have been extended to electrolyte solutions by adding electrostatic terms

to the original equations. The most successful of these extensions are the Wilson model8,9, the

NRTL model10 and the UNIQUAC model1,11.

In this thesis aqueous phase thermodynamics is described using the Extended UNIQUAC

model because the model has proven to give good predictions in multicomponent systems and

has previously successfully been applied to a variety of different electrolyte systems1,11. An

example of the calculation of the mean activity coefficient for solutions of NaCl using the

Extended UNIQUAC model is shown in figure 2.2. The figure shows that the Debye-Hückel

term as expected describes the mean activity coefficient satisfactory up to app. 0.5 molal. At

higher concentrations the short-range forces are most dominant, and the UNIQUAC short

range configurational terms correct for the shortcomings of the electrostatic term. The

Extended UNIQUAC model is described in more detail in chapter 4 where the model has been

applied to a large amount of aqueous salt/acid solutions.
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Figure 2.2. The mean activity coefficient of NaCl as a function of molality.

(�) exp. datapoints5. (–) Extended UNIQUAC model. (– –) Contribution from residual and
combinatorial term (…) contribution from Debye-Hückel term. Model and parameters has been used as

given by Thomsen1.

2.5 Conclusion

The most important definitions when dealing with aqueous electrolyte thermodynamics have

been presented in this chapter. Furthermore, a short introduction has been given to the aspects

of modeling the properties of these kinds of solutions. In the following chapters a more

detailed description is given of different models and methods for describing the volumetric

properties and the phase behavior of electrolyte solutions.
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3. Volumetric Properties of Electrolyte Solutions

This chapter is a rewriting of the article “Representation of volumetric data of electrolyte solutions at

varying concentrations and temperatures” co-authored with Kaj Thomsen and submitted to Industrial

and Engineering Chemical Research.

___________________________________________________________________________

A modification of the Masson equation combined with Young’s rule based on ion specific parameters has been

applied to volumetric data for mixtures of (H+, Na+, K+, NH4
+, Ca++, Mg++) (Cl-,NO3

-,SO4
--). The parameters have

been regressed from data in the temperature range 0 – 100°C and concentration range 0 – 11.8 mol/kg, but are

shown to be valid up to saturation. The model only requires 5 parameters per ion in the entire range of

concentration and temperature. The model is easily applied to multicomponent mixtures, and it is shown that the

relative errors of the predicted results in both ternary and quaternary systems are well within the experimental

accuracy of the data.

__________________________________________________________________________________________

3.1 Introduction

The density and volumes of aqueous solutions of inorganic electrolytes are important

properties in the field of chemical engineering. During the past two centuries volumetric

properties have been measured for a large amount of salt-water systems in varying

concentrations and temperatures. The large volume of data can be found in both periodical

literature and in different monographs.

Many different approaches have been proposed for correlating these properties. Most of these

works have been empirical and applied to only a few systems1,2. One of the most

comprehensive works is the one of Söhnel and Novotny3. They have correlated densities of

many different salts with polynomials of different degree. However, their work is only

applicable to binary and ternary systems. Lately more complex models, e.g. models based on

the Pitzer model, have been applied to volumetric data in a more systematic manner4,5.

However, the drawbacks of most of these approaches are that they involve a large amount of

parameters which often are on a salt basis and therefore not necessarily internally consistent

and not applicable to multicomponent systems.

In this work, the apparent molal volumes for each species are collated using a variation of the

Masson1 rule based on ionic contributions. This implies that the apparent molal volumes for
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mixtures of (H+, Na+, K+, NH4
+, Ca++, Mg++) (Cl-, NO3

-, SO4
--) with reasonable accuracy can

be modeled in a wide range of concentrations and temperatures using only 40 new parameters.

The advantage of the introduced method is that reliable parameters can be found, even though

data for all the implicated salt-water systems are not available in literature. Furthermore, due

to the fact that the method uses ion specific parameters, it can easily be applied to

multicomponent systems.

3.2 Theory

In chapter 2 the most basic equations for the thermodynamics of electrolyte systems were

given. This section gives a more comprehensive description of the thermodynamic relations of

the volumetric properties of electrolyte solutions.

3.2.1 Basic Equations

The volume, V, of a solution can be expressed in terms of the Gibbs energy of the system:

,T n

G
V

P

∂� �= � �∂� �
[3.1]

If we consider a solution of water and ions, the Gibbs energy of the electrolyte solution can be

described by the relation:

1

ionsN

w w i i
i

G n nµ µ
=

= + � [2.2]

The volume is then given by:

1 ,

ionsN

w w i i
i T n

V n n
P

µ µ
=

� �∂= +� �∂ � �
� [3.2]

The chemical potential of ions and water can be expressed by the following equations:

ln( ) ln( )i i i iRT m RTµ µ γ∇ ∇= + + [3.3]

0 0ln( ) ln( )w w w wRT x RTµ µ γ= + + [3.4]



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� �


Where iγ ∇ is the molal activity coefficient, iµ∇ is the chemical potential of the ion i, in the

standard state based on the molality scale. 0
wµ is the chemical potential of pure water and 0

wγ is

the rational, symmetrical activity coefficient of water.

Inserting the equations [3.3-3.4] in [3.2] gives following results:

( ) ( )( )0 0

,
ln( ) ln( ) ln( ) ln( )w w w w i i i i

T n
V n RT x RT n RT m RT

P
µ γ µ γ∇ ∇∂= + + + + +

∂ �

( ) ( )0 0

, ,
ln( ) ln( )w w i i w w i iT n T n

V n n n RT n RT
P P

µ µ γ γ∇ ∇∂ ∂= + + +
∂ ∂� � [3.5]

0 0

1 1,

ions ionsN NE
E

w w i i w w i i
i iT n

G
V n v n v n v n v nv

P
∇ ∇

= =

� �∂= + + = + +� �∂� �
� � [3.6]

where iv ∇ is the standard state molal volume of ion i, 0
wv is the standard state volume of water

and Env is the excess volume of the solution.

The partial molal volume of a component i is defined as:

, , ,j

i
i T P n j ì

V
v

n
≠

� �∂= � �∂� �
[3.7]

The partial molal volume concept could also be rewritten in the form:

1

compN

i i
i

V n v
=

= �

For a solution of electrolytes this expression can be written as:

1

ionsN

i i w w
i

V n v n v
=

= +� [3.8]

For ns mol of a salt, the apparent molal volume is defined as:

0

,

( )w w
V s

s

V n v

n
φ −= [3.9]
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Equation [3.9] shows that the apparent molal volume is only a function of the volume of pure

water, the concentrations of ions and the volume of the solution. From this it can be

concluded that the apparent molal volume is equal to the actual volume expansion when

adding an amount of salt to a solution of pure water. This definition is therefore very

convenient when describing experimental data.

It is generally assumed that the molal volumes for the ions are additive. Hence eq. [3.8] can

be written for multicomponent electrolyte solutions in the form:

0
,

1

ionsN

i V i w w
i

V n n vφ
=

= +� [3.10]

Comparing equation [3.6] with [3.10] it can easily be seen that following expression applies:

,
1 1

ions ionsN N
E

i V i i i
i i

n n v nvφ ∇

= =

= +� � [3.11]

3.2.2 Volumetric Calculations Using Gibbs Excess Models

Equations [3.1-13.11] show that the volume of an electrolyte solution can be found if a

suitable expression for the Gibbs excess energy exists. Several works have applied Gibbs

excess energy expressions to the calculation of volumetric properties of electrolyte solutions.

One of the first examples is the work of Redlich and Rosenfield6. They showed in 1931 that

the so-called limiting law of Debye-Hückel can be used to predict the apparent molal volume

for a few simple electrolytes in dilute solutions.

As explained in chapter 2, according to the limiting law of Debye and Hückel the Gibbs

excess energy of a very dilute electrolyte solution can be described by the expression:

3/ 24

3

E

w w DH m

ng
n M A I

RT
= − [2.29]

The excess volume of the solution is then given by (see appendix A):

3/ 2 3/ 2

, ,

2 3 1

3

E
E r w

w w DH m m
r wT n T n

ng
nv RTn M A I I

P P P

ε ρ α
ε ρ
� �� �∂ ∂ ∂= = − =� �� �∂ ∂ ∂� � � �

[3.12]
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Mw is the molecular mass of water, εr is the relative permittivity of water. Im is the ionic

strength based on the molality scale and ADH is the Debye-Hückel constant given by the

expression:

3

3
04 2( )

w
DH

A r

F
A

N RT

ρ
π ε ε

= [2.30]

where F is the Faraday constant, ρw is the density of water, 0ε is the vacuum permittivity, NA

is Avogadros number, R is the gas constant and T is the temperature in Kelvin.

Eq. [3.12] corresponds to the expression presented by Redlich and Rosenfield in 1931.

Applying eq. [3.12] to a 1:1 salt in 1 kg of water then the apparent molal volume is given by

the expression:

,V S S Sv mφ α∇= + [3.13]

Where
1

ionsN

S i i
i

v n v∇ ∇

=

= � , that is, the theoretical volume of the dissolved salt at infinite dilution.

Using eq. [3.13] the apparent molal volume for a 1:1 electrolyte has been calculated at 25°C

and is compared to experimental data in figure 3.1. For the calculation of the density and

dielectric constant of water the NIST/ASME7 steam properties have been used.
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Figure 3.1. The apparent molal volume of NaCl at 25°C as function of the square
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root of molality for dilute solutions.

(�) exp. datapoints. (–) calculated by eq. [3.13].

The figure shows excellent agreement between the predicted and the experimental values.

However, the variance of the apparent molal volume with the molality is not equal for all 1:1

electrolytes and can therefore not be predicted using eq. [3.12]. Additionally, the temperature

variation of eq. [3.12] does not follow the general trend of experimental data. In figure 3.2 the

coefficient α has been calculated at different temperatures using eq. [3.12] and is compared

with values regressed from volumetric data for solutions of NaCl. The figure shows that the

coefficient α actually is equal to the experimental value at 25° for NaCl. Therefore, the

prediction in figure 3.1 is acceptable. However, at any other temperature the predictions

would be far from the experimental values.
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Figure 3.2. The α factor of eq. [3.12] for NaCl as function of
square root of molality at different temperatures.

(�) regressed from exp. datapoints. (–) calculated by eq. [3.12].

In the so-called extended Debye-Hückel expression the factor a is introduced to account for

the average distance of closest approach. In this expression the Gibbs excess energy is

described as:

2

34 ln(1 )
2

E
DH m

w w m m

ng A b I
n M b I b I

RT b

	 

= − + − +� �


 �
[2.32]



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� ��

Where the term b is given by:

2

0

2 w

r

F
b a

RT

ρ
ε ε

= [2.33]

By differentiation of eq. [2.32] with regard to pressure, the following expression for the

excess volume is obtained (see appendix B):

3 22

3 2
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b I I I

b b b

ω
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∂= = − ⋅
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� �+
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[3.14]

,

2 1 1w r

w r T n

a

a P P P

ρ εω
ρ ε

� �∂ ∂ ∂= + −� �∂ ∂ ∂� �
[3.15]

,

1 3w r

w r T n
P P

ρ εβ
ρ ε

� �∂ ∂� � � �= −� �� � � �∂ ∂� � � �� �
[3.16]

The only unknown parameters in eq. [3.14-3.16] are the distance of closest approach, a, and

the derivative of this parameter with respect to pressure. The a-parameter can be found from

regression of activity coefficient data; however the pressure derivative should be fitted to e.g.

volumetric data. In figure 3.3 the apparent molal volume of NaCl has been calculated using

eq. [3.14-3.16]. The line was calculated with the pressure derivative of a set equal to 0. The

dashed line was calculated by fitting a
P

∂
∂ to experimental data. In both cases the values used

for a is 4.0 Å as suggested by Robinson and Stokes8.
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Figure 3.3. The variation of the apparent molal volume of NaCl as function
of square root of molality at 25°C. (�) Exp. datapoints.

(–) Calculated by eq. [3.14], 0a
P

∂
∂ = .

(- -) Calculated by eq. [3.14], 18 1
4.5 10 ( )a

P m bar− −∂
∂ = ⋅ ⋅ .

Figure 3.3 shows poor agreement between the calculated results when no pressure dependence

of a is taken into account. The result obtained with the Debye-Hückel limiting law in fig. 3.1

was in fact better. The calculations where the term a
P

∂
∂ has been fitted to the experimental data

represent the data with accuracy similar to the one obtained with the limiting law.

The observed deviation in figure 3.3 is a general problem when applying Gibbs excess models

to volumetric data. The pressure dependence of the different parameters, e.g. the distance of

closest approach parameter or different binary interaction parameters, is unknown and

therefore has to be regressed from experimental data. Application of this kind of models

therefore often has a tendency to have a substantial amount of parameters with no obvious

physical meaning. In the following section this problem is solved by using a slightly more

empirical approach

3.2.3 Model Equations

In the work presented here it is assumed that the Masson equation can be used for single ions.

Masson1 found in 1929 that the apparent volume of an electrolyte varies linearly with the

square root of the molality in dilute solutions:
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,V S S Sv k mφ ∇= + [3.17]

This relation has been shown to be valid for many systems in concentrated solutions as well2.

The relation is purely empirical. However, several authors6,8 have later derived equations like

eq. [3.13] that are very similar to eq. [3.17] and thereby given a theoretical basis for the

relation.

Assuming that the Masson equation can be used for single ions the apparent volume of an ion

i is described by the relation:

,V i i i iv k mφ ∇= + [3.18]

If the apparent molal volumes of the ions are assumed to be additive, the volume of an

aqueous solution of ions can be calculated using the equation:

,
1

ionsN

w i V i
i

V V mφ
=

= + � [3.19]

where wV is the volume of 1 kg of water at the given temperature and pressure.

Eq. [3.19] can be applied to solutions of single valence ions; however, as seen in figure 3.4

the results for multicomponent systems of multivalence ions are not acceptable. Young and

Smith9 suggested a mixing rule for describing the volumetric data of mixed electrolyte

solutions. The relation is based on the principle that the mean ionic activity coefficient of any

strong electrolyte is the same in all solutions at the same ionic strength. According to Young’s

rule the apparent molal volume of a mixture of two salts can be calculated using:

1 , 1 2 , 2

1 2

S V S S V S
V

S S

m m

m m

φ φ
φ

+
=

+
[3.20]

where 1Sm , 2Sm are the molalities of the two salts and , 1V Sφ , , 2V Sφ are the apparent molal

volumes of the two salts evaluated at the ionic strength of the total solution.

By applying the mixing rule of Young and Smith to ions rather than salts, eq. [3.19] can be

applied to multicomponent solutions of multivalence ions:
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,V i i i mv k Iφ ∇= + [3.21]

where Im is the ionic strength on the molality scale and ki an ion specific parameter.
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Figure 3.4. The apparent molal volume in solutions of KCl and CaCl2 at
Im = 4.5 mol/kg and 25°C.

(�) exp. datapoints10. (–) calculated by eq. [3.17], (--) calculated by eq. [3.21].

One difference between eq. [3.21] and the relation of Masson eq. [3.17] is the use of ionic

strength instead of concentration. However, the most important difference is that eq. [3.21] is

based on ion basis rather than salt basis. This means that the two equations behave similarly

for binary electrolyte solutions, while the results of eq. [3.21] are much better in

multicomponent solutions than the original Masson equation. One example of this is shown in

figure 3.4. In this case, the parameters in eq. [3.17] and [3.21] have been regressed for K+,

Ca++ and Cl- from the binary data. The parameters have been applied to data for the apparent

molal volume in the KCl-CaCl2 system. The figure shows data for the apparent molal volume

at a constant ionic strength; hence only the molality of one of the salts is given. The figure

shows excellent agreement between the experimental data and eq. [3.21]. However, there are

larger deviations when the original Masson equation is used.
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3.3. Parameter Estimation

The IVC-SEP electrolyte databank11 contains at present time more than 100,000 experimental

data related to electrolyte solutions. In this work the database has been extended with 7,000

volumetric data points for the system of interest (see appendix C). These literature data points

have mainly been measured by density measurements or directly from measurements of

apparent molal volumes.

Prior to the regression of model parameters, a basic statistic analysis of the data has been

conducted to exclude obviously incorrect data. The remaining data are listed in table 3.1 (in

the back of the chapter).

3.3.1 Parameters at 25°C

The standard state molal volume at 25°C has been reported for many ions by several different

authors. In this work the recommended values of Marcus12 have been implemented in the

model and have therefore not been regressed from experimental data. It is not possible to

measure the volume of an ion independently due to the electroneutrality criteria. Therefore the

properties usually are measured relative to the properties of the H+ ion. The values of Marcus

have therefore been corrected so the standard state molal volume of the H+ ion is equal to zero

and the k parameter of H+ has also been assigned the value zero.

The use of ionic parameters makes the system internally consistent and it is therefore not

necessary to include data for all the different salts in the parameter regression. In this work

only data for the following 8 salts have been included in the regression of the model

parameters at 25°C; NaCl, NaNO3, Na2SO4, KCl, HCl, NH4Cl, CaCl2, MgCl2. The volumetric

properties of these salts are very well documented in the literature and are sufficient to regress

accurate parameters for the entire system of ions. The parameters obtained are thus able to

describe the density of binary and multicomponent solutions of all 18 salts formed by these

ions.

The ki parameters for all ions have been estimated simultaneously from the chosen

experimental data using the objective function:
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φ φ

φ
� �−

= � �� �
� �

� [3.22]

3.3.2 Temperature Variation of Model Parameters

The temperature dependence of the standard state molal volumes at infinite dilution, iv ∇ , and

the ki parameters were fitted by simple second order polynomial expressions:

( ) ( ) ( ) ( ) ( )21 2 325 25i i i iv v v t v t∇ = + − + − [3.23]

( ) ( ) ( ) ( ) ( )21 2 325 25i i i ik k k t k t= + − + − [3.24]

The parameters for the temperature dependence were regressed from data for the same 8 salts

as mentioned above. However, the amount of data available for the 8 original salts at high

temperatures is limited, and additional data for KNO3 and K2SO4 were included in order to

increase the accuracy of the parameters in the high temperature area. All parameters were

regressed simultaneously using the objective function given in eq. [3.22].

3.4 Results and Discussion

All experimental data and model results are listed in table 3.1 (in the end of the chapter). The

parameters regressed from experimental data are given in table 3.2.

Table 3.2. Parameters of eq. [3.21, 3.23-3.24] regressed from experimental data. ( )1
iv taken from

Marcus12 (has been corrected so that the value of H+ is equal to zero)

i ( )1

iv ( )2 210iv ⋅ 3 410iv ⋅ ( )1

ik ( )2 210ik ⋅ ( )3 410ik ⋅

H+ 0 0 0 0 0 0

Na+ -1.2 7.748 -13.80 0.9758 -2.628 6.309

K+ 9 6.331 -7.502 1.094 -2.689 3.919

Mg++ -21.2 1.096 -9.093 1.493 -2.144 4.751

Ca++ -17.9 -1.938 2.789 1.581 3.450 -5.821

NH4
+ 18.2 1.604 -1.957 0.4435 -0.7984 0.5941

Cl- 17.8 3.692 -7.407 0.9454 -0.0979 0.9162

SO4
-- 14 13.36 -27.39 4.837 -2.927 6.793

NO3
- 29 10.78 -4.537 1.307 -2.751 0.0439
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3.4.1 Binary Solutions

The results for the binary systems at 25°C are shown in the figures 3.5-3.7. The figures show

that the agreement between model calculations and experimental data is very good for the

majority of the salts, even though only a part of the data have been used in the parameter

regression.
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Figure 3.5. Model results for binary systems. 1:1 electrolytes.
(�) NaCl, (�) NaNO3, (�) KCl, (+) KNO3, (�) NH4Cl, (ο) NH4NO3, (�) HCl, (–) Model

correlation.
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Figure 3.6. Model results for binary systems. 1:2 electrolytes.
(�) Na2SO4, (�) K2SO4, (�) (NH4)2SO4, (–) Model correlation.
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Figure 3.7. Model results for binary systems. 2:1 electrolytes and 2:2 electrolytes.
(�) CaCl2, (�) Ca(NO3)2, (�) MgCl2, (+) Mg(NO3)2, (�) MgSO4, (–) Model correlation.

In the case of Na2SO4 is it seen that the model correlation actually holds up to 4 molal, even

though the solution at this point is highly supersaturated. There is though, a slight inaccuracy

in the calculated results for the MgSO4 and the Mg(NO3)2 systems. This might be caused by

the high degree of association between Mg++ and NO3
- and SO4

--. These types of interactions

are not taken into account in the model. An example of how the model could be extended to

systems with systems with weaker electrolytes is given in appendix D. However, even in

these highly non-ideal systems the average relative error is only 2.5 – 3% in the apparent

molal volume. It should be noted, that these deviations would only cause relative errors

between calculated and experimental densities of 0.1 0
00 or lower.

The temperature dependence of the apparent molal volume has been modeled using eq. [3.26,

3.28-3.29], and the relative errors for all the relevant data are shown in table 3.1. The table

shows that the average relative deviation between calculated and experimental apparent molal

volumes for most systems is below 1%.

A graphical representation of the temperature variance and the model capabilities is shown in

figure 3.8, where model results are compared with volumetric data of solutions of NaNO3.

Optimal values of iv ∇ and ki for eq. [3.21] were determined for each temperature by regression
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of experimental data. In figure 3.8 the optimal values are compared with iv ∇ and ki values that

has been calculated using eq. [3.23] and [3.24] with the parameters given in table 3.2.
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Figure 3.8. ki and iv ∇ for the NaNO3 system.

(�) Optimal values at individual temperatures. (–) Calculated by eq. [3.23-3.24]

In the figure it is seen that a better representation of the data might be obtained using a higher

degree of the polynomials in eq. [3.23-3.24] used to calculate ki and iv ∇ . One example of a

much more comprehensive model applied to volumetric properties of electrolyte solutions is

the recent work of Krumgalz et al.5. The model of Krumgalz et al. is based on the model of

Pitzer13 and gives extremely precise correlations for many binary solutions of aqueous

electrolyte solutions. However, applying the model of Krumgalz to the system investigated in

this work would require more than 450 parameters. This can be compared to the less than 50

parameters of the model used in this work. In addition, figure 3.8 show that there is some

scattering in the volumetric data. The unreliability of experimental volumetric data is a

general problem. One of the reasons for this is that most of the available data are found from

density measurements. The apparent molal volume is much more sensitive to experimental

inaccuracies than the densities. In semi dilute solutions an error of 1 0
00 in the density can

easily lead to an error of 25% in apparent molal volume of the electrolyte in the solution. This

is the reason why in this work it has been chosen to use simple polynomials instead of more

complex relations that most probably would include experimental noise in the parameters.
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3.4.2 Multicomponent Solutions

Eq. [3.21] can easily be applied to multicomponent solutions. In figure 3.9 the model has been

applied to the system NaCl – K2SO4 with an ionic strength of 1.5 mol/kg. The figure shows

very good agreement between the calculated results and the experimental data.
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Figure 3.9. The apparent molal volume in solutions of NaCl and K2SO4 at
Im = 1.5 mol/kg and 25°C. (�) Exp. datapoints14. (–) Calculated by eq. [3.21].

Table 3.3. Results for the calculation of densities in multicomponent systems.

Species Imax Ndata .100 / Expρ ρ⋅ ∆ Source

Na+, Ca++, Cl- 6.4 72 0.001 58

K+, Cl-, SO4-- 1.5 10 0.007 13

Na+, Cl-, SO4
-- 1.5 10 0.01 13

K+, Ca++, Cl- 4.5 11 0.07 8

K+, Ca++, Cl-, SO4
-- 1.5 10 0.02 13

H+, K+, Na+, Cl- 2.1 15 0.025 74

K+, Na+, Cl-, SO4
-- 2.1 9 0.025 51

Na+, K+, Cl-, SO4
-- 2.0 9 0.015 51

Na+, Mg++, Cl-, SO4
-- 2.9 18 0.035 75

Na+, K+, Mg++, Ca++, Cl- 9.2 9 0.11 73
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In table 3.3 model results have been compared with multicomponent density data from several

different sources. From the table it is seen that even in the very concentrated solutions, the

relative deviation from the experimental data is only approximately 1 0
00 . Another example of

the model capabilities in concentrated multicomponent solutions is given in figures 3.10-3.11.

In these figures calculated densities are compared with experimental values for saturated

ternary and quaternary systems. The results presented in table 3.3, in figure 3.10 and in figure

3.11 are pure predictions as only data for binary, more dilute solutions were used in the

parameter estimation. For all the included systems it is seen that the deviations between

calculated and experimental densities are within the experimental accuracy of the data.
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Figure 3.10. Calculated and experimental densities of ternary aqueous systems at saturation (two-salt
points). Temperatures between 0-70°C.

(�)76 Na+, Cl-, NO3
-, (�)77 Na+, NO3

-, SO4
--, (�)78 Na+, Mg++, Cl-, (�)79 Na+, K+, Cl-.



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� ��

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.2 1.25 1.3 1.35 1.4 1.45 1.5

ρρρρ calc (g/cm
3
)

ρρ ρρ
ca

lc
(g

/c
m

3 )

Figure 3.11. Calculated and experimental densities of quaternary aqueous systems at saturation (three-
salt points). Temperatures between 0-80°C.

(�)80 Na+, Mg++, Cl-, NO3
-, (�)79 Na+, K+, NO3

-, Cl-, (�)79 Na+, K+, Mg++, Cl-.

3.5 Conclusion

A modification of the Masson equation combined with Young’s rule based on ion specific

parameters has been applied to volumetric data for mixtures of (H+, Na+, K+, NH4
+, Ca++,

Mg++) (Cl-,NO3
-,SO4

--). The parameters have been regressed from data in the temperature

range 0 – 100°C and concentration range 0 – 11.8 mol/kg, but are shown to be valid up to the

point of saturation. The model only requires 5 parameters and the standard state molal volume

per ion in the entire range of concentration and temperature. The model parameters have been

regressed on the basis of data from only few selected salts. In spite of this, the deviations

between model calculations and experimental data for all the salts formed by these ions are in

most cases within the experimental accuracy of the data used in the work. The model is easily

applied to multicomponent mixtures, and it is shown that the relative errors of the predicted

results in both ternary and quaternary systems are well within the experimental accuracy of

the data.
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Table 3.1. List of experimental data and relative deviation between

experimental and calculated results.

Salt Molality T (°C) Ndata , .100 /V V Expφ φ⋅ ∆ Source

0.17 – 6.0 0 - 80 96 0.84 15

0.5 – 5.0 15 - 35 17 0.49 16

1.0 – 6.1 25 - 40 29 0.30 17

0.01 – 1.5 0 – 35 44 0.39 18

0.5 – 5.8 10 – 40 20 0.34 19

0.05 – 5.8 25 – 50 24 0.61 20

0.5 – 4.4 0 – 60 19 2.04 21

0.01 – 1.0 0 – 35 48 0.38 22

0.05 – 3.7 5 – 25 39 0.39 23

0.16 – 5.9 15 – 30 26 0.47 24

0.01 – 2.8 25 40 0.56 25

0.1 – 5.0 25 8 0.48 26

NaCl

0.04 – 2.4 25 5 0.15 27

NaNO3 0.12 – 9.6 0 – 80 177 0.68 15

0.19 – 5.8 25 12 0.49 28

0.5 – 4.0 20 – 30 13 0.78 16

0.6 – 10.4 0 – 80 16 1.14 29

0.2 – 3.1 30 6 0.21 30

0.05 - 1 25 11 0.22 31

0.3 – 9.2 25 9 0.45 32

0.1 – 10.8 25 18 0.34 33

Na2SO4 0.14 – 5.5 25 16 1.50 28

0.10 – 3.0 15 – 35 17 1.73 16

0.02 – 2.0 0 - 50 33 2.51 34

0.07 – 2.4 25 – 75 14 1.57 35

0.02 – 1.4 0 – 35 74 1.35 18

0.02 – 0.28 15 – 40 17 3.25 36

0.9 – 1.8 25 10 0.27 37

0.2 – 2.0 25 12 0.32 22

1.1 – 3.9 60 6 1.86 38

KCl 0.14 – 5.2 0 – 80 121 0.54 15
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0.05 – 4.0 15 – 55 38 0.53 16

0.5 – 4.5 25 – 45 45 0.32 17

0.06 – 1.0 50 6 1.56 34

0.71 – 3.5 40 – 60 7 0.45 35

2.1 – 4.6 20 – 50 8 0.89 39

0.04 – 1.0 15 – 65 31 1.38 40

0.10 – 4.7 10 – 40 35 0.34 19

0.33 – 4.6 20 – 50 36 0.34 20

1.1 – 4.8 35 4 0.22 41

0.51 – 4.6 35 – 45 10 0.71 42

0.05 – 2.9 25 18 0.06 23

0.08 – 2.1 25 20 0.56 25

0.06 – 3.0 25 7 0.16 26

0.09 – 1.4 25 9 0.43 43

0.1 – 1.0 25 10 0.16 31

0.009 – 0.6 25 13 0.38 44

0.2 – 3.0 25 9 0.18 45

0.07 – 4.3 25 14 0.14 46

KNO3 0.86 – 3.1 0 – 100 101 0.81 15

0.05 – 3.0 15 – 45 30 0.34 16

0.009 – 1.9 30 10 0.30 30

0.005 – 0.5 5 – 30 110 0.61 47

0.2 – 3.1 25 11 0.32 45

0.06 – 2.5 25 35 0.30 48

0.5 – 3.0 25 10 0.39 49

K2SO4 0.12 – 1.3 0 – 100 50 2.2 15

0.04 – 1.3 0 – 25 20 1.5 50

0.006 – 1.4 0 – 50 41 1.1 34

0.06 – 1.3 5 – 95 90 1.2 51

0.01 – 0.18 15 – 35 20 0.9 52

0.20 – 2.1 25 7 0.4 31

NH4Cl 0.19 – 5.9 0 – 100 121 0.45 15

0.05 – 5.0 15 – 55 101 0.42 16

0.01 – 0.62 15 – 35 17 0.93 36

3.0 – 8.0 50 - 100 98 0.4 53
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0.2 – 1.0 25 8 0.03 31

0.1 – 7.4 25 14 0.13 33

NH4NO3 0.13 – 5.4 0 – 80 125 1.9 15

0.04 – 1.1 25 20 1.0 54

1.1 – 10.9 25 7 3.0 55

0.05 – 12.7 25 16 2.5 56

(NH4)2SO4 0.13 – 6.5 0 – 100 147 1.2 15

0.1 – 10.0 15 – 55 110 1.1 16

1.0 – 8.0 25 7 0.8 57

CaCl2 0.18 – 6.0 0 – 100 154 2.8 15

0.05 – 6.0 15 – 55 42 2.6 16

1.41 – 6.41 25 24 0.20 58

0.05 – 5.0 25 8 0.27 26

0.02 – 7.9 25 76 0.61 43

0.01 – 0.33 25 8 1.58 59

0.67 – 7.4 25 14 0.60 60

Ca(NO3)2 0.12 – 2.0 6 – 30 44 0.93 15

0.12 – 2.6 17.5 30 1.7 50

1.3 – 10.3 25 – 60 52 1.4 61

0.03 – 1.9 20 – 35 25 1.1 50

1.3 – 8.4 25 8 1.7 50

1.5 – 3.5 25 5 0.52 50

MgCl2 0.2 – 4.5 0 – 100 128 2.5 15

0.54 – 3.3 25 7 0.62 17

0.003 – 0.9 0 – 50 45 3.0 34

0.05 – 1.5 25 25 0.54 18

0.005 – 0.97 0 – 30 37 1.8 18

1.0 – 5.7 25 – 60 23 1.7 62

0.05 – 0.97 25 9 0.28 31

0.004 – 0.34 25 8 0.90 59

0.002 – 5.8 25 23 1.0 63

Mg(NO3)2 0.14 – 2.1 0 – 40 62 3.2 15

0.15 – 3.7 0 – 25 30 2.9 50

0.8 – 3.7 25 5 2.1 64

HCl 0.27 – 11.8 0 – 100 151 0.81 15
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0.56 – 4.5 0 – 60 42 0.96 65

0.56 – 5.2 0 – 50 59 0.58 66

0.09 – 1.0 5 - 35 35 0.61 67

0.61 – 8.5 25 8 0.52 57

0.01 – 0.23 25 8 0.99 68

0.13 – 10.2 25 38 0.67 69

0.004 – 0.19 25 27 0.55 70

HNO3 0.16 – 6.8 0 - 100 228 2.87 15

0.64 – 11.4 25 23 3.12 71

0.11 – 1.15 25 20 0.91 72



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� �


3.6 References

(1) Masson, D. O. Solute molecular volumes in relation to solvation and ionization.

Phil. Mag. 1929, 8, 218.

(2) Root, Wm. C.. Equation relating density and concentration. J. Am. Chem. Soc. 1933,

55, 850.

(3) Söhnel, O.; Novotny, P. Densities of Aqueous Solutions of Inorganic Substances.

Phys. Sci. Data 22; Elsevier: Tokyo, 1985.

(4) Kumar, A. Volume properties of aqueous electrolytes. 1. Examination of apparent

molal volume data by the Pitzer model. J. Chem. Eng. Data. 1987, 32, 106.

(5) Krumgalz, B.S; Pogorelskii, R.; Sokolov, A.; Pitzer, K.S. Volumetric Ion Interaction

Parameters for Single-Solute Aqueous Electrolyte Solutions at Various Temperatures.

J. Phys. Chem. Ref. Data. 2000, 29, 1123.

(6) Redlich, O.; Rosenfeld, P. The theory of the molal volume of a dissolved electrolyte.

II. Z. Elektrochem. Phys. Chem. 1931, 37, 705.

(7) Harvey, A.H., Perskin, A.P., Klein, S.A., 1996. NIST/ASME steam properties

formulation for general and scientific use.

(8) Robinson R.A. and R.H. Stokes, Electrolyte Solutions, 2nd edition, Butterworth and

Co., London, 1970.

(9) Young, T.F.; Smith, M.B. Thermodynamic Porperties of Mixtures of Electrolytes in

Aqueous Solutions. J. Phys. Chem. 1954, 58, 716.

(10) Kumar, A. Densities and apparent molal volumes of aqueous potassium chloride-

calcium chloride mixtures at 298.15 K. J. Chem. Eng. Data. 1986, 31, 21.

(11) http://www.ivc-sep.kt.dtu.dk/databank/databank.asp

(12) Marcus, Y. Ion Properties. Marcel Dekker. New York, 1997.

(13) Pitzer, K.S. Thermodynamics of electrolytes. I. Theoretical basis and general

equations. J. Phys. Chem. 1973, 77, 268.

(14) Millero, F.J.; Sotolongo, S. PVT properties of concentrated aqueous electrolytes. 7.

The volumes of mixing of the reciprocal salt pairs potassium chloride, potassium



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� ��

sulfate, sodium chloride, and sodium sulfate at 25°C and I = 1.5 M. J. Chem. Eng.

Data, 1986, 31, 470

(15) Washburn, E.W. International Critical Tables of Numerical Data, Physics, Chemistry

and Technology. McGraw-Hill Book Company, New York, 1928.

(16) Isono, T. Measurements of Density, Viscosity and Electrolyte Conductivity of

Concentrated Aqueous Electrolyte Solutions. Rikakaku Kenkyusho Hokoku. 1980, 56,

103.

(17) Romankiw, L.A.; Chou, I.M. Densities of aqueous sodium chloride, potassium

chloride, magnesium chloride, and calcium chloride binary solutions in the

concentration range 0.5-6.1 m at 25, 30, 35, 40, and 45°C. J. Chem. Eng. Data. 1983,

28, 300.

(18) Chen, C.-T.A.; Chen, J.H.; Millero, F.J. Densities of NaCl, MgCl2, Na2SO4 and

MgSO4 Aqueous Solutions at 1 atm. from 0 to 50° and from 0.001 to 1.5m. J. Chem.

Eng. Data. 1980, 25, 307.

(19) Lengyel, S.; Tamás, J.; Giber, J.; Holderith, J. Study of Viscosity of Aqueous Alkali

Halide Solutions. Acta Chim. Hung. 1964, 40, 125.

(20) Goncalves, F.A.; Kestin, J. The Viscosity of NaCl and KCl in the range 25-50°C. Ber.

Bunsenges. Phys. Chem. 1977, 81, 1156

(21) Lyle, T.R.; Hosking, R. The Temperature Variations of the Specific Molecular

Conductivity and the Fluidity of Sodium Chloride Solutions. Phil. Mag. Ser. 1902, 6,

487.

(22) Millero, F.J. The Apparent and Partial Molal Volume of Aqueous Sodium Chloride

Solutions at Various Temperatures. J. Phys. Chem. 1970, 74, 356.

(23) Vaslow, F. The Apparent Molal Volume of the Lithium and Sodium Halides. Critical-

type Transitions in Aqueous Solution. J. Phys. Chem. 1969, 73, 3745.

(24) Dessauges, G.; Miljevic, N.; Van Hook, W.A. Isotope effects in aqueous systems. 9.

Partial molar volumes of sodium chloride/water and sodium chloride/water-d2

solutions at 15, 30, and 45°C. J. Phys. Chem. 1980, 84, 2587.



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� ��

(25) Olofsson, I.V. Apparent molar heat capacities and volumes of aqueous sodium

chloride, potassium chloride, and potassium nitrate at 298.15 K. Comparison of

Picker flow calorimeter with other calorimeters. J. Chem. Thermodyn. 1979, 11, 1005.

(26) Gates, J.A.; Wood, R.H. Densisties of Aqueous Solutions of NaCl, MgCl2, KCl, NaBr,

LiCl and CaCl2 from 0.05 to 5.0 mol/kg and 0.1013 to 40 MPa at 298.15K. J. Chem.

Eng. Data. 1985, 30, 44.

(27) Wirth, H.E. Apparent and partial molal volumes of sodium chloride and hydrochloric

acid in mixed solutions. J. Am. Chem. Soc. 1940, 62, 1128.

(28) Lobo, V.M.M; Quaresma J.L. Handbook of Electrolyte Solutions. Elsevier, New

York, 1989.

(29) Puchkov, L.V.; Matashkin, V.G. Density of lithium nitrate-water and sodium nitrate-

water solutions at 25-300.deg. Zhurnal Prikladnoi Khimii. 1970, 43, 1848.

(30) Barchiesi, M.A.; Berchiesi, G.; Lobbia, G.G. Apparent Molal Volumes of Alkali

Metal Nitrates at 30°C. J. Chem. Eng. Data. 1974, 19, 326.

(31) Millero, F.J.; Ward, G.K.; Chertirkin, P.V. Relative Sound Velocities of Sea Salts at

25°C. J. Acoust. Soc. Am. 1977, 61, 1492.

(32) Kartzmark, E.M. Conductances, densities, and viscosities of solutions of sodium

nitrate in water and in dioxane-water, at 25.deg. Can. J. Chem. 1972, 50, 2845.

(33) Pearce, J.N.; Hopson, H. The vapor pressures of aqueous solutions of sodium nitrate

and potassium thiocyanate. J. Phys. Chem. 1937, 41, 535.

(34) Millero, F.J; Knox, J.H. Apparent Molal Volumes of Aqueous NaF, Na2SO4, KCl,

K2SO4, MgCl2 and MgSO4 Solutions at 0° and 50°. J. Chem. Eng. Data. 1973, 18,

407.

(35) Korosi, A.; Fabuss, B.M. Viscosities of Binary Aqueous Solutions of NaCl, KCl,

Na2SO4 and MgSO4 at Concentrations amd Temperatures of interest in Delalination

Processes. J. Chem. Eng. Data, 1968, 13, 548.

(36) Kaminsky, M. The concentration and temperature dependence of the viscosity of

aqueous solutions of strong electrolytes. III. KCl, K2SO4, MgCl2, BeSO4, and MgSO4

solutions. Z. physik. Chem. 1957, 12, 206.



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� ��

(37) Lühdemann, R. The Dependence on Concentration of the Equivalent Refraction of a

Few Salts and Acids in Aqueous Solution. Z. Phys. Chem. 1935, B29, 133.

(38) Trimble, H.M. Solubility of potassium permanganate in solutions of potassium sulfate

and of sodium sulfate. J. Am. Chem. Soc. 1922 , 44, 451.

(39) Suhrmann, R.; Wiedersich, I. The Effect of Foreign Ions on the Conductivity of

Hydrogen Ion in Aqueous Solutions. Z. Annorg. Allg. Chem. 1953, 272, 167.

(40) Out, D.J.P; Los, J.M. Viscosity of Aqueous Solutions of Univalent Electrolyes from 5

to 95°. J. Sol. Chem. 1980, 9, 19

(41) Scott, A.F.; Wilson, R.W. The apparent volumes of salts in solution and their

compressibilities. J. Phys. Chem. 1934, 38, 951.

(42) Firth, J.G.; Tyrrell, H.J.V. Diffusion Coefficients for Aqueous Silver Nitrate Solutions

at 25°, 35° and 45° from Diaphragm-cell Measurements. J. Chem. Soc. 1962, 2042.

(43) Zhang, H.-L.; Chen, G.-H.; Han, S.-J. Viscosity and Density of H2O + NaCl + CaCl2

and H2O + KCl + CaCl2 at 298.15 K. J. Chem. Eng. Data. 1997, 42, 526.

(44) MacInnes, D.A.; Dayhoff, M.O. The partial molal volumes of potassium chloride,

potassium and sodium iodides, and of iodine in aqueous solution at 25°. J. Am. Chem.

Soc. 1952, 74, 1017.

(45) Epikhin, Y.A.; Stakhanova, M.S.; Karapetyants, M.K. Volume and heat capacity

changes in aqueous salt solutions. III. The KCl-KNO3-H2O system. Zhurnal

Fizicheskoi Khimii. 1964, 38, 692.

(46) Shibata, E.; Oda, S.; Furukawa, S. Thermodynamic study of chemical change. VI.

Thermodynamic investigation of potassium chloride. Nippon Kagaku Kaishi. 1931,

51, 71.

(47) Halasey, M.E. Partial Molal Volumes of Potassium Salts of the Hofmeister Series. J.

Phys. Chem. 1941, 45, 1252.

(48) Pena, M.P.; Vercher, E.; Martinez-Andreu, A. Apparent Molar Volumes of Potassium

Nitrate and Sodium Nitrate in Ethanol + Water at 298.15 K. J. Chem. Eng. Data.

1998, 43, 626.



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� ��

(49) Doan, T.H.; Sangster, J. Viscosities of Concentrated Aqueous Solutions of Some 1:1,

2:1, and 3:1 Nitrates at 25°C. J. Chem. Eng. Data. 1981, 26, 141.

(50) Timmermans, J. The Physico-chemical constants of binary systems in concentrated

solutions, 3,, Systems with metallic compounds. Interscience. New York, 1960

(51) Dedick, E.A.; Hershey, J.P.; Sotolongo, S.; Stade, D.J.; Millero, F.J. The PVT

properties of concentrated aqueous electrolytes. IX. The volume properties of

potassium chloride and potassium sulfate and their mixtures with sodium chloride and

sodium sulfate as a function of temperature. J. Sol. Chem. 1990, 19, 353.

(52) Kaminsky, M. Concentration and Temperature Dependence of the Viscosity of

Aqueous Solutions of Strong Electrolytes. III. KCl, K2SO4, MgCl2, BeSO4 and MgSO4

solutions. Z. Phys. Chem. 1957, 12, 206.

(53) Rashkovskaya, E.A.; Chernen'kaya, E.I. Densities of ammonium bicarbonate, sodium

bicarbonate, and ammonium chloride and ammonia salt solutions at 20-100°. Zhurnal

Prikladnoi Khimii. 1967, 40, 301.

(54) Campbell, A.N.; Friesen, R.J. Conductance in the Range Medium Concentration. Can.

J. Chem. 1959, 37, 1288.

(55) Campbell, A.N.; Kartzmark, E.M. The Normal Boiling Points and Other Physical

Properties of Strong Solutions of Silver Nitrate and of Ammonium Nitrate. Can J.

Research, 1950, 28B, 161

(56) Campbell, A.N.; Gray, A.P.; Kartzmark, E.M. Conductances, Densities, and Fluidities

of Solutions of Silver Nitrate and of Ammonium Nitrate at 35°C. Can. J. Chem. 1953,

31, 617.

(57) Goldsack, D.E.; Franchetto, A.A. The Viscosity of Ceoncentrated Electrolyte

Solutions. III. A Mixture Law. Electrochimica Acta. 1977, 22, 1287.

(58) Oakes, C.S.; Simonson, J.M.; Bodnar, R.J. The system sodium chloride-calcium

chloride-water. 2. Densities for ionic strengths 0.1-19.2 mol×kg-1 at 298.15 and

308.15 and at 0.1 MPa. J. Chem. Eng. Data. 1990, 35, 304.

(59) Perron, G.; Desnoyers, J.E. Apparent Molal Volumes and Heat Capacities of Alkaline

Earth Chlorides in Water at 25°C. Can. J. Chem. 1974, 52, 3738.



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� ��

(60) Kumar, A.; Atkinson, G.; Howell, R.D. Thermodynamics of concentrated electrolyte

mixtures. II. Densities and compressibilities of aqueous sodium chloride-calcium

chloride at 25°C. J. Sol. Chem. 1982, 11, 857.

(61) Ewing, W.W.; Mikovsky, R.J. Calcium nitrate. V. Partial molal volumes of water and

calcium nitrate in concentrated solution. J. Am. Chem. Soc. 1950, 72, 1390.

(62) Ezrokhi, L.L. Viscosity of Aqueous Solutions of the Individual Salts of Sea Water

Systems. J. App. Chem. USSR. 1952, 25, 917

(63) Miller, D.G.; Rard, J.A.; Eppstein, L.B.; Albright, J.G. Mutual Diffusion Coefficients

and Ionic Coefficients lij of MgCl2 - H2O at 25°C. J. Phys. Chem. 1984, 88, 5739.

(64) Herz, W. Internal Friction of Salt Solutions. Z. Anorg. Chinie. 1914, 89, 393.

(65) Åkerlöf, G.; Teare, J.W. A note on the density of aqueous solutions of hydrochloric

acid. J. Am. Chem. Soc. 1938, 60, 1226.

(66) Haase, R.; Sauermann, P.-F.; Dücker, K.-H. Conductivities of Concentrated

Electrolyte Solutions. II. Nitric Acid. Z. Physik. Chem. 1965, 46, 129.

(67) Hershey, J.P.; Damesceno, R.; Millero, F.J. Densities and compressibilities of aqueous

hydrochloric acid and sodium hydroxide from 0 to 45°C. The effect of pressure on the

ionization of water. J. Sol. Chem. 1984, 13, 825.

(68) Pogue, R.; Atkinson, G. Apparent molal volumes and heat capacities of aqueous

hydrogen chloride and perchloric acid at 15-55°C. J. Chem. Eng. Data. 1988, 33, 495.

(69) Rizzo, P.; Albright, J.G.; Miller, D.G. Measurements of Interdiffusion Coefficients

and Densities for the System HCl + H2O at 25 °C. J. Chem. Eng. Data. 1997, 42, 623.

(70) Redlich, O.; Bigeleisen, J. Molal Volumes of Solutes VI. Potassium Chlorate and

Hydrochloric Acid. J. Am. Chem. Soc. 1942, 64, 758.

(71) Haase, R.; Sauermann, P.F.; Duecker, K.H. Conductivities of concentrated electrolyte

solutions. II. Nitric acid. Z. Phys. Chem. 1965, 46, 129.

(72) Hovey, J.K.; Hepler, L.G.; Tremaine, P.R. Apparent molar heat capacities and

volumes of aqueous perchloric and nitric acids, tetramethylammonium hydroxide and

potassium sulfate at 298.15 K. Ther. Acta 1988, 126, 245.



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� �	

(73) Krumgalz, B.S.; Millero, F.J. Physicochemical study of Dead Sea waters. II. Density

measurements and equation of state of Dead Sea waters at 1 atm. Marine Chemistry.

1982, 11, 477.

(74) Ruby, C. E.; Kawai, J. Densities, equivalent conductances and relative viscosities at

25°, of solutions of hydrochloric acid, potassium chloride and sodium chloride, and of

their binary and ternary mixtures of constant chloride-ion-constituent content. J. Am.

Chem. Soc. 1926, 48 1119.

(75) Millero, F.J.; Connaughton, L.M.; Vinokurova, F.; Chetirkin, P.V. PVT properties of

concentrated aqueous electrolytes. III. Volume changes for mixing the major sea salts

at I = 1.0 and 3.0 at 25°C. J. Sol. Chem. 1985, 14(12), 837-51.

(76) Mayeda, T.J. Equilibrium of the system water and the chlorides and sulfates of sodium

and magnesium at 105°. J. Soc. Chem. Ind., Japan. 1920, 23, 573.

(77) Benrath, A.; Pitzler, H.; Ilieff, N.; Beu, W.; Schloemer, A.; Clermont, J.; Kojitsch, S.;

Benrath, H. Über das reziproke salzpaar MgSO4-Na2(NO3)2-H2O. I. Z. Anorg. Chem.

1928, 170, 257.

(78) Kurnakov, N. S.; Manoev, D. P.; Osokoreva, N. A. Solubility of the carnallite system.

Kali, 1932, No. 2 25.

(79) Osokoreva, N. A.; Opuikhtina, M. A.; Shoikhet, D. N.; Plaksina, E. F.; Zaslavskii, A.

I. Equilibria of the solutions in the system NaCl-KCl-MgCl2-H2O. Tr. Gos. Inst. Prikl.

Khim. 1932, 16, 24.

(80) Frowein, F.; von Mühlendahl, E. Die lösungen des doppelt-ternären Salzgemisches. Z.

Angew. Chem. 1926, 39, 1488.



Chapter 3. Volumetric Properties of Electrolyte Solutions
___________________________________________________________________________

� �




Chapter 4. Application of the Extended UNIQUAC Model to Acidic Solutions
___________________________________________________________________________

� ��

4. Application of the Extended UNIQUAC Model to Acidic

Solutions.

This chapter is a rewriting of the article “Modeling of vapor-liquid-solid equilibria in acidic aqueous

solutions” co-authored with Kaj Thomsen and published in Industrial and Engineering Chemical

Research. 2003, 42, 4260.

___________________________________________________________________________

The phase behavior (vapor - liquid equilibria (VLE) and solid – liquid equilibria (SLE)) and thermal properties

of aqueous solutions of ions like (K+, Na+, NH4
+, Ca2+, Cl-) in the presence of phosphoric acid (H3PO4, H2PO4

-,

HPO4
2- ) and nitric acid (HNO3, NO3

-) are described by means of the Extended UNIQUAC model. Model

parameters are evaluated on the basis of more than 2000 experimental data points. There is good agreement

between calculated and experimental data points. The model parameters are valid in the temperature range from -

18 - +122°C and in the concentration range up to 12 molal for the acids HNO3 and H3PO4.

___________________________________________________________________________

4.1 Introduction

The phase behavior of multicomponent aqueous electrolyte systems is important in many

processes in the chemical industry. Developing models for describing these kinds of systems

are relevant in order to be able to optimize processes as well as equipment in these types of

industries.

Most of the existing work on modeling aqueous electrolyte solutions has primarily considered

neutral or slightly acidic solutions. However, in industries such as the mineral and fertilizer

industry, many processes involve highly acidic solutions. The intention of this work is to

extend the existing parameters of the Extended UNIQUAC model to acidic environments.

The binary phosphoric acid – water system has previously been modeled by Jiang1, and Cherif

et al.2. The binary nitric acid – water system has previously been modeled by Rains et al.3. To

my knowledge no multicomponent model including phosphoric acid, nitric acid, and other

ions has previously been presented in the open literature.

In industrial applications such as the production of potassium phosphate from phosphate rock

the major components are K+, Ca2+, H+, NO3
-, H2PO4

-. For such applications, a model that is

capable of describing multicomponent mixtures is necessary. The model parameters
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determined in this thesis are intended for the use in this type of applications. In previous

works4,5 it has been shown that the Extended UNIQUAC model gives very reasonable

predictions in systems with more than 3 ions present even though the model only contains

unary and binary parameters. This model is therefore very suitable for multicomponent

solutions.

4.2 The Extended UNIQUAC Model

As mentioned in chapter 2, in this thesis the excess Gibbs energy of the aqueous phase is

described using the Extended UNIQUAC model4. The extended UNIQUAC model has

previously been applied to describe the excess Gibbs energy of aqueous electrolytes solutions

containing (K+, Na+, H+, NH4
+, Cl-, NO3

-, HSO4
- ,SO4

2-, OH-, CO3
2-, HCO3

-, NH2COO-)4,5. In

this thesis the model parameters are extended to aqueous systems of electrolytes containing

phosphoric acid (H3PO4, H2PO4
-, HPO4

2- ), and nitric acid (HNO3, NO3
-) together with (K+,

Na+, NH4
+, Ca2+, Cl-). The extended UNIQUAC parameters for Ca2+ have been determined on

the basis of data for aqueous solutions of CaCl2, CaNO3 and ternary solutions that in addition

contain NaCl, NaNO3, KCl, KNO3, NH4Cl and NH4NO3.

4.2.1 Model Equations

The model consists of a combinatorial and a residual term similar to the original UNIQUAC

model but also includes a Debye-Hückel term taking into account the long range ion-ion

interactions:

Residual

ExcessExcess ExcessExcess
Debye HückelCombinatorial

GG GG

RT RT RT RT
−= + + [4.1]

The Debye-Hückel term is given by

E 2
Debye Hückel DH m

w w m m3

G 4 A b I
x M ln( 1 b I ) b I

RT b 2
− 	 


= − + − +� �

 �

[4.2]

where xw is the mole fraction of water, Mw kg mol-1 is the molar mass of water, b is a constant

equal to 1.50 (kg mol-1)½, ADH is the Debye-Hückel parameter and Im is the ionic strength (mol

(kg H2O)-1).
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The combinatorial term is:

E
Combinatorial i i

i i i
i ii i

G z
x ln q x ln

RT x 2

φ φ
θ

� � � �
= −� � � �

� � � �
� � [4.3]

z = 10 is the coordination number. φi is the volume fraction of component i, and θi is the

surface area fraction of component i:

i i i i
i i

k k k k
k k

x r x q
;

x r x q
φ θ= =

� �
[4.4]

ri and qi are respectively the volume and surface area parameters for the component i.

The residual, enthalpic term is:

E
Re sidual

i i k ki
i k

G
x q ln

RT
θ Ψ� �= − � �

� �
� � [4.5]

where

ki ii
ki

u u
exp

T
Ψ −� �= −� �

� �
[4.6]

The binary interaction parameters, uki, are given by:

0 t
ki ki kiu u u (T 298.15 )= + − [4.7]

The model only requires UNIQUAC volume and surface area parameter for each species and

a binary interaction energy parameter for each pair of species. In order to reduce the number

of parameters, the uii for water and for cations have been set to zero4,5.

The number of parameters used in the Extended UNIQUAC model is small compared to the

number of parameters required by other models such as the Pitzer model. In a recent paper by

Clegg and Brimblecombe6, Vapor-Liquid-Solid equilibria in aqueous electrolyte

multicomponent solutions is modeled at 298.15K. In their work they modeled the H+ - NH4
+ -

Na+ - SO4
2- - NO3

- - Cl- - H2O system using the multicomponent model of Pitzer and

Simonson7. This modeling required more than 100 binary and ternary interaction parameters.

If temperature dependency was introduced into the model, the number of parameters would
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increase by a factor of 4 to 5. Compared to this, less than 40 unary and binary parameters are

required in the Extended UNIQUAC model for the same system at a single temperature and

less than 80 parameters if the temperature dependency is included. As it can be expected from

the large number of parameters, the Pitzer model usually gives a more accurate reproduction

of experimental data than the Extended UNIQUAC model. An extensive amount of data is

required in order to determine these parameters.

4.2.2 Model Application

Three different kinds of equilibria are taken into account in this work:

Speciation equilibria:

2H O( l ) H ( aq ) OH ( aq )+ −+�

3 4 2 4H PO ( aq ) H ( aq ) H PO ( aq )+ −+�

2
2 4 4H PO ( aq ) H ( aq ) HPO ( aq )− + −+�

3 3HNO ( aq ) H ( aq ) NO ( aq )+ −+�

As this work only deals with acidic systems, the formation of phosphate ions is not included.

A large number of different solids can be formed in the systems considered in this work. The

corresponding solid-liquid equilibria are listed in the section dealing with experimental data.

The only vapor – liquid equilibrium considered in this work is:

2 2H O( l ) H O( g )� .

Speciation equilibrium calculations are performed simultaneously with all solid-liquid and

vapor-liquid equilibrium calculations and are preceding the calculation of properties like

osmotic coefficients.

The equilibrium constants for all three types of equilibria are calculated from Gibbs energy of

formation for the species and are evaluated at temperatures different from 298.15 K using the

Gibbs – Helmholtz equation4 as shown in chapter 2.
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In this thesis thermal property data are included in the parameter regression, hence thermal

property data can be reproduced by the model. This is an improvement compared to many of

the previously works. Both in the recent works of Clegg and Brimblecombe6 using a Pitzer

model, Zhao et al.8 using a Wilson model, or Jaretun and Aly9 using an NRTL model, thermal

property data were not used for determining the model parameters.

4.3 Parameter Estimation

The extension of the model to new species implies that a suitable amount of experimental data

is included in the parameter optimization procedure. In this work a variety of different data

was included. These data included speciation data, osmotic coefficients, water activity, SLE

data and a number of different types of thermal properties data. Most of the data used for the

parameter regression was found in the existing databank for aqueous electrolyte solutions10.

However, the databank was extended to include the solubility of different species in acidic

solutions as well as the speciation of such solutions. Unfortunately, the amount of available

experimental data for the solubility of the investigated salts in solutions of HNO3 and H3PO4

is very limited.

Several values of the thermodynamic properties of the species needed for describing the

system could not be found in the literature. Therefore, values of the standard state free energy

of formation, the standard state enthalpy of formation, and the standard state heat capacity for

several salts were estimated from experimental data. The three parameter correlation4,11 given

in chapter 2 was used for the temperature dependency of the standard state heat capacity of

HNO3(aq).

The available experimental data were evaluated, and it was concluded that the data were

adequate for estimating the interaction parameters marked with a “+” in table 4.1. The values

of the remaining parameters were set to a suitably large value resulting in a negligible

contribution to the excess Gibbs function from the interaction of the two species.

The parameter estimation was carried out by a least-square minimization procedure as

described by Thomsen et al.4 and Thomsen11.
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Table 4.1: List of estimated parameters.

Na+ K+ Ca2+ NH4
+ H+ Cl- NO3

- H2PO4
- HPO4

2-

H2PO4
- + + + + + + + + +

HPO4
2- + + + + + + +

H3PO4 + + + +

HNO3 + + + + + +

In order to obtain the best possible quantitative fit of the experimental data, different types of

weighting factors and deviation calculations were applied to the different types of data. The

parameters were finally fitted to a minimum in deviation between experimental and calculated

data as shown in table 4.2.

In tables 4.3 and 4.4 (in the end of the chapter) all the deviations are calculated according to

the minimization scheme in table 4.2.

The concentrations used in the various tables are total molality, mT, which is defined as the

sum of the molalities of the pure components in their apparent form. This means that in the

H3PO4 – water system, mT is the sum of the molalities of H3PO4 , H2PO4
-, and HPO4

2-. This

concentration definition is especially convenient when dealing with weak electrolytes as it

does not depend on the degree of dissociation etc. In some works2 this concentration

definition is referred to as “apparent molality”.

Table 4.2: Deviation minimization scheme.

Type of data Deviation

Solid – liquid equilibria Absolute deviation in weight percent

Heat of solution (∆sH) Absolute deviation in kJ/mol

Osmotic coefficients (φ)a Relative deviation

Degree of dissociation (α) Absolute deviation

Apparent molal relative heat. cap. of salt (Cp,ϕ) Absolute deviation in J/mol

Water activity (γw) Relative deviation

Apparent molal relative enthalpy of salt (Lϕ) Absolute deviation in J/mol

aOsmotic coefficient data are defined according to the definitions given in the original references from

where each data point is taken.
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4.4 Experimental Data

This section gives a detailed overview of the experimental data used to determine the

parameters of the model.

Only data up to approximately 12 molal of acid exists for the solubility of e.g. KH2PO4 in

aqueous H3PO4 and of KNO3 in aqueous HNO3. The model parameters presented are

therefore only valid for aqueous solutions with H3PO4 or HNO3 concentrations less than 12

molal. This concentration range corresponds to the concentrations that are used in the

fertilizer industry.

4.4.1 Binary Systems

The available data for the binary systems are shown in table 4.3 (found in the end of the

chapter).

Phosphoric acid

For the phosphoric acid - water system the following speciation is considered:

3 4 2 4

2
2 4 4

H PO ( aq ) H ( aq ) H PO ( aq )

H PO ( aq ) H ( aq ) HPO ( aq )

+ −

− + −

+

+

�
�

The speciation in aqueous solutions of phosphoric acid has been investigated by Elmore et

al.12, Preston and Adams13, and Cherif et al.14. However, the three different works do not

agree completely on the speciation of the system. Elmore et al.12 include the formation of a

dimer:

2 4 3 4 5 2 8H PO ( aq ) H PO ( aq ) H P O ( aq )− −+ �

In the work of Cherif et al.14 the results are interpreted with and without the presence of the

dimer and in the work of Preston and Adams13 the presence of the dimer is not considered at

all. The results from the different works are shown in fig. 4.1. The data from Preston and

Cherif are converted from molarity into molality using density parameters from Söhnel and

Novotny15.
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Figure 4.1 The degree of dissociation at 25° as a function of the total molality of H3PO4 in the
solution. (�) Elmore12, (×) Preston13, (ο) Cherif14 without dimer, (�) Cherif14 including dimer. (–)

Extended UNIQUAC.

The figure shows a discrepancy between the data of Elmore et al.12 and the data of Cherif et

al.14 when the dimer is taken into consideration. However, the data series from the two

works13,14 show a very good agreement when the dimer is ignored. Even though the works of

Cherif et al.14 and of Preston and Adams13 give a strong indication of the formation of a dimer

it was decided to neglect the formation of the dimer in this work. This decision was based on

the fact that there is a large discrepancy between the experimental data describing the

properties of the dimer. A number of additional model parameters and standard state

thermodynamic data would have to be determined on the basis of these contradictory data.

The fact that the model gives good results without considering the dimer does not prove or

disprove the existence of the dimer in real solutions.

Nitric acid

The speciation considered for the nitric acid – water system is:

3 3HNO ( aq ) H ( aq ) NO ( aq )+ −+�

The speciation in aqueous solutions of nitric acid has been investigated by Haase et al.53 and

Krawetz55. The data from the two sources at 25°C and 50°C are compared in figure 4.2. The
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data from Krawetz55 have been converted from the molarity scale to the molality scale using

density parameters from Söhnel and Novotny15. The figure shows good agreement between

the two sources.
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Figure 4.2 The degree of dissociation as function of the total molality of HNO3 in the solution.
(�) Haase53 25°C, (�) Haase53 50°C, (+) Krawetz55 25°C, (×)Krawetz55 50°C, (–) Extended

UNIQUAC 25°C. (--) Extended UNIQUAC 50°C

Potassium salts of phosphoric acid:

The solid-liquid equilibria considered for these systems are:

2 4 2 4

2
4 2 4

K ( aq ) H PO ( aq ) KH PO ( s )

2K ( aq ) HPO ( aq ) K HPO ( s )

+ −

+ −

+

+

�
�

2
4 2 2 4 2

2
4 2 2 4 2

2K ( aq ) HPO ( aq ) 3H O K HPO 3H O( s )

2K ( aq ) HPO ( aq ) 6H O K HPO 6H O( s )

+ −

+ −

+ +

+ +

� �
� �

There is a variety of different sources of both SLE data and osmotic coefficient data for the

KH2PO4 – water system. The data from all these various sources seem to be consistent both

numerically and with respect to the nature of the solid phases. Hence, all available data were

used in the parameter regression. The solubility of K2HPO4 in water has been investigated by

Ravich32 and consists of a branch representing the formation of ice and three branches

corresponding to hexahydrate, trihydrate and anhydrous K2HPO4 (figure 4.3).
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Figure 4.3. Solubility of K2HPO4 in water. (�) exp. data. (–) Extended UNIQUAC.

Ammonium salts of phosphoric acid:

The following equilibria have been considered for these systems:

4 2 4 4 2 4NH ( aq ) H PO ( aq ) NH H PO ( s )+ −+ �

4 4 4 2 4

4 4 2 4 2 4 2

2NH ( aq ) HPO ( aq ) ( NH ) HPO ( s )

2NH ( aq ) HPO ( aq ) 2H O ( NH ) HPO ( s ) 2H O

+ −

+ −

+

+ +

�
� �

Ammonium monophosphate does not form hydrates while the diphosphate forms an

anhydrous as well as a hydrated form.

Sodium salts of phosphoric acid.

The solid-liquid equilibria included for this system are:

2 4 2 4

2 4 2 2 4 2

2 4 2 2 4 2

Na ( aq ) H PO ( aq ) NaH PO ( s )

Na ( aq ) H PO ( aq ) H O NaH PO H O( s )

Na ( aq ) H PO ( aq ) 2H O NaH PO 2H O( s )

+ −

+ −

+ −

+

+ +

+ +

�
� �
� �
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2
4 2 4

2
4 2 2 4 2

2
4 2 2 4 2

2
4 2 2 4 2

2Na ( aq ) HPO ( aq ) Na HPO ( s )

2Na ( aq ) HPO ( aq ) 2H O Na HPO ( s ) 2H O( s )

2Na ( aq ) HPO ( aq ) 7H O Na HPO ( s ) 7H O( s )

2Na ( aq ) HPO ( aq ) 12H O Na HPO ( s ) 12H O( s )

+ −

+ −

+ −

+ −

+

+ +

+ +

+ +

�
� �
� �
� �

The data for the solubility of NaH2PO4 in water are plotted in figure 4.4. The figure shows

that there is very good agreement between the experimental SLE data from various sources.
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Figure 4.4. Solubility of NaH2PO4 in water. (�) exp. data. (–) Extended UNIQUAC.

The experimental data for both the diphosphate and the monophosphate form verify the

existence of the various hydrated forms considered for this system. The osmotic coefficients

of aqueous solution of NaH2PO4 at 25°C have been reported by 6 different investigators

which all show the same general trend for the system.

4.4.2 Ternary Data

The available data for the solubility of KH2PO4, NaH2PO4, CaHPO4 and Ca(H2PO4)�2H2O in

aqueous solutions of H3PO4 and of NaNO3, KNO3, Ca(NO3)2 and NH4NO3 in aqueous nitric

acid solutions are summarized in table 4.4 (given in appendix 4.B).
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Systems with phosphoric acid:

The additional equilibria included for these systems are:

2 4 3 4 2 4 3 4

2 2
4 4

2
2 4 2 2 4 2

Na ( aq ) H PO ( aq ) H PO ( aq ) NaH PO H PO ( s )

Ca ( aq ) HPO ( aq ) CaHPO ( s )

Ca ( aq ) H PO ( aq ) 2H O Ca( H PO ) 2H O

+ −

+ −

+ −

+ +

+

+ +

� �
�

� �

For all the data a clear salting in effect is observed when adding phosphoric acid to the

solutions. The salting in effect is significant in KH2PO4 solutions as seen in figure 4.5 while it

is less expressed in NaH2PO4 solutions.
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Figure 4.5. Solubility of KH2PO4 in aqueous solutions of H3PO4.
(�) exp. data at 0°C, (�) exp. data at 25°C, (�) exp. data at 50°C. (–) Extended UNIQUAC.

Systems with nitric acid:

For the nitric acid systems there is no clear trend in the salting in or salting out effects. For

NaNO3 solutions a very clear salting out effect is observed as shown in figure 4.6. The

solubility of KNO3 is not significantly affected by adding nitric acid to the solution. In low

concentrations of nitric acid a small salting out effect is observed. However, at higher

concentrations a salting in effect is noted. For NH4NO3 solutions a salting out effect is
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observed up to approximately 7-8 molal HNO3, whereas at higher concentrations a clear

salting in effect is seen.
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Figure 4.6. Solubility of NaNO3 in aqueous solutions of HNO3.
(�) exp. data. (–) Extended UNIQUAC.

Mixed ternary systems:

In order to determine ion-ion interactions in phosphoric acid solutions containing additional

salts, ternary data have been included in the parameter regression. Additional solid-liquid

equilibrium was included for the multicomponent systems:

4 4 2 4 4 2Na ( aq ) NH ( aq ) HPO ( aq ) 4H O NaNH HPO 4H O( s )+ + −+ + + � �

4.5 Results and Discussion

The values of the thermodynamic properties for ions and salts that were fitted to experimental

data in this work are given in table 4.5 (end of the chapter). For some hydrated salts the heat

capacity has been calculated from the corresponding anhydrous salt using an additive rule

where 36.2 J/(mol K) is added pr. water molecule. The value 36.2 J/(mol K) approximately

corresponds to the heat capacity of H2O(s).
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Table 4.6, and tables 4.7-4.8 (end of chapter) include the 66 new binary interaction

parameters and 8 new r and q parameters that were determined in this work.

Table 4.6: Extended UNIQUAC r, q and heat capacity parameters.

r q a b c

H3PO4 (aq) 1.6982 3.4643 80.000 0 0

HNO3 (aq) 14.736 12.544 -652.638 1.38818 29085.77

H2PO4
- 8.3088 8.1975 108.000 0 0

HPO4
2- 12.392 11.004 69.622 0 0

4.5.1 Model Correlations

The modeling results are generally very good for all binary systems included in the parameter

regression as shown in table 4.3. Figures 4.1 and 4.2 show model calculations of speciation in

aqueous H3PO4 and HNO3 solutions. The model fits the data acceptably in both cases. In the

case of H3PO4-water, the model correlates the dissociation data well up to 19 in molality even

though only data up to 12 in molality were used in the regression. However, there seems to be

a slight overestimation for the HNO3-water system. The main reason for this is probably that

the main focus was on the representation of SLE data. Hence, the speciation data were given

less weight in the parameter regression.

Another example of the model calculations in binary systems is given in figure 4.3 and 4.4

where the solubility of K2HPO4 and Na2HPO4 in water is shown. The figures show that the

model correlations are good for all the different hydrated and anhydrous forms of the salts.

The deviations between calculated results and experimental data for 5 of the 6 sources of

osmotic data for the NaH2PO4-water system are very reasonable. However, the somewhat

larger deviation of the data from Pavicevic et al.41 is caused by a few data points with very

high deviation. Overall though, the data are well correlated by the model.

From table 4.4 it is seen that the overall representation of the solubility of the different salts in

aqueous solutions of phosphoric acid is good. For all systems the model correlates the right

trend of the salting in effects for increasing concentrations of H3PO4. One example is given in
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figure 4.5 where the solubility of KH2PO4 in aqueous H3PO4 is shoen. The figure reveals an

excellent correlation of the solubility.

In general the model represents the solubility data in aqueous nitric acid well. The solubility

of NaNO3 in aqueous nitric acid is shown in figure 4.6. The model calculations are very

accurate up to high concentrations of HNO3 even though only data up to 12 in molality of

HNO3 were included in the parameter optimization.
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Figure 4.7. Solubility in the ternary aqueous system NH4H2PO4 – NH4NO3.
(�) exp. data at 10°C. (×) exp. data at 20°C. (–) Extended UNIQUAC.

There is however a discrepancy between the model correlations and the experimental data for

the NH4NO3-HNO3 system. The model shows a continuous salting in effect and is incapable

of representing the salting out effect at low HNO3 concentration. This discrepancy might be

caused by the formation of complexes of NH4NO3 and HNO3 in the investigated

concentration range as reported by Treushchenko et al.64. As the apparent complexes between

NH4NO3 and HNO3 have not been included in the model due to insufficient experimental data

this could lead to the inaccurate representation of the NH4NO3 – HNO3 – water data.

The included ternary data are all well represented by the model as seen in table 4.4. Figure 4.7

shows the model correlation for the ternary system NH4H2PO4 – NH4NO3- water. The model
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calculations at high concentrations of NH4NO3 are inaccurate. This inaccuracy is caused by

the original parameters5 for NH4
+ and NO3

-. An improvement was not attempted here.

4.6 Conclusion

The Extended UNIQUAC model has been successfully applied to describe the phase behavior

and thermal properties of various acidic aqueous solutions of electrolytes over a wide range of

temperatures. The model is capable of describing the dissociation of both H3PO4 and HNO3 in

aqueous solutions and of describing the solubility of several different salts in aqueous

solutions of these two acids. In addition the model reproduces the thermal properties of these

solutions with high accuracy. In the following chapters these parameters will be used in

describing the aqueous phase thermodynamics in relation with ion exchange equilibria.
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Table 4.3: Experimental data used for parameter estimation. Binary systems.

System

H2O

+

mTotal T (°C) No. of

Data

Points

Type of

Data

Source Deviation

H3PO4 0.3 -19.9 25 15 α (13) 0.04

0 – 5.0 25 20 α (14) 0.06

0.5 – 8.3 25 9 Lϕ (16) 49.1

0.5 – 8.3 15 - 80 55 Cp,ϕ (17) 11.7

0.1 – 9.9 0 - 25 33 φ (18) 5.20

1.1 – 9.5 25 7 γw (19) 1.21

0.6 – 8.4 25 - 80 29 γw (20) 1.79

0.9 – 7.9 0 4 γw (21) 0.79

HNO3 2 – 28 25 – 75 48 φ (53) 2.42

0.1 – 3.0 25 17 φ (26) 0.68

0 – 12 0 – 50 18 α (55) 0.03

0 – 12 25 – 75 30 α (53) 0.02

0 – 0.15 25 7 Cp,ϕ (56) 7.83

0 – 18.5 25 45 Cp,ϕ (57) 18.0

0 – 6.9 0 – 120 405 Cp,ϕ (54) 4.33

KH2PO4 1.0 – 4.6 0 - 75 4 SLE (22) 1.31

1.0 – 1.6 -3 - 20 5 SLE (23) 0.44

0.3 – 2.0 -3 - 32 24 SLE (24) 0.59

1.1 – 6.1 0 - 90 14 SLE (25) 0.99

0.1 – 1.6 25 13 φ (26) 0.53

0.1 – 1.3 25 13 φ (27) 0.61

0 – 1.8 25 20 φ (28) 0.49

0 – 0.2 37 3 φ (29) 0.59

0.8 – 5.8 110 16 φ (30) 2.25

0 – 1.8 25 18 ∆sH (31) 0.37

K2HPO4 1.2 – 15.4 -12 - 63 21 SLE (32) 2.41

0.1 – 1.0 25 10 φ (26) 0.81

0.1 – 1.1 25 11 φ (27) 1.03

0 – 0.4 37 7 φ (29) 1.41
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0.6 – 5.5 110 26 φ (30) 2.06

3.1 – 10.0 25 7 ∆sH (33) 1.21

NH4H2PO4 1.7 – 3.8 -4 - 30 6 SLE (34) 0.45

0.4 – 18.7 -4 - 110 22 SLE (35) 2.41

0.4 – 3.8 -4 - 30 27 SLE (24) 0.81

0.2 – 3.4 25 28 ∆sH (31) 0.49

(NH4)2HPO4 2.9-14.0 -6.9 – 121.9 41 SLE (67) 1.75

NaH2PO4 4.7 – 16.6 0 - 75 3 SLE (22) 0.97

0.7 – 8.7 -10 - 30 23 SLE (34) 1.33

2.0 – 12.9 -9 - 57 10 SLE (36) 3.40

7.7 – 12.8 25 - 50 2 SLE (37) 1.29

3.7 – 20.4 -9 - 100 19 SLE (35) 1.84

4.3 – 18.7 0 - 83 16 SLE (38) 4.48

4.8 – 20.6 0 - 99 40 SLE (39) 0.92

0 – 6.5 25 30 φ (28) 0.55

0.1 – 6.0 25 23 φ (26) 0.55

0.2 – 6.3 25 8 φ (40) 1.03

0.1 – 2.3 25 13 φ (27) 0.58

0.7 – 3.9 25 16 φ (41) 3.59

0.8 – 10.8 110 26 φ (30) 0.92

Na2HPO4 0.1 – 7.2 -4.7 - 99.8 97 SLE (72) 0.73

0.1 – 1.0 25 10 φ (26) 1.47

0.1 – 1.1 25 11 φ (27) 1.72

0.6 – 8.2 110 24 φ (30) 6.15
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Table 4.4: Experimental data used for parameter estimation. Ternary systems.

System

H2O

+

mTotal T (°C) No. of

Data

Points

Type of

Data

Source Deviation

10.4 – 22.1 25 – 65 12 SLE (58) 1.31NaNO3 –

HNO3 9.8 – 14.0 0 – 20 4 SLE (59) 2.16

8.3 – 11.4 0 11 SLE (65) 0.99

9.4 – 21.0 15 – 75 8 SLE (66) 0.66

8.4 – 14.5 50 9 SLE (46) 2.25KNO3 –

HNO3 4.1 – 15.2 25- 50 9 SLE (60) 2.97

1.7 – 10.4 0 6 SLE (65) 1.38

1.48 – 16.6 0 - 15 14 SLE (66) 1.10

17.2 – 26.6 25 9 SLE (61) 0.39Ca(NO3)2 –

HNO3 18.0 – 20.4 25 3 SLE (62) 1.22

12.9 – 16.6 0 2 SLE (63) 1.35

14.7 – 17.9 0 4 SLE (65) 7.70NH4NO3 –

HNO3 14.6 – 30.8 0 – 30 16 SLE (66) 10.3

2.4 – 37.8 0 - 34 5 SLE (42) 4.69NaH2PO4 –

H3PO4 6.2 – 37.1 0 – 50 25 SLE (43) 3.31

1.1 – 21.0 0 – 25 18 SLE (44) 0.44KH2PO4 –

H3PO4 1.9 – 4.9 25 10 SLE (45) 0.28

3.1 – 16.8 50 10 SLE (46) 0.28

1.7 – 12.7 25 19 SLE (47) 1.34

3.7 – 7.6 25 4 SLE (48) 4.49

2.3 – 36.1 25- 51 18 SLE (49) 3.36

Ca(OH)2 –

KH2PO4 –

H3PO4

2.1 – 43.7 25 - 51 18 SLE (50) 3.21
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Ca(OH)2 –

KH2PO4 –

H3PO4

2.2 – 11.2 25 30 SLE (45) 2.58

KH2PO4 –

KNO3

1.4 - 4.6 0 - 30 21 SLE (24) 0.49

3.0 – 10.4 40 - 60 14 SLE (46) 2.51

KH2PO4 –

KCl

1.9 – 6.9 0 - 75 22 SLE (22) 0.39

NaH2PO4 –

NaNO3

3.4 – 11.6 -18 – 30 114 SLE (34) 1.03

12.9 – 13.7 50 10 SLE (51) 2.49

NaH2PO4 –

NaCl

4.8 – 15.5 0 - 75 17 SLE (24) 1.18

6.4 – 11.1 40 5 SLE (52) 0.65

6.7 – 11.7 25 - 50 19 SLE (37) 2.33

NaH2PO4 –

NH4H2PO4

1.6 – 10.4 -10 - 30 75 SLE (34) 1.88

3.9 – 12.3 40 16 SLE (68) 1.46

2.4 – 14.1 25 16 SLE (69) 2.15

NH4H2PO4 –

NH4NO3

2.8 – 28.9 -10 - 30 42 SLE (24) 1.03
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Table 4.5: Standard thermodynamic properties for solid salts (s) and species in aqueous solution (aq).

( )0 1
f G kJ mol∆ −− ( )0 1

f H kJ mol∆ −− ( )0 1 1
PC J mol K− −

NaH2PO4(s) 1387.854 1520.426 116.860a

NaH2PO4�H2O(s) 1626.145 1809.727 153.000b

NaH2PO4�2H2O(s) 1864.505 2107.005 189.000b

NaH2PO4�H3PO4(s) 2519.885 2800.564 180.000c

Na2HPO4(s) 1609.383 1748.100 150.500a

Na2HPO4�2H2O(s) 2088.572 2337.691 222.900b

Na2HPO4�7H2O(s) 3280.214 3811.880 403.900b

Na2HPO4�12H2O(s) 4470.081 5324.452 584.900b

NaNH4HPO4�4H2O(s) 2394.762 2826.641 360.000c

KH2PO4(s) 1416.434 1550.681 90.414

K2HPO4(s) 1645.157 1794.833 97.082

K2HPO4�3H2O(s) 2363.708 2679.245 205.700b

K2HPO4�6H2O(s) 3077.146 3578.376 314.300b

NH4H2PO4(s) 1210.494 1427.108 142.260

(NH4)2HPO4(s) 1260.425 1588.761 197.000c

(NH4)2HPO4�2H2O(s) 1734.931 2178.370 269.400b

CaHPO4(s) 1684.005 1776.435 110.040a

Ca(H2PO4)2�H2O(s) 3060.574 3374.698 205.700c

H3PO4(aq) 1142.580 1296.219 80.000c

HNO3(aq) 105.158 208.55 -d

H2PO4
-(aq) 1130.603 1279.999 108.000e

HPO4
2-(aq) 1090.191 1306.822 69.622

a Value from NIST70.

b Calculated by additivity rule.

c Value chosen due to lack of experimental data.

d A three parameter correlation was used for the heat capacity of HNO3(aq)

e Value from Marcus72
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5. Introduction to Ion Exchange Equilibria

___________________________________________________________________________

A short introduction to the ion exchange phenomena is given. The most basic principles of reactions involving

ion exchange systems are introduced, and the most common definitions are introduced. The two most commonly

approaches to the modeling of ion exchange equilibria are presented.

___________________________________________________________________________

5.1 Introduction

Observations of the ion exchange phenomena date back to ancient times. The correct

mechanism of the equilibria was however not established until the middle of the nineteenth

century, and it is only in the last few decades, after the introduction of the synthetic ion

exchangers, that the subject has expanded and become a true science from which extensive

industrial applications have emerged. The first large scale industrial ion exchange process was

softening of water, and water treatment is still the largest single application. However, the

number of new applications for which ion exchange processes are used increases rapidly.

Examples of areas with increasing interest in ion exchangers are the mineral, pharmaceutical

and agricultural industries. This chapter gives a short introduction to the area of ion exchange

equilibria and the most important definitions needed for the understanding of the following

chapters will be introduced. For a more detailed description of ion exchange systems in

general and ion exchange equilibria, the reader is referred to the extensive books of

Helfferich1 and Dorfner2.

5.2 Type and Structure

Ion exchangers can in general be divided into two groups; inorganic and organic ion

exchangers. Inorganic ion exchangers are usually made up from crystalline alumosilicates

with cations held on the surface. Organic ion exchangers, often called ion exchange resins, are

in most cases constructed from different polymeric materials and are at present time by far the

most common type of ion exchangers used in both science and industry. The main reason for

this is the capability of tailor making the exchanging material for special purposes when using

synthetic ion exchangers. The organic ion exchange resins are therefore of main interest in
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this thesis, and the following section mainly deals with the structure of organic ion exchange

resins.

5.2.1 Ion Exchange Resins

In general, a polymeric ion exchange resin consists of an arrangement of linear

macromolecules intermolecularly crosslinked to form an infinite network. The crosslinking

makes the network insoluble in the solvent it is exposed to. The most important factors when

trying to understand the properties of an ion exchange resin is:

- the raw materials used for producing the matrix of the resin

- the crosslinking agent

- the type and amount of fixed ionic groups

One of the most important starting materials for the construction of strongly acidic and basic

ion exchange resins is styrene. The styrene is usually polymerized with itself and with

divinylbenzene (DVB) as crosslinking agent. The stiffness of the resin matrix is a function of

the amount of crosslinks and is often given in % of DVB used in the polymerization process.

Different ionogenic groups could be added to the resin surface. By adding e.g. sulfuric acid to

the matrix, sulfuric groups are formed on the resin surface:

The result of the polymerization process is a large insoluble polymeric molecule. The degree

of homogeneity depends on the starting materials and the conditions during the

polymerization. There are several different morphological variants of the resin matrixes. The

two extremes are the gel type and the macroporous resins, which will be discussed in the

following sections.
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5.2.1.1 Gel Type Resins

The gel type resins are usually made up by polystyrene materials and have a relatively low

degree of crosslinking. During the polymerization process, a network of styrene and DVB is

obtained, which is, from a macroscopically point of view, homogeneous and elastic of nature.

The matrix is macroporous in the dry state, but when in contact with a good solvent the matrix

swells reversibly to form a gel. In this form, the matrix could be considered as having a fairly

uniform structure. The matrix of the gel resin has no substantial porosity until it is swollen in

a suitable medium. Even though there is not an actual porosity in these types of resins, the

channels that exist as a result of swelling could be used for solutes to enter the resin phase.

These types of resins are soft and compressible in their swollen state and the level of swelling

depends on the degree of crosslinking and the nature of the solvent. A picture of a gel type

resin is shown in figure 5.1. The figure clearly shows that light penetrates the resin which is

due to the homogeneity and softness of the matrix.

Figure 5.1 Amberjet 1200 gel type resin. Picture captured with microscope at Rohm & Haas
experimental lab.

5.2.1.2 Macroreticular Resins

Macroreticular resins are produced using an adequate solvent during the polymerization so

that a porous structure is formed. Compared to gel type resins macroporous exchangers are

generally more rigid, less compressible and change their volume less when solvent is added.

These kinds of resins consist of macromolecular chains which are heavily crosslinked. The

structure can be regarded as having a discrete and accessible internal surface and surface area

even in the dry state. Good solvents for the primary polymer may cause the resin to swell in
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spite of the high degree of crosslinking. The different types of macroreticular resins differ on

a microscopic level. However, on a macroscopic level they are usually very alike. The regions

in the resin with high matrix density are the reason for considerable mechanical strength. The

porosity in the resin may be defined as an intrinsic porosity. The overall structure and

properties of this type of resin are very non-uniform. A typical example of a macroreticular

resin is shown in figure 5.2.

Figure 5.2 Amberlyst 35W macroreticular resin. Picture captured with microscope at Rohm & Haas
experimental lab. Light is reflected on the resin surface and causes white dots.

The figure shows that the resin is not permeable for light due to the heterogeneity of the

matrix. In a good solvent the exchanging ionic substances are allowed to diffuse quickly

through the matrix. However, in a bad solvent the diffusion requires motion of the polymer

walls and is generally considered a slow diffusion.

5.3 Definitions and Principles

An ion exchange reaction may be defined as the reversible interchange of ions between a solid

phase (the ion exchanger) and a solution phase. The ion exchanger is usually insoluble in the

medium in which the reaction occurs. This means that ion exchangers could be characterized

as a solid material which carries exchangeable cations or anions. Carriers of exchangeable

cations are called cation exchangers and carriers of anions are called anion exchangers. A

cation exchange process could be represented by the following equilibrium:

( ) ( ) ( ) ( )AR B aq X aq BR A aq X aq+ − + −+ + + +� [5.1]

where R denotes the resin or ion exchanger phase.



Chapter 5. Introduction to Ion Exchange Equilibria
___________________________________________________________________________

� ��

The participating ions (in this case the cations) are called counter-ions and the non-

participating ions (in this case the anion) are usually called co-ions. The amount of fixed

ionogenic groups on the ion exchange surface is called the capacity and is usually given in

meq/g of exchanging material. The reaction is also graphically represented in figure 5.3.

Figure 5.3 Graphical representation of an ion exchange reaction. The resin in its initial form is brought
in contact with an aqueous solution of salt with a competing cation.

The relation between the two different counter-ions is called the selectivity. The molal

selectivity coefficient is defined as:

B A

A B

z z
A AR B
B z z

BR A

m m
K

m m

⋅=
⋅

[5.2]

5.3.1 Swelling

When the ion exchanger is brought into contact with a liquid phase it may shrink or swell

depending on its initial state and the interactions with the surrounding liquid phase. The main

driving force for the solvent uptake is the hydration of the ionic species in the resin and the

tendency of the liquid in the pores to dilute itself. The concentration of ionic components

inside the resin phase is usually much higher than in the surrounding bulk phase. The resin

will therefore take up solvent in order to dilute the resin phase solution. During the absorption

of solvent the resin matrix stretches to make room for the solvent molecules. This

phenomenon is also called swelling. The expanded matrix causes a pressure on the pore phase

and the equilibrium is attained when the swelling pressure balances the driving force of the
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solvent uptake. This means that the degree of swelling is mainly a function of the

concentration of ions in the surrounding liquid phase, the capacity of the resin and the

softness of the ion exchanger matrix. Examples of this phenomenon are shown in figure 5.4

and 5.5.
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Figure 5.4 and 5.5. Absorption of water in polystyrene resins as a function of the degree of
crosslinking and concentration of salt in the surrounding bulk solution.

(�) Data from Boyd and Soldano3, (�) data from Christensen and Thomsen4.

Figure 5.4 shows that the higher the degree of crosslinking, the lower is the sorption of water.

The reason for this is that the energy used for stretching the matrix increases with decreasing

flexibility of the matrix, and this is why the uptake of water is less at equilibrium. In figure

5.5 the solvent uptake is given as a function of the concentration of salt in the bulk solution.

When the concentration of salt in the bulk phase increases, the concentration difference

between the two phases decreases. The driving force for the uptake is therefore smaller and

solvent uptake is reduced.

5.3.2 Sorption of Solutes

Depending on the aqueous phase concentration and pore volume of the ion exchanger, the

different solute species can partition between the pure solvent phase and the ion exchanger

phase. In the ideal case solutes would be sorped in the resin phase until the concentration in

the two different phases would equal. However, this is rarely seen due to effects from the size

of the molecules and the interactions with the fixed ionic groups and counter-ions.

The sorption of ionic species is somewhat lower than for non-ionic solutes. The reason for

this is the electrostatic forces arising from the presence of fixed ionic groups and the counter-
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ions in the resin phase. In figure 5.3 the concentration of the anion X- is higher outside the

resin than inside and the concentration of the cations A+ and B+ are higher in the resin phase

than in the bulk phase. If the components were neutral, the concentration differences would

even out by diffusion like in the case of non-ionic species. However, migration of cations into

the bulk solution and of anions into the resin phase would cause an electric potential

difference between the two phases. This is the so-called Donnan effect. The equilibrium is

attained when the tendency of the ions to diffuse between the two phases is leveled out by the

forces of the electric field. The Donnan potential has thereby the effect that co-ions are

repelled from the resin phase solution, and at equilibrium the concentration of co-ions inside

the resin is usually much lower than in the external solution. An example of this behavior is

given in figure 5.6 where data for the absorption of KCl on a gel type resin are shown.
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Figure 5.6 Absorption of KCl in an Amberjet 1200 resin on K-form.

(�) data from Christensen and Thomsen4.

The data in figure 5.6 clearly shows that the Donnan effect excludes the co-ion from the

internal solution, and that it is most dominant at low concentrations.

5.4 Modeling of Ion Exchange Equilibrium

Usually two different approaches are used for the description of the ion exchange

phenomenon. In one of the approaches the ion exchange process is described as an osmotic

equilibrium and in the other as a heterogeneous reaction. Usually the osmotic approach gives
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more rigorous models and a higher degree of information about the ion exchanger phase, but

therefore also demands more complex experimental data for regression of model parameters

etc.

5.4.1 Heterogeneous Approach

A common assumption in the heterogeneous approach is that the maximum uptake of ions by

an ion exchanger is limited to the number of functional groups in the ion exchanger. This

means that there is no uptake of ions with the same charge as the functional groups. In

addition to this, it is assumed that the amount of solvent in the ion exchanger is independent

of the ionic form of the exchanger, i.e. the swelling is constant during the exchange reaction.

This means that the reaction could be considered a pure heterogeneous reaction between ions

held in a “solid solution” and ions in a liquid solution. The reaction is shown schematically in

figure 5.7. The model approach is very simple and takes only the selectivity of the ion

exchanger for the different counter-ions into account. This means that no information of the

absorption of solutes and solvent and of the swelling of the ion exchanger is given when this

approach is used. The application of the approach to ion exchange data usually consists of a

thermodynamic model for the description of the aqueous phase thermodynamics and some

kind of empirical correlation of the non-ideality of the “solid solution”5,6.

�

��������� �

Figure 5.7: Ion exchange reaction according to the mass action law.

The assumption of the model holds for the prediction and the correlation of equilibria between

ion exchangers like zeolites and resins with a high degree of crosslinking and aqueous

solutions with low to moderate concentrations of ions. At low bulk phase concentrations, the

amount of sorped solutes is negligble, and the amount of solvent in the resin could be

�
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considered almost constant during the reaction due to the rigid structure of the ion exchange

matrix. However, the approach is often used for the description of other systems as well. The

main reason for this is that the data measured in the industry often lacks information about

complete solvent/solute distribution between the two phases. Therefore, it is more often

convenient to use a more simple approach for the modeling of the available data. In chapter 6

this approach is used for the modeling of both binary and ternary ion exchange isotherms for a

variety of different ion exchange systems.

5.4.2 Osmotic Approach

In the osmotic approach the resin phase is considered a liquid phase encaged in an elastic

structure. The elastic structure plays the same role as a semi permeable membrane in an

osmotic equilibrium. The elastic structure allows the solvent to freely pass. However, only

some solute molecules are allowed to pass. As in the case of osmotic equilibrium, there is a

pressure difference between the gel phase and the surrounding fluid. When the resin is in

equilibrium with a liquid phase the equilibrium conditions consist of a chemical equilibrium,

but include an additional mechanical equilibrium as the energy of the resin matrix structure

depends of the volume of the gel phase. When in contact with a liquid phase, the resin

therefore swells or shrinks until mechanical equilibrium is reached.

The equilibrium could be represented using the model of Gregor3 shown in figure 5.8. In the

left hand side the resin pore is illustrated with the functional groups , , that are incapable of

leaving the resin phase. In the right hand side of the figure an infinite solution is surrounding

the resin particle. The matrix of the resin particle is represented by elastic springs which are

stretched when the resin swells.
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Figure 5.8 Osmotic approach for the description of ion exchange equilibria according to Gregor3

Usually the models for the description of ion exchange equilibria using this kind of approach

consist of a thermodynamic model for the modeling of the two liquid phases and a mechanical

model for taking the energy of elasticity of the resin matrix into account8,9,10. The osmotic

approach gives a very detailed level of information of the ion exchange equilibrium and could

be used for a higher understanding of the forces related to these kinds of reactions. However,

the drawback of this model is that very detailed data for the swelling and complete

distribution of all species between the two phases is needed for regression of model

parameters. In chapter 7 the osmotic approach is used for the modeling of the distribution of

water and ions between a bulk phase and different ion exchange resins.

5.5 Conclusion

The most basic principles of reactions involving ion exchange systems have been summarized

in this chapter. Besides, the two most common approaches for the modeling of ion exchange

equilibria have been presented. In the following chapters these two approaches will be

presented in more detail and the capabilities and modeling aspects will be discussed by

applying the approaches to both new and existing experimental data.
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6. Modeling Ion Exchange Isotherms Using a Heterogeneous

Approach

___________________________________________________________________________

Ion exchange isotherms have been modeled using an approach in which the ion exchanger is considered a solid

solution phase. The aqueous phase has been modeled using the Extended UNIQUAC model, while the ion

exchanger phase has been models using the Margules 1 coefficient model. The thermodynamic equilibrium

constant has been calculated individually from the experimental data by a very simple approach. The method has

been successfully applied to a variety of both binary and ternary ion exchange systems including new

experimental isotherms for the (H+) - (Na+, K+, Ca++) with (Cl-, NO3
-, SO4

--, H2PO4
-) as co-ions at 1N and 25°C.

___________________________________________________________________________

6.1 Introduction

Ion exchange resins have been used commercially for more than a century and are at present

time used extensively in the industry for separation and purification processes. A description

of the equilibrium between a multi ionic solution and an ion exchanging material is essential

for the development of new and existing ion exchange processes. Especially the choice of

design and operating conditions require a detailed knowledge of the ion exchange selectivity.

The amount of experimental data necessary for describing the ion exchange equilibria

increases tremendously with each exchanging ionic species added to the system. Theoretical

models that allow the prediction of multicomponent equilibria from corresponding binary

experimental equilibria data are therefore very useful when designing ion exchange processes.

As mentioned in the previous chapter usually two different approaches for the description of

the ion exchange phenomenon are seen in the literature. In one of the approaches the ion

exchange process is described as an osmotic equilibrium and in the other as a heterogeneous

reaction. Usually the osmotic approach gives more rigorous models and a higher degree of

information of the ion exchanger phase. However, due to lack of data, works dealing with the

osmotic approach very often use assumptions from the heterogeneous approach. In addition to

this, it is very common in the industry only to measure the exchange isotherms of the ion

exchange system. The measured data lack information of e.g. swelling and solvent sorption

which plays an important role in the osmotic approach. Therefore, it is difficult to use this
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method on the given data. It is therefore of interest for the industry to develop simple but less

rigorous methods for describing ion exchange isotherms.

In this chapter ion exchange isotherms are modeled using an approach where the exchanging

phase is treated as a solid solution. The approach is fairly empirical, but is capable of

consistently describing the ion exchange isotherm based on very few parameters.

Additionally, the method is capable of performing reasonable predictions with varying

concentrations. Only very few data exist showing the co-ion effect on the ion exchange

equilibrium in systems where ion-pairing/speciation takes place. Therefore, new exchange

isotherms have been experimentally measured for different H+ - M+/++ systems with Cl-, NO3
-,

H2PO4
-, SO4

-- as co-ions at 25°C. These new data are also correlated and the model is

successfully capable of predicting the correct trend for the ion exchange isotherms

dependence on the different co-ions.

6.2 Experimental Section

The measurement of ion exchange equilibria isotherms is far from a new discipline and can

usually be measured by simple means. Several standard procedures exist for measurement of

these types of data, and the methods used in this thesis are closely related to these standard

methods. Ion exchange equilibria are usually measured by equilibrating the ion exchanger

with a solution of both the competing counter-ion species, and then analyzing the ionic

composition of the ion exchanger after separating it from the solution. The amount of the two

different counter-ions can subsequently to the separation be found by displacing the two

competing ions with a solution containing a third counter-ion.

The experiments could be performed either in batch form with closed flasks1 or in columns. In

this work the column method is chosen. The method is convenient for performing many

successive experiments with the same resin, which is the case in this work. In addition to this

it is easy to ensure a stable temperature with a heating jacket. Two of the most important

sources of experimental error are the conditioning of the resin and making certain that

equilibrium is obtained before the wash and elution of the column is performed. In this work

the macroporous resin Amberlyst 40CW is used. The resin has been chosen mainly because it

is used in many industrially relevant processes e.g. the production of fertilizer salts. Bulk
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solutions of 1N were used in all experiments due to the fact that most of the used salts do not

precipitate at this concentration at 25°C.

6.2.1 Preparation of Experimental Equipment:

Glassware:

All glassware used in this work was of class A grade and was prior to use washed in dilute

nitric acid followed by washing with ultra pure (UP) water in order to remove all traces of

impurities.

Electrolyte solutions:

Electrolyte stock solutions of 1N were prepared in 1L volumetric flasks with salts of

analytical grade where UP water with a resistivity of 18.2 M�⋅cm was used as a solvent.

Resin conditioning:

The required amount of resin was first washed with 5 bed volumes of water in order to

remove impurities originating from the polymerization process. The resin was converted into

the desired form by passing the resin with at least 10 bed volumes of a 1N solution until

complete conversion of the resin was obtained. Subsequently the resin was washed with 10

bed volumes of water to remove any absorbed salt.

6.2.2 Measurement of the Physical/Chemical Properties of the Resin:

A good number of standardized experimental methods are available for the measurement of

the most common properties of ion exchange resins. The experimental methods used in this

work are similar to the different official test methods found in the literature1.

6.2.2.1 Equilibrium Water Content Measurement:

50mL of resin was equilibrated with UP water for 30 min and transferred to a 6 cm Buchner

funnel loaded with medium porosity filter paper. The funnel was placed on a vacuum flask

covered with a rubber stopper and connected to a humidifying tower. Vacuum was applied at

40 ± 2 torr for 5 min. The prepared resin was transferred to a dry tared weighing dish and the

wet weight was recorded. The sample was dried at 105 ± 2 °C for 12 hr. Finally the resin was
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cooled in a desiccator and the dry weight recorded. The fraction of water in the resin when

equilibrated with pure water was then calculated by the following equation:

1
dry
R

w wet
R

w
q

w
= − [6.1]

6.2.2.2 Capacity Measurement:

A sample of the resin was treated in the same way as for the equilibrium water content

measurement. Afterwards a known weight, approximately 15g, of the resin was converted to

H+ form by placing the sample in a column and passing 1L of 1N HCl through the column

with a flowrate of 25mL/min. After the conversion, the sample was rinsed with 1L of UP

water. Next 1L of 0.5 N NaNO3 was passed through the column with a flowrate of 25mL/min

in order to elute the H+ from the sample. Exactly 1L of effluent was collected in a volumetric

flask. Next, 100mL of the effluent was transferred to a titration beaker. The sample was

titrated with 0.1000N NaOH. After this, the capacity can be found according to the following

equation:

10

(1 )
NaOH NaOH

wet
R w

c V
q

w q

⋅ ⋅=
⋅ −

[6.2]

The equation expresses the amount of functional groups per grams of dry resin. The

coefficient 10 in the equation relates to the fact that only 100mL of the 1L solution are

titrated.

6.2.3 Measurement of Ion Exchange Isotherms

A sample of the resin Amberlyst 40CW on the appropriate form was treated in the same way

as for the equilibrium water content measurement. Afterwards, a known amount of wet resin,

approximately 70 grams, was transferred to a thermostatically controlled column at 25±0.1°C

with internal diameter of 1.5cm and 30cm in internal height. Inert glass beads were used for

topping of the column in order to improve the liquid flow in the column. The solution with the

two competing counter-ions of interest was passed through the column with 5mL/min until

the effluent had the same composition as the feed. The column was then briefly purged with

pure water to displace the interstitial solutions. After the purge the two counter-ions were

displaced from the exchanger by passing a concentrated solution (3N) of NaCl at 5mL/min.
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The displacement was continued until there was no trace of H+ in the eluent. A test showed

that approximately 4 bed volumes of NaCl were necessary to elute all the counter-ions of

interest from the column.

The amount of H+ in the eluent was analyzed by titration with 0.1N NaOH (see appendix E)

and the amount of the competing counter-ion was calculated using the total capacity of the

column:

10 NaOH NaOHH
n c V+ = ⋅ ⋅ [6.3]

/
resin

1000M H

w q
n n+ ++ +

⋅= − [6.4]

To test that equilibrium actually was obtained before purge and elution, the experiment was

carried out from both sides of the equilibria isotherm and the results compared.

6.3 Theory

6.3.1 Equilibrium Conditions

We consider the ion exchange equilibrium between an aqueous solution containing the ions

AzA and BzB and the ion exchanger R− . If it is assumed that the swelling of the ion exchanger is

constant and that the only uptake of ions is directly connected to the stochiometric ion

exchange reaction, the equilibrium can be described as a pure heterogeneous chemical

reaction where ions in the solution shift place with ions bound to the surface of the ion

exchanger:

A B

B A

z z
B A z B z Az A z BR z AR z B+ +� [6.5]

where R denotes the ion exchanger phase.

The criterion for phase equilibria in terms of chemical equilibrium is given by:

z zA Bz zB A
B A BR A B ARA B

z z z z 0µ µ µ µ+ − − = [6.6]

In the aqueous phase we define the chemical potential in terms of molality:
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( )i i i i( T , p ) RT ln mµ µ γ∇ ∇= + [6.7]

iµ∇ is the chemical potential of component i in the standard state, based on the asymmetrical

convention and the molality scale.

For the ion exchanger phase, the chemical potential is defined as:

0 0
i i i i( T , p ) RT ln( x )µ µ γ= + [6.8]

xi is the mole fraction of component i on the resin surface, 0
iµ is the standard chemical

potential of the ion exchanging component based on the symmetrical convention and the mole

fraction scale, hence the standard state of e.g. component A is the ion exchanger on pure A

form.

The thermodynamical equilibrium constant for equation [6.5] is according to eq. [6.7 – 6.8]

defined as:

( )
( )

( )
( )

B
A

z zA A

B A

z zB B

z
z

AR ARB BB
A z z

A A AR AR

x fm
K

m x f

γ
γ

= ⋅ [6.9]

where zA

zA

z zA B

AR

AR
AR BR

n
x

n n
=

+

The apparent equilibrium constant KC is a convenient definition as it only consists of

parameters that can be measured experimentally or calculated using appropriate models:

( )
( )

( )
( )

B
A

zA

B A

zB

z
z

ARB B
C z z

A A AR

xm
K

m x

γ
γ

= ⋅ [6.10]

This means that the following equation applies:

( )
( )

B

zA

A

zB

z

ARB
A C z

AR

f
K K

f
= [6.11]
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Equation [6.11] states that the ratio between the activity coefficients in the resin phase can be

found from experimental ion exchange isotherm data if a suitable model for the aqueous

solution activity coefficients is used.

In some works the equivalent fraction is used for the resin phase instead of mole fractions.

The equivalent fraction is defined as:

zB

zB

z zB A

A AR

AR
B BR A AR

z n
y

z n z n
=

+

6.3.2 Aqueous Phase Thermodynamics

Single-ion activities are not defined rigorously within chemical thermodynamics and the

possibility of measuring single ion activity coefficients in ionic solutions are still a subject of

substantial discussion2. It would therefore be most appropriate to introduce equation [6.9] in

terms of the activities of the two salts in the aqueous phase or in terms of mean ionic activity

coefficients. However, as shown in appendix F, it is only a matter of notation whether or not

the co-ions are included in the expression for the thermodynamic equilibrium constant.

The activity of one electrolyte in a solution of another electrolyte is a matter that has been

studied by several different investigators during the past two centuries. The most important

experimental methods for determining this property are the measurement of one salt’s

solubility in solutions of other salts or by measurement of osmotic coefficients or mean

activity coefficients of the multicomponent solution. In the case of SLE data this type of data

contains information about the activities of the individual salts in multicomponent solutions.

This is realized by observing the solubility product of the salt C Aχ α in an aqueous solution:

( ) ( ) ( )C A s C aq A aqχ α χ α+� [6.12]

The solubility product is given as:

C A C AK a a
χ α

χ α= [6.13]

where the activity of the ions are defined as i i ia m γ ∇= . Eq. [6.13] means that SLE data of a

multicomponent solution give information of the activity of the salt C Aχ α in the solubility
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point independently of the other ions in the solution. The osmotic coefficient and mean molal

activity coefficient however do not include any information of the activity of one of the salts

in the mixture, but only a value of the total or mean activity of the solution. The mean activity

coefficient is defined in the following manner:

1
ln ln

ions

i
Nn

γ γ± = � [6.14]

Values of mean activity coefficients of multicomponent electrolyte solutions could be found

from e.g. experimental electromotive force measurements. However, as seen from eq. [6.14],

this value includes no information of the activity of neither the individual salts nor the

different ions. This means that when regressing parameters of a thermodynamic model to

these types of data, there is no guarantee that the model is capable of calculating the

relationship between the activities of the different salts correctly.
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Figure 6.1. Experimental data for the solubilities in aqueous solutions of NaNO3 and KNO3 at 25°C.

The phase diagram for the ternary aqueous system NaNO3 – KNO3 is shown in figure 6.1. In

the case of single salt solutions, osmotic coefficients are adequate for obtaining data of single

salt activities, and in the ternary system, SLE data provide the relevant information. This

means that in this case it is possible to gather information about the individual salt activities in

the borderlines of the area marked with a question mark. However, in the entire area inside

the borders only information of the overall activity of the solution exists. This implies that

?
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even though two different thermodynamic models are capable of calculating the mean activity

coefficient of a ternary mixture correct, it is not certain that the models give the same ratio

between the activities of the two salts in the solution. An example of this is given in figure

6.2 where the Pitzer and the Extended UNIQUAC model have been applied to the ternary

system Na+ - K+ - NO3
- at a total molality of 2 moles of salt pr. kg water. The parameters used

in the Pitzer model have been regressed on the basis of osmotic coefficient data3 while SLE

data, osmotic coefficients and thermal data have been used for regression of the parameters in

the Extended UNIQUAC4 model.
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Figure 6.2: Mean molal activity coefficients and relation between the cationic activity coefficients in
the system NaNO3 – KNO3 with a total molality of 2m.

(–) Extended UNIQUAC model (--) Pitzer model.

Figure 6.2 shows that the two different models give very similar values of the mean activity

coefficient of the aqueous ternary solution. However, the ratio between the activity

coefficients of the two cations is somewhat different for the two models. This is seen more

clearly in figure 6.3 where relative deviations between results calculated with the Pitzer model

and the Extended UNIQUAC models are shown. The deviations given in the figure are:

( ) ( )( ) ( )100 /
UNIQUAC Pitzer UNIQUAC

AAD γ γ γ± ± ±= ⋅ − [6.15]



Chapter 6. Modeling Ion Exchange Isotherms Using a Heterogeneous Approach
___________________________________________________________________________

� 
�

100 /Na Na Na

K K KUNIQUAC Pitzer UNIQUAC

AAD
γ γ γ
γ γ γ

+ + +

+ + +

� �� � � � � �
� �= ⋅ −� � � � � �� � � � � �� �� � � � � �� �

[6.16]

The figure shows that the relative deviation between the fractions of the two cation activity

coefficients calculated with the two different models is very large, even though the relative

deviation in mean activity coefficient for the mixture is rather small.
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Figure 6.3: Deviation between Extended UNIQUAC and Pitzer model in the NaNO3 – KNO3 system.
(–) eq. [6.15], (--) eq. [6.16]

The calculation has been repeated for the aqueous NaCl - CaCl2 system at a total molality of

1m and the results are shown in figure 6.4. In this case, the deviation in the calculated

fractions between the two cation activity coefficients using the two different models is up to

65% even though the deviations in mean activity coefficients of the mixture do not exceed

3%.
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Figure 6.4: Deviation between Extended UNIQUAC and Pitzer model in the NaCl – CaCl2 system.
(–) eq. [6.15], (--) eq. [6.16]

In the work presented here, the activity coefficients of the ions in the aqueous phase are

described using the Extended UNIQUAC model. As described in chapter 4, the extended

UNIQUAC model has previously been applied to describe the excess Gibbs energy of

aqueous electrolytes solutions containing many different ions4,5,6. One of the strengths of the

Extended UNIQUAC is that model parameters are valid in a very large interval in temperature

and concentration. To a comparison, most of the available parameters for the Pitzer model are

only valid at 25°C, and only in some cases at concentrations up to saturation7. Another

advantage of the Extended UNIQUAC model is that both binary and ternary SLE data have

been included in the parameter regression. This means that the model at least is capable of

describing the relationship between the activities of the two salts at the saturation point.

6.3.2.1 Influence of Speciation and Ion Pairing on the Equilibria

The influence of speciation on the ion exchange equilibria has been discussed in several

different works. In many works these types of equilibria are included in the model by

calculating the free ion concentration e.g. from experimental stability constants for the ion

pairs8,9. However, this is a problematic approach when the free component concentrations of

the ions are combined with aqueous solution activity coefficients that are calculated using

activity coefficient models with the most commonly reported parameters. This is illustrated
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by examining the definition of the activity of an electrolyte. If we consider a salt C Aχ α that

can form ion pairs, following equilibria occur in aqueous solutions:

( ) ( ) ( )C A s C aq A aqχ α χ α+� [6.17]

( ) ( ) ( )C aq A aq C A aqχ αχ α+ � [6.18]

The activity of the electrolyte C Aχ α that forms ion pairs in aqueous solution can be expressed

in two equivalent ways:

( ) ( ) ( ) ( )C A C ,T C ,T A,T A,T C ,F C ,F A,F A,Fa m m m m
χ α

χ α χ αγ γ γ γ= = [6.19]

The subscripts F and T refer to respectively the free concentrations and the total or

stochiometric concentrations of each species. The free concentration of a species is defined as

the total concentration minus the amount of the species bound in ion pairs. For the majority of

the most common salts, parameters for e.g. the Pitzer model have been regressed using

experimental data where the reported property (SLE, osmotic coefficient, mean molal activity

coefficient etc.) are given as a function of the total molality of the salt4,7. This means that the

activity coefficients calculated by the model are most likely related to the total molality of the

ion, and that ion pairing/speciation implicit is included in the fitted parameters, and hence in

the activity coefficients calculated by the model. If we once again consider the solubility of

the salt C Aχ α in water, then the solubility product is given as:

( ) ( )C A C A C C A AK a a m m
χ α

χ αχ α γ γ= = [6.20]

When the parameters of a thermodynamic model are fitted to e.g. SLE data, the activity

coefficients used in the parameter fitting are dependent on the definition of the components in

the aqueous phase. If the salt in eq. [6.20] is assumed to be a folly dissociated electrolyte and

the parameters of the thermodynamic model are regressed on the basis of this assumption,

then the same assumption should be used when the activity of the given salt later on is

calculated using the model parameters. This relation has not until now been a subject of

discussion within the area of ion exchange thermodynamics. However, the problematic

approach of using free ion concentrations with thermodynamic models based on complete

dissociated salts is seen in many published works.
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Based on the discussion in this section we therefore in this thesis use the same component

concentrations in the aqueous phase for calculating the activities that were used when

regressing the parameters for the applied thermodynamic model. This will maintain a

thermodynamic consistent in the modeling work.

6.3.3 Ion Exchanger Phase Thermodynamics

The objective of the excess Gibbs energy model for the ion exchanger phase is to equate the

excess Gibbs energy to a simple function of composition.

Several different approaches have been proposed for the modeling of the nonideality of the

components in the ion exchanger phase. However, due to the fact that there are no

experimental means of determining the activity coefficients of the components in the ion

exchanger phase, all the models presented at present time are more or less empirical. Some of

the proposed models have been taken from the thermodynamic theory of liquids1,10, while

others are statistical approaches derived for the use in ion exchange systems11,12. The

requirements for the resin phase thermodynamic model are unambiguous. The Gibbs excess

energy is a function of the solid-phase mole fraction and for any solid-phase species
AzAR and

the Gibbs excess energy should be zero for 1
zA

ARx = . Usually the excess energy models can

be divided into three algebraic forms: polynomial, fractional and logarithmic. The choice of

model depends on the degree of nonideality in the system and is in general a question of

describing the property:

ln ( )
zA

C ARK f x=

In some works12 it is proposed to divide ion exchange systems into 4 classes:

1. Ideal systems. Systems with a constant value of CK and with activity coefficients

equal to unity.

2. Regular systems. Systems with a linear expression of ln CK as function of the solid

phase molefraction and with a second power dependency of the activity coefficients

on the solid phase molefractions.
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3. Irregular statistic systems. Systems in which ln CK could be expressed by an equation

of the second power and in which the activity coefficients could be described by

equations of the third power.

4. Irregular nonstatistical systems. Systems in which the counter-ions do not distribute

statistically between the different exchange sites and therefore require special

treatment of the non ideality.

It is a well known problem that it is difficult to obtain exact experimental results at low

concentrations of one of the two components. In addition to this, most of the available data for

ion exchange isotherms are somewhat scattered due to experimental uncertainties. An

example of this is given in figures 6.5 and 6.6.
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Figure 6.5. Na+ - Ca++ ion exchange on Clinoptolite at a total molality of 0.5N. Apparent equilibrium
constant as function of mole fraction of Ca++ on the resin. Data from Pabalan and Bertetti13.

In the figures 6.5. and 6.6, the apparent equilibrium constant has been calculated for Na+ -

Ca++ ion exchange from data of two different sources. The equilibrium constant has been

calculated according to eq. [6.10] and the activity coefficients of the aqueous solution have

been calculated using the Extended UNIQUAC model. The data used in figure 6.5 is from the

extensive work of Pabalan and Bertetti13. The figure shows a huge scattering of the data. This

makes it very difficult to identify what type of system the data represents. There is no doubt
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that a 3. degree polynomial would represent the data in figure 6.5 better than a straight line.

However, there is no assurance that the representation would not include a large part of the

experimental noise of the data.

Figure 6.6 shows the apparent equilibrium constant in the Ca++ - Na+ system calculated on the

basis of data from Shallcross et al.14 The data shows clearly a linear trend in the mole fraction

range of 0.2 – 0.8. However, as the mole fraction goes towards 0 or 1, the data are more

scattered due to the experimental procedures. This is typical for many ion exchange data and

is the reason why it is very often difficult to decide what type of system the data represent.

Very often the system is classified as being more irregular than it actually is due to the

experimental scattering.
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Figure 6.6. Na+ – Ca++ ion exchange on Amberlite 252 at a total molality of 1.0N. Apparent
equilibrium constant as function of mole fraction of Na+ on the resin. Data from Shallcross et al.14.

The impact of this scattering is seen in the regressed parameters of the thermodynamic model

of the ion exchanger phase. In many cases it is seen that the regressed parameters are highly

intercorrelated; hence the system could just as well have been correlated using a simpler

model. In this thesis it is chosen to treat all systems as regular systems. This means that the

apparent equilibrium constant could be represented by a straight line, and that the Gibbs

Excess energy of the ion exchanger phase could be calculated using a polynomial expression

of the 2. degree.
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The Margules 1 coefficient equation15 is therefore used for describing the non-ideality in the

ion exchanger phase. Using this equation reduces the number of parameters and thereby also

reduces the numerical difficulties compared to previous works8,9,11,16:

ij0 2
i j

j

ln ( x )
RT

Λ
γ =� [6.21]

where ijΛ is an ion exchanger specific parameter and 0,ii ij jiΛ = Λ = Λ . R is the gas constant

and T is the absolute temperature in K. For comparison, the Wilson model used in many

previous works includes 2 parameters and is given by the equation:

0ln 1 ln ik
i j ji k

j k j jk
j

A
x A x

x A
γ = − −� � �

[6.22]

where 0,ii ij jiA A A= ≠

6.3.4 Calculation of the Thermodynamic Equilibrium Constant

It is a very widespread procedure to estimate the thermodynamic equilibrium constant

independently from the resin phase activity coefficients1,8. The main reason for this is that a

high correlation between the different estimated parameters is often observed when regressing

the resin phase activities simultaneously with the thermodynamic equilibrium constant. The

most common approach is to eliminate the resin phase activity coefficients leading to an

expression for the equilibrium constant only dependent on experimentally measurable values

and the solution phase activity coefficients. Gaines and Thomas17 were some of the first

scientists who decoupled the thermodynamic equilibrium constant from the resin phase

activities. They showed that by solving the Gibbs-Duhem equation for the ion exchanger

phase following expression could be obtained (see appendix G):

zB

1

C BR0
ln K ln K dy= � [6.23]

which is similar to the expression presented by Arsinger et al.18.

Ioannidis et al.8 presented a slightly different decoupling method based on the same basic

principles. Their motivation was that usually the experimental datapoints in the endpoints of
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the isotherm are subject to large experimental errors which could result in an inaccurate

numerical integration of eq. [6.23]. However, by assuming that all the given systems are

regular and that ln ( )
zA

C ARK f x= thereby could be fitted as a straight line, the error related to

the experimental datapoints is minimized. In this work we have chosen to use equation [6.23]

for determining the thermodynamic equilibrium constant. A straight line has been fitted to the

experimental data followed by numerical integration between the two pure states.

6.4 Results and Discussion

The resin properties are calculated from the measured experimental data on the basis of eq.

[6.1-6.2]. The properties are given in table 6.1.

Table 6.1: Properties of the used macroreticular resin.

Amberlyst 40CW

% DVB 16.5

Capacity (H-Form) (eq /kg dry) 5.34

Water content (H-form) (%) 48.3

The experimental isotherm data are calculated using eq. [6.3-6.4]. The validity of the method

was tested by measuring the isotherms from both endpoints. In figure 6.7 the data for the H+ -

K+ system are shown. In one set of data, resin on K+ form has initially been used, and then a

1N solution of KCl and HCl in different relative fractions has been passed through the

column. In the other set of data the resin was initially in H+ form.

The figure shows that the deviation between data from the two different series of experiments

is very small. It can be concluded that equilibrium is obtained between the ion exchange resin

and the bulk solutions with the given method. Isotherms have been measured for the H+ - K+,

H+ - Na+ and H+ - Ca++ systems with both Cl-, NO3
-, SO4

-- and H2PO4
- as co-ions except in the

case of the H+ - Ca++ in which SO4
-- has been omitted due to the low solubility of CaSO4. All

data is given in appendix H. The data for Cl- and NO3
- as co-ions are in all experiments

represented by almost identical isotherms and the NO3
- data are therefore omitted in the

further discussion.



Chapter 6. Modeling Ion Exchange Isotherms Using a Heterogeneous Approach
___________________________________________________________________________

� ��


0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

xH

xH
R

Figure 6.7: Exchange isotherm for the system H+ - K+ in 1N chloride solutions.
(�) resin initially on K+ form, (�) resin initially on H+ form.

6.4.1 Binary Systems

The Margules 1 coefficient model has been applied to a large number of ion exchange data,

including the data measured in this work. In all examples the aqueous phase thermodynamics

have been calculated with the Extended UNIQUAC model with the parameters given in

chapter 4 or in previous published articles4,5,6,19. The thermodynamic equilibrium constant has

been calculated according to eq. [6.23]. All molarity concentrations have been converted into

molality using the correlation and parameters given in chapter 3.

6.4.1.1 Impact of the Resin Phase Thermodynamic Model

The Margules 1 coefficient model eq. [6.20] and the Wilson model eq. [6.21] have been

applied to a number of ion exchange isotherm data. The deviations for each system have been

calculated using eq. [6.24] and the results are given in table 6.2.

exp

exp

,
zB zA

zA zB

ARcalc B

BRA

m xK K
SD ABS K

K m x

� �−
= =� �� �

� �
� [6.24]

The table shows that the deviation is between 5-14% for both models. This degree of

deviation is very common for ion exchange data8,21, and is mainly due to scattering in the data
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which is a result of the experimental methods used. The table also shows that the magnitude

of the deviation is the same for the two models. This verifies the previously mentioned fact

that when applying the Wilson model to this type of data, the two parameters are highly

intercorrelated.

Table 6.2: Comparison of correlations using the Wilson and Margules 1. coefficient model.

Type of exchange Anions Ionic Strenght (mol/L) Margules 1 par. Wilson Data ref

SD SD

Na - K Cl, NO3 0.005, 0.05, 0.5 0.141 0.132 13

Na - H Cl 0.01, 0.05, 0.5 0.117 0.115 9

K – H Cl 0.01, 0.05, 0.5 0.102 0.112 9

K - Na Cl 0.01, 0.05, 0.5 0.067 0.065 9

Ca - H Cl 0.1, 0.2, 0.5, 1.0 0.075 0.072 14

Ca - K Cl 0.1, 1.0 0.056 0.046 14

Na - H Cl, NO3, SO4 0.7 0.077 0.061 14

Na - Mg Cl, SO4 0.05, 0.2 0.053 0.058 20

Na - Zn Cl, SO4 0.05, 0.2 0.084 0.078 20

Mg - Zn Cl, SO4 0.05, 0.2 0.065 0.064 20

Sr - Na Cl 0.005, 0.05, 0.5 0.058 0.055 13

Sr – K Cl 0.05 0.084 0.078 13

Sr - Ca Cl 0.05 0.057 0.053 13

Ca - Na Cl 0.052 0.132 0.124 20

Mg Na Cl 0.052 0.121 0.119 20

6.4.1.2 Predictions at Varying Concentrations

To test the methods capability to perform predictions at varying concentrations, it has been

applied to Na+ – Ca++ ion exchange data from two different sources. The Margules parameter

and equilibrium constant for both systems are given in table 6.3. In figure 6.8 the method has

been applied to data from Pabalan et al13. who have measured the exchange on the inorganic

ion exchanger clinoptolite at different normalities at 25°C. The capacity of the solid material

is reported as 2.04 meq/g. The model parameters are regressed on the basis of the data at

0.005N and are used for prediction of the isotherms at 0.05N and 0.5N
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Figure 6.8: Ca++ - Na+ exchange on clinoptolite at 25°C. Experimental data from Pabalan.
(�) 0.5N, (�) 0.05N, (�) 0.005N. (–) calculated results with model parameters regressed from

0.005N data

The calculated equilibrium constant is 0.195 which is very close to the value of 0.192 reported

by Pabalan et al.13 The figure shows that the predictions represent the data with minor

deviations even when taking high degree of scattering in the data into consideration.
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Figure 6.9: Ca++ - Na+ exchange on Amberlite 252. Experimental data of Shallcross et al.14.
(�) 1.0N, (�) 0.5N, (�) 0.2N, (�) 0.1N, (–) calculated results.
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Shallcross et al.14 have measured Ca++ - Na+ exchange isotherms on the gel type resin

Amberlite 252 and report a calculated equilibrium constant of 14.6 which is slightly larger

than the value of 12.8 calculated in this work. Figure 6.9 shows the experimental data

compared with model predictions. The model parameters have been regressed from the 1.0N

data. The results in figure 6.9 indicate that model parameters regressed at a given

concentration give reliable predictions at various other concentrations.

Table 6.3: Margules parameter and equilibrium constant for binary systems.

System Λ
eqK Exp. data ref.

Ca++ - Na+ -2.367 0.195 13

Ca++ - Na+ -0.205 12.76 14

Cu++ - Na+ -0.772 6.217 22

H+ - K+ -0.232 0.372 -

H+ - Na+ -0.147 0.550 -

H+ - Ca++ 0.619 0.0198 -

6.4.1.3 Influence of Speciation on Equilibria

As mentioned previously the speciation could influence the ion exchange isotherms. If ion

pairing is present, fewer ions are available in the solution for the ion exchange reaction on the

surface. This influence is incorporated in the method by calculating the amount and activity

coefficients of each species with the Extended UNIQUAC model. One example of a system in

which a high degree of speciation exists, is the Cu++ - Na+ exchange in chloride media

measured by Rao and David22 on a Dowex 50 ion exchanger. Cu++ and Cl- form a complex in

aqueous solutions:

[ ]
( ) ( ) ( ),

[ ][ ]stability

CuCl
Cu aq Cl aq CuCl aq K

Cu Cl

+
++ +

++ −+ − =�

Where [X] is the concentration in moles/l.
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The stability equilibrium constant of this system is very dependent on the concentration of the

solution and is for example reported23 to be 0.6 (L/mol) at 0.5N and up to 1.3 (L/mol) at 4N.

This means that the relative amount of free Cu++ ions decreases at higher concentrations.
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Figure 6.10: Cu++ - Na+ ion exchange in aqueous chloride solutions. Experimental data from Rao and
David22, (�) 4.0N, (�) 3.0N, (ο) 2.0N, (�) 1.0N, (�) 0.5N, (�) 0.1N, (–) calculated results.

Figure 6.10 shows the model predictions compared with experimental results. The Margules

parameter and the equilibrium constant are regressed from the data at 0.1N, and the isotherms

at higher concentrations have been predicted on the basis of these parameters. Even though

the speciation in the system changes with the concentration, the model excellently captures

the trend in the experimental data. This emphasizes the fact mentioned previously, that it is

not necessary to convert the concentrations using speciation data, when speciation was not

originally considered in the aqueous thermodynamic model.

Another example, in which the speciation has an impact on the ion exchange equilibria is

systems where the choice of co-ion influences the aqueous speciation. In e.g. the H+ - M+/++

system, the amount of free H+ ions depends on whether the co-ion is Cl-, SO4
-- or H2PO4

-.

This is illustrated in figure 6.11 where the experimental results for the H+ - K+ system are

shown. The molefraction of H+ in the aqueous phase is calculated on basis of the total

concentration of H+
, i.e. no speciation has been taken into account when calculating this value.
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Figure 6.11. H+ - K+ ion exchange on Amberlite 40CW at 25°C and 1N.
(�) Cl-, (�) SO4

--, (�) H2PO4
-, (–) calculated results.

The figure clearly shows the effect of the lower concentrations of free H+ ions in the case of

H2PO4
- than in the case of Cl- due to the weak acid properties of H3PO4. The experimental

data have been modeled by regressing the Margules parameter and equilibrium constant from

the chloride data. The extended UNIQUAC model has been applied for the calculation of the

speciation and activity coefficients according to the conventions used when the parameters

originally were regressed4,19. The results show that by only changing the aqueous phase

thermodynamics, the model is capable of predicting the correct trend for the SO4
-- and H2PO4

-

data. The predictions slightly overshoot the experimental data; worst in the SO4
-- case. The

reason for this could be that the Extended UNIQUAC model originally had some problems of

fitting the properties of aqueous H2SO4 solutions4. The procedure has been repeated for the H+

- Na+ and H+ - Ca++ systems. The results are shown in figure 6.12 and 6.13. The trend in the

predictions is the same as in the previous case; predictions have the right trend, however

overshoot the experimental data slightly.
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Figure 6.12. H+ - Na+ ion exchange on Amberlite 40CW at 25°C and 1N.
(�) Cl-, (�) SO4

--, (�) H2PO4
-, (–) calculated results.
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Figure 6.13. H+ - Ca++ ion exchange on Amberlite 40CW at 25°C and 1N.
(�) Cl-, (�) SO4

--, (�) H2PO4
-, (–) calculated results.
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6.4.2 Ternary Systems

One way of testing the method’s validity is by applying it to ternary systems. Eq. [6.9] could

easily be extended to multicomponent systems. One of the forces of the method is that ternary

systems could be predicted on the basis of binary exchange data. In addition to this, the

thermodynamic equilibrium constant for the three binary systems should follow the Triangle

Rule:

1( ) 1B C C
A B AK K K − =

When the data do not follow the Triangle Rule, it is usually due to a wrong data reduction

method when the thermodynamic equilibrium coefficient is calculated. In this work the

method has been tested on the Na+ - Mg++ - Zn++ system in aqueous chloride solution

measured by Rhee20. Figure 6.14 shows the experimental data and model calculations. The

two parameters have been found from data measured at 0.2N and are given in table 6.4. The

parameters show that the thermodynamic equilibrium constants fulfill the triangle rule:

1( ) 0.97Mg Zn Zn
Na Mg NaK K K − =

The value of 0.97 is very close to unity taking the scattering of the experimental data into

consideration. In other works this test usually shows values that are more than 10% from the

value of unity9,13,20,21. This is an indication that the method used in this work for calculating

the thermodynamic equilibrium constant independently from ion exchanger activities gives

more accurate and more consistent values when compared to previous works.

Table 6.4: Parameters for the ternary system Na+ - Mg++ - Zn++ at 0.2N and 25°C

System K Λ
Na+ - Mg++ 0.513 -0.643

Mg++ - Zn++ 0.699 0.208

Na+ - Zn++ 0.371 -0.652
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Figure 6.14. Ion Exchange in aqueous chloride solution at 0.2N. Data from Rhee.
(�) Na+ - Mg++, (�) Mg++ - Zn++, (�) Na+ - Zn++. (–) calculated results.

The thermodynamics of the ternary system has been predicted using the model parameters

regressed from the binary data. The result is shown in figure 6.15. In the data of Rhee20, the

total concentration of Mg++ has been held constant at 0.05N and the Zn++ - Na+ exchange has

then been measured. The figure shows a good prediction of the ternary system.
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Figure 6.15. Na+ - Mg++ - Zn++ Ion Exchange in aqueous chloride solution at 0.2N. Data from Rhee20.
Concentration of Mg++ is constant 0.05N for all data. (–) predicted results.
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6.5 Conclusion

Ion exchange isotherms have been modeled using an approach in which the ion exchanger is

considered a solid phase. The aqueous phase has been modeled using the Extended

UNIQUAC model, while the ion exchanger phase has been modeled using the Margules 1

coefficient model. The thermodynamic equilibrium constant has been calculated individually

from the experimental data by a very simple approach using the equations originally derived

by Gaines and Thomas.

The method has been applied to 15 ion exchange systems, and the results show that using the

simple Margules model gives very similar results than when using a model with more

parameters like e.g. the Wilson model.

The work shows that excellent predictions can be obtained at varying concentrations with

parameters regressed at one concentration.

New experimental isotherms have been measured for the H+ - (Na+, K+, Ca++) with (Cl-, NO3
-,

SO4
--, H2PO4

-) as co-ions at 1N and 25°C. These new experiments illustrate the impact of

speciation on ion exchange equilibria isotherms. The experimental data have been modeled by

regressing parameters from the chloride data and the predictions for the isotherms with other

co-ions are very reasonable. The conclusions from these calculations are that speciation is

implicit included in the aqueous phase activity coefficients. This means, that the conventions

used when the parameters of the aqueous thermodynamic model originally were regressed

should always be used when activities later on are calculated using the same model

parameters.

The approach could easily be extended to a multicomponent system and has in this work been

successfully applied to a ternary system. The method gives good predictions in the ternary

system from the binary parameters, and the results show that the three thermodynamic

equilibrium constants calculated from the binary systems obey the Triangle rule within 3%.

This result is better than previously reported results and indicates that the simple method for

obtaining the thermodynamic equilibrium constant used in this work gives consistent values.

However, the method should be applied to more ternary systems before any final conclusion

can be made.
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7. Sorption of Solutes and Solvent in Ion Exchange Resins

This chapter is a rewriting of the article “Experimental measurement and modeling of the distribution

of solvent and ions between an aqueous phase and an ion exchange resin” co-authored with Kaj

Thomsen and accepted for publication in Fluid Phase Equilibria.

___________________________________________________________________________

The distribution of solutes and solvent between an aqueous solution of salt and an ion exchange resin has been

measured at ambient temperature. The experiments have been performed for aqueous solutions of KNO3, KCl,

Ca(NO3)2 and CaCl2 in the concentration range of 0-3N. The absorption has been measured for 3 gel type and 3

macroreticular resins with a degree of crosslinking varying from 10.5 to 18.5%. The experimental results have

been modeled with the Extended UNIQUAC model combined with an elastic term taking the elastic properties

of the resin structure into account. The model shows very good predictions with varying degree of crosslinking,

and the deviations between model results and experimental data are all within the experimental error.

___________________________________________________________________________

7.1. Introduction

Ion exchange resins have been used commercially since the 19. century and are at present

time used extensively in industry for separation and purification processes. In most cases ion

exchange processes are used for recovery of ions from relatively dilute solutions. However, in

some industrial ion exchange processes, e.g. in the production of fertilizer salts, high

concentration solutions are involved. Apart from this, regeneration of ion exchange resins

often also involve highly concentrated electrolyte solutions. When simulating e.g. wash-out

curves, information about the amount of electrolyte inside the resin particle is very important.

A small example of this is given in figure 7.1. The figure shows two wash-out curves for a

column filled with glass beads and with a macroreticular ion exchange resin. The size

distribution of the two different types of particles is the same. It is seen that the wash out

curve for the resin has a longer tail due to the absorption of KCl in the resin particle and that

more bed volumes of pure water therefore is needed to clean the column. To simulate this

behavior, a model for the absorption of KCl in the resin particle would be very convenient.

Most thermodynamic studies of ion exchange processes have been carried out in dilute

solutions, in which ion exchange is virtually equivalent; hence no absorption of co-ions are

observed. In the majority of the studies of ion exchange in more concentrated solutions, the
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sorption of co-ions and the changes in the solvent uptake are most often ignored. However the

somewhat limited studies of ion exchange in concentrated electrolyte solutions, where both

the uptake of co-ions and solvent are considered, show that these phenomena are very

important when dealing with concentrated solutions.
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Figure 7.1. Washout curve in a 5cm2 x 50cm column. Column loaded with 11.5% (w/w) KCl solution
and washed with UP water at 3mL/min.

(–) theoretical plug flow curve. Column filled with (�) glass beads, (�) Amberlyst 40CW.

The main purpose of this chapter is to describe the complete distribution of ions and solvent

between the aqueous bulk phase and the ion exchange resin phase. The study includes the

effect of different counter- and co-ions in varying concentrations (0.5 – 3 in molality) on the

equilibria. Furthermore, the effect of the type of exchanger (gel vs. macroreticular) and the

effect of the divinylbenzene (DVB) level (which is a measure of the degree of crosslinking)

on the equilibria has been investigated.

7.2. Experimental Section

The measurement of the uptake of electrolytes by ion exchange resins is not a new study

object. Most of the measurements made in the past have been carried out as batch experiments

where resin and electrolyte are mixed in a bottle followed by a separation of the two phases.

This method allows the measuring of the change of water and salt content in the resin phase
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by a subsequent elution of salt and drying of the resin phase. However, as pointed out by e.g.

Freeman et al.1, it is very difficult to separate the two phases. Depending on the type of

separation, either a portion of the external phase tends to stick to the surface of the resin or the

separation has a tendency to drain the resin for a part of the internal aqueous solution.

The mentioned inaccuracies accompanying the separation of the phases have been pointed out

by several authors and different methods for measuring the equilibrium without phase

separation have been proposed. Pepper et al.2 proposed a dye solution method; a solution of

molecules too large to penetrate the resin is added to the mixture of the resin as well as a

small amount of aqueous phase. The change of dye concentration gives a measure of the

change in water content in the bulk phase and thereby the quantity of water in the resin phase.

The method seems very simple; however, a very high fraction of resin to aqueous phase is

needed in order to obtain a measurable change of concentration in the bulk phase. The result

is a very large surface area of resin in the aqueous phase. Some dye would probably stick to

the surface leading to inaccurate results. This phenomenon can be the reason why several

researchers have been unable to obtain satisfactory results using this method (e.g. Scatchard

and Anderson3).

Another method in addition to the batch experiments is to measure the volume change of the

ion exchange particles in different electrolyte solutions. Assuming that the total volume of

resin and bulk phase is constant, the change in volume of the resin phase could be used in

calculating the complete distribution of solvent and electrolyte between the two phases (e.g.

Freeman et al.1, Freeman and Scatchard4). This method is relatively easy to perform and the

errors related to the method are acceptable.

In this work it has been chosen to use a batch experiment method combined with a

measurement of the volume change of the resin particles. The procedure used is very similar

to the method of Freeman and Scatchard4. However, in this chapter the volume of resin and

bulk phase is not assumed constant, but calculated using a simple model.

7.2.1 Preparation of Experimental Equipment

Preparation of glassware, electrolyte solutions and resin conditioning was performed as

explained previously in chapter 6.
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7.2.2 Measurement of the Physical/Chemical Properties of the Resin

Equilibrium water content and resin capacity were measured according to the procedures

given in details in chapter 6.

7.2.2.1 Measurement of the Density and Apparent Molal Volume of the Resin

A sample of the resin was treated in the same way as for the equilibrium water content

measurement. 5.00 ± 0.01g of resin was transferred to a 25mL pycnometric flask. The

pycnometer was filled with UP water and the weight of water, pycnometer and resin was

recorded. The pycnometer was emptied, refilled with UP water and the weight of pycnometer

and water recorded. From the law of Archimedes we know that the apparent loss in weight of

a body immersed in a fluid is equal to the weight of the displaced fluid:

( ), +
wet

w displaced R pyc R w pyc ww w w w+ += − −

The volume of the displaced fluid can be calculated by the relation:

,
, ( )

w displaced
w displaced

w

w
V

Tρ
=

The true wet density of the resin can then be calculated using the equation:

( ),

( )

/ ( )

wet wet
wet R w R
R wet

w displaced w R pyc R+w pyc w

w T w

w T w w w

ρρ
ρ + +

⋅= =
− −

[7.1]

7.2.3 Measurement of Electrolyte Uptake of Ion Exchange Resins

In this work we assume that the volume of the bulk and the resin phase can be calculated by

the general equation which can be applied to electrolyte solutions5:

,w i V i
i

V V mφ= +� [7.2]

where wV is the volume of 1kg of pure water, im is the molality of ion i and ,V iΦ is the

apparent molal volume of ion i in the resin phase.
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Even though the pressure inside the resin particle could be up to 1000 times the atmospheric

pressure, this change in pressure would only mean a slight change in the molal volume of

water and the different inorganic ions that we consider.

It is difficult to measure the volume or density of a resin particle as a function of

concentration as is commonly done for inorganic ions. However, one way of proving that eq.

[7.2] can be applied to an equilibrated resin particle is by considering the resin in its different

forms. Gregor et al.6 measured the volume and density of a Dowex 50 (~11%DVB) resin in

its various states at 25°C when in equilibrium with pure water. From these results, the

volumes of the polystyrene resin in its various forms can be calculated. If the volume of the

cation in the resin phase is subtracted, this would give the apparent molal volume of the

sulphonated polystyrene matrix. In the calculations, the density of pure water is assumed to be

997 kg/m3 and the volumes of the ions are calculated by the parameters from Christensen and

Thomsen5. The results are given in table 7.1 and show that the volume of the matrix is

calculated to 3130.4 cm /mol 0.7%± .

Table 7.1. Apparent molal volumes calculated from experimental data of Gregor et al.6 measured for a

DOWEX 50 resin.

Cation (X)
XPSSm (eqv./kg) ,V XPSSφ (cm3/eqv.) ,V PSS

φ − (cm3/eqv.)

H+ 5.6 131.0 131.0

Na+ 6.4 132.9 131.4

K+ 7.4 141.6 129.4

NH4
+ 7.3 150.0 130.2

Ca++ 6.4 124.0 130.3

Taking the experimental inaccuracies of the method used for the determination of the volumes

into account, it is reasonable to conclude that the volume of the polystyrene matrix can be

considered constant within a minor change in concentration.

This procedure has been repeated for the Amberjet 1200 and 1500 resins used in this study.

The densities, capacities and water contents in equilibrium with pure water have been

measured for the resins in their various forms and the apparent molal volumes of the

polymeric segment have been calculated. The results are shown in tables 7.2 and 7.3 and
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show that the variations in the apparent molal volumes of the resin lies within the

experimental accuracy.

Table 7.2. Apparent molal volumes of Amberjet 1200.

Cation (X)
XPSSm (eqv./kg) ,V XPSSφ (cm3/eqv.)

,V PSS
φ − (cm3/eqv.)

H+ 5.03 124.71 125.0

K+ 6.91 137.02 124.9

Na+ 5.92 126.28 124.9

Ca++ 5.93 119.03 125.0

NH4
+ 6.40 144.67 125.0

Table 7.3. Apparent molal volumes of Amberjet 1500.

Cation (X)
XPSSm (eqv./kg) ,V XPSSφ (cm3/eqv.)

,V PSS
φ − (cm3/eqv.)

H+ 5.94 124.81 125.3

K+ 8.22 138.09 125.8

Na+ 7.13 127.40 125.7

Ca++ 7.90 119.27 125.3

NH4
+ 7.68 145.07 125.3

7.2.3.1 Batch Experiments

The resin was brought on the desired form, K+ for the KCl and KNO3 sorption and Ca++ for

the CaCl2 and CaNO3 sorption experiments. A sample of the resin was treated in the same

way as for the equilibrium water content measurement. Approximately 30g of resin in wet

form was transferred to 100 mL closed pyrex bottles where it was mixed with 50mL of the

electrolyte solution. The solutions were equilibrated under continuous shaking. Stirring would

generate too high mechanical stress which could cause a rupture of the resin, therefore

shaking was preferred. The concentration of salt was measured in the bulk phase after

equilibration for 1, 3, 6, 12, 24, and 48 hours to identify the time required for obtaining

equilibrium. For the chloride salts the amount of chloride was analyzed by potentiometric

titration with 0.1N AgNO3 (more information in appendix I) and for the nitrate salts the

amount of NO3
- in the bulk solution was found by UV spectrophotometry at 220nm

(procedure given in appendix J). The results showed that there was no measurable difference
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between 3h and 48h. 6 hour periods were therefore used for providing an ample time to reach

equilibrium.

7.2.3.2 Volumetric Experiments

In the volumetric experiments, it is chosen to measure the volume change using a column

method. With this method it is easier to measure small changes in volume than in the

optical/microscopic methods used by other authors. In addition, the method is not very

sensitive to the shape of the resin particle in comparison to optical methods that often

demands very spherical particles. Furthermore, the volumetric method includes a large

amount of resin in the experiment and is therefore not very sensitive to variations within a

batch.

Approximately 25mL of wet resin was loaded into a 25mL column with markings for each

0.05mL. For each concentration of salt in the bulk solution the following procedure was

carried out:

1. The resin was thoroughly backwashed with the solution of interest.

2. Subsequently, the solution was passed through the column at a flowrate of 5mL/min

and mechanical tapping was applied until a steady level was obtained.

3. The experiment was repeated at a minimum of 4 times and the average was calculated.

All data were reported as volume change of the resin particle as function of the molality of the

salt in the bulk solution. From the data it is observed that a polynomial expression can be used

for describing the shrinking of the particle as a function of the molality of salt in the bulk

solution:

2
resin 0 1 2 , 3 ,, S B S BV kV k k k m k m= = + + [7.3]

Where 0V is the volume of the resin particle in equilibrium with pure water and the k-

parameters are determined from experimental data for each salt and type of resin particle.
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7.3 Modeling

In the work presented here the ion exchange resin is considered as a homogeneous phase

consisting of water, ions and charged polymeric segments. The presence of “inert” cross-links

is assumed to change neither the chemical properties nor the nature of the functional groups7.

The different degree of crosslinking is therefore only taken into account in the elastic term in

the equilibrium conditions.

7.3.1 Equilibrium Conditions

The equilibrium conditions for the distribution of both ionic and non-ionic species between a

solution phase and a phase consisting of a three-dimensional crosslinked elastic polymer have

recently been derived very elegantly by Maurer and Prausnitz8 and will shortly be presented

in the following section:

The swollen resin is treated as a homogenous phase, and at equilibrium the chemical

potentials of the absorbed components in the resin phase and the liquid phase are equal:

( )
1

'( , ', ') ''( , '', '') ' 0
compN

i i i
i

T p n T p n dnµ µ
=

− = �� [7.4]

( ) ( ) ( ) ''

'
' , ', ' '' , '', '' '' , ', ''

p

i i i ip
T p n T p n T p n v dpµ µ µ= = + � [7.5]

Where ' refers to the bulk phase and '' refers to the resin phase.

Assuming that the pressure range of the integration is so small that partial molal volumes are

independent of pressure, the following applies:

( ) ( )' , ', ' '' , ', ''i i iT p n T p n vµ µ π= + [7.6]

Where π is the pressure difference between the two phases. The pressure difference between

the two phases is caused by the elastic properties of the resin matrix; hence it can also be

written in terms of the Helmholtz energy, A, of the resin membrane:

R

''

T

A

V
π � �∂= � �∂� �

[7.7]
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If the system temperature and bulk phase pressure are chosen as the reference state for the

chemical potential of the components, the phase equilibrium condition for all non-ionic

components is given as:

R
i

i i ''

T

v '' A
ln a '( T , p',n') ln a ''( T , p',n'') ,i 1,.....,N

RT V

� �∂= + =� �∂� �
[7.8]

Equation [7.8] is very similar to the equilibrium condition for an osmotic equilibrium.

Due to the electro neutrality criterion, the number of phase equilibrium conditions are reduced

with one when the solution contains ionic components. The electro neutrality criterion can be

written as:

1

' 0
ionsN

i i
i

n z
=

=� [7.9]

Introducing a reference ionic species, r, eq. [7.9] can be written in the form:

1

' '
ionsN

i
r i

i r
i r

z
n n

z=
≠

= � [7.10]

Implementing eq. [7.10] in eq. [7.4-7.8] the equilibrium condition for an arbitrary selected

ionic species, i, can be given as:

( )i

r

'' R
' '' i
i i ''

T

'' R
z ' '' r

r r ionsz ''

T

A
ln a (T , p',n') ln a ( T , p',n'')

RT V

A
ln a (T , p',n') ln a ( T , p',n'') ,i 1,...,N i r

RT V

ν

ν

� �∂= + � �∂� �

� �� �∂+ − − = ≠� �� �� �∂� �� �

[7.11]

while all equilibrium conditions for non-ionic species is given by eq. [7.8]

7.3.2 Activity Coefficient Model

In this work the excess Gibbs energy of the aqueous phase is described using the Extended

UNIQUAC model. As explained in chapter 4, the Extended UNIQUAC model is an extension

of the original UNIQUAC model of Abrams and Prausnitz9 and was first presented in the

form used in this thesis by Thomsen10. The model has previously been applied to describe the



Chapter 7. Sorption of Solutes and Solvent in Ion Exchange Resins
___________________________________________________________________________

� ���

excess Gibbs energy of aqueous electrolytes solutions containing (K+, Na+, H+, NH4
+, Cl-,

NO3
-, HSO4

- ,SO4
--, OH-, CO3

--, HCO3
-, NH2COO-, H2PO4

-, HPO4
-- HSO3

- , SO3
--, S2O5

--)10-13,

26.

7.3.3 The Free Energy of Elasticity

Several different authors have proposed terms for the free energy of elasticity. Some of the

most well-known expressions were developed by Flory14 and James and Guth15. The

drawback of the two models in relation to the polymer structure of the resins used in this

thesis, is however that they are based on a Gaussian assumption. This assumption is only

reasonable if the chains between the crosslinks are reasonably long (>100 monomers)16. This

is most often the case for rubbers. However in polymeric resins where the degree of

crosslinking is high, the Gaussian approximation most probably will fail. In this work, the

expression of Gusler and Cohen17 has therefore been chosen to describe the free energy of

elasticity. The model of Gusler and Cohen17 is only valid for isotropic swelling and could be

considered as an extension of the Flory elasticity model to non-Gaussian networks:

1/ 3
''

2 5 7
1

3 6

R
c

el R R

T

A M
K

V M
φ φ� �∂ � �� �= − −� �� �� �∂ � �� �� �

[7.12]

where Rφ is the volume fraction of the resin-polymer in the swollen network and Mc is the

molecular weight of the chains between crosslinks. The term �
�
�

�
�
� −

M

M c2
1 takes into account

the dangling chains; this means the deviation of the real network from the perfect network. In

the present treatment it is assumed that
2

1cM

M
� �
� �
� �

� due to the high molecular weight of the

resins and only moderate degree of crosslinking16. Therefore eq. [7.12] can be reduced to:

1/ 3
''

5 7

3 6

R

el R R

T

A
K

V
φ φ� �∂ � �= −� �� �∂ � �� �

[7.13]

7.3.4 Densities and Volumes of Ionic Species

Partial molal and apparent molal volumes of electrolytes can be found from density

measurements or directly from measurements of apparent volumes.



Chapter 7. Sorption of Solutes and Solvent in Ion Exchange Resins
___________________________________________________________________________

� ��


If the apparent molal volumes of the ions are assumed to be additive, the volume of an

aqueous solution of ions can be calculated using eq. [7.2].

It can be shown5 that the apparent molal volume of an ion i can be described by the relation:

,V i i i mv k Iφ ∇= + [7.14]

Im is the ionic strength given by:

21
2m i i

i

I m z= � [7.15]

As shown in chapter 3, the model parameters, ki, have been regressed for aqueous solutions of

(H+, Na+, K+, NH4
+, Ca+) (Cl-,NO3

-,SO4
--) on the basis of more than 1800 data points of both

density and apparent molal volumes.

7.4 Results and Discussion

7.4.1 Physical/chemical Properties of the Resins

All basic properties of the different resins were measured according to the methods described

in section 7.2. From the experimental data, the different properties were calculated using eq.

[6.1-6.2, 7.1] and are listed in table 7.4. The value of the data, e.g. water capacity, is very

similar to values reported from other authors3, 4, 6. Pictures of the 6 different resins have been

captured using a digital camera and are shown in appendix K.

Table 7.4. Physical/chemical properties of resins.

Gel type Macroreticular type

Amberjet

1200

Amberjet

1500

Amberjet

1600

Amberlyst

36W

Amberlyst

40CW

Amberlyst

35W

% DVB 10.5 12 16 12 16.5 18.5

Capacity

(H-form)(eq/kg dry)

5.18 5.19 5.04 5.76 5.34 5.62

Water content

(H-form) (%)

50.8 46.6 38.5 54.8 48.3 54.1

Density, wet (H-

form) (g/cm3)

1209.5 1231.1 1278.0 1239.9 1257.0 1248.3
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7.4.2 Batch Experiment Results

From the batch experiments a relation between the amount of water and salt in the resin phase

could be found. The amount of water ,
i
w Rn in the resin transferred to the pyrex bottle can be

found from the weight of the wet resin and the fraction of water in the resin. The amount of

water initially in the bulk solution, ,
i
w Bn , and the amount of salt initially in the bulk solution,

,
i
S Bn , can be calculated from the concentration and the mass of the bulk solution.

We consider an absorption in the system (no reactions). Using the mole balance for the resin-

bulk phase system at equilibrium the following relation can therefore be found:

, , , , 0eq eq i i
w R w B w R w Bn n n n+ − − =

( )
( )

, , ,

, , , ,

, , , , , ,

0

0

0

eq eq i
S R S B S B

eq eq eq i
S R S B w B w S B

eq i i eq eq i
S R w R w B w R w S B S B

n n n

n m n M n

n n n n M m n

+ − = ⇔

+ ⋅ ⋅ − = ⇔

+ + − ⋅ − =

Using the above equation an expression can be found for the amount of moles of water , ,
eq
w Rn� ,

and salt, ,
eq
S Rn� , per equivalent of resin in the resin phase at equilibrium.

( ), , , ,,
, , ,(1 ) (1 )

i i i eqeq
S B w R w B w S Beq S R eq eq

S R w R w S Bw w
R w R w

n n n M mn
n n M m

w q q w q q

− +
= = + ⇔

⋅ − ⋅ −
� � [7.15]

, 1 , 2 , ,( ) ( )eq eq eq eq
S R S B S B w Rn A m A m n= + ⋅� � [7.16]

The results from the batch experiments could be correlated using polynomial expressions and

expressions for the A1 and A2 parameters found as a function of salt concentration in the bulk

phase. An example of this is shown in figure 7.2 where the result of the experimental data of

sorption of KCl on Amberjet 1200 are shown. The reproducibility of the data for determining

the A-parameters showed that the experimental error was approximately 5%. The error

originates mainly from the chemical analysis methods and due to evaporations from resin and

bulk phase during sampling.



Chapter 7. Sorption of Solutes and Solvent in Ion Exchange Resins
___________________________________________________________________________

� ���

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0 0.5 1 1.5 2 2.5 3 3.5

Im (mol/kg)

Figure 7.2. Experimental data for parameters A1 (�) and A2 (+) for the sorption of KCl on Amberjet
1200. (–) polynomial fit.

7.4.3 Volumetric Results

The volume of a resin particle in equilibrium with pure water could be calculated from wet

density data from pycnometric experiments using eq. [7.1]. The volume of the particle in

equilibrium with a given bulk solution could be found from the volumetric experiments using

the known volume of the resin in equilibrium with pure water and eq. [7.3]. An example of

the volumetric experiments is shown in figure 7.3 where the shrinking of an Amberjet 1200

resin in equilibrium with CaCl2 and Ca(NO3)2 solutions is shown. Error bars from the 4

successive experiments have been placed on the figure and it is seen that the volume change

data could be reproduced within 0.15% accuracy.

7.4.4 Sorption of Water and Salt in the Resin Phase

The total sorption of water and salt could be calculated from the batch and volumetric

experiments. The relation between number of moles of salt and moles of water in the resin

particle is given by eq. [7.16]. The total volume of the particle could be found as a function of

the water and salt content using eq. [7.2]. The apparent molal volumes of salt and water are

found using known expressions5 while the apparent molal volume of the resin is considered

constant and is found from density experiments. By iteratively solving the two equations the
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amount of salt and water in the resin is found at equilibrium. The results are shown in tables

7.5 and 7.6 (in the end of the chapter). The overall reproducibility of the data points was

shown to be app. 8% which is in agreement with the error assessment from previous studies7.
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Figure 7.3. Volume change of a resin particle in contact with solutions of CaCl2 (�) and Ca(NO3)2

(�). (–) Polynomial fit.

The absorption of a strong electrolyte is mainly dependent on the Donnan potential. It has

previously been shown18-20 that the Donnan potential increases with decreasing external and

increasing internal counter-ion concentration and so does the efficiency of the electrolyte

exclusion. Table 7.7 shows the chloride concentration in the 3 different gel type resins when

in contact with a 3N KCl solution. These results and the results in table 7.5 and 7.6 show as

expected that the absorption of salt is most dominant in the resins with lowest cross-link

density due to a higher degree of swelling and thereby sorption of water. However, compared

with the Amberjet 1500 resin the drop in chloride concentration in the Amberjet 1600 resin is

lower than expected when considering the increase in crosslinking. The reason for this is the

lower capacity and thereby a proportional lower counter-ion concentration in the Amberjet

1600 resin.
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Table 7.7. Chloride concentration in 3 gel type resins

when in equilibrium with a 3N KCl solution.
Resin mCl,R (mol/kg)

Amberjet 1200 1.58

Amberjet 1500 1.48

Amberjet 1600 1.39

In addition to this, the results show that the calcium salts are more efficiently excluded than

the potassium salts. This is not quite in agreement with the Donnan potential effect. The force

with which an electric field acts on an ion is proportional to the ionic charge. This means that

the Donnan potential required to balance the tendency of the counter-ions to diffuse into the

surrounding solution is smaller when the valence of the counter-ions is higher. Because of the

smaller Donnan potential the electrolyte exclusion is less efficient. However, the trend is in

agreement with the experimental results of Gordievskii et al.21 and Kokotov22. They have

measured electrolyte sorption in different ion exchange membranes and resins. The higher

exclusion of the calcium salts can most probably be explained due to the large size of the

calcium ions which are highly solvated. For a comparison the Stokes radius is 4.7Å for K+

and 10.4Å for Ca++ 23.

The chloride salts are for all resins more excluded than the nitrate salts. This behavior is also

seen in the data of Ferapontov et al.7 who measured electrolyte sorption in an anion

exchanger. The phenomenon could once again be explained with the size of the ions. The

Stoke radius of NO3
- (3.3Å) is smaller than the one of Cl- (3.9Å) and is therefore more easily

absorbed.

The absorption of salt in the macroreticular resins is as expected somewhat higher than in the

case of the gel type resins. This is due to the large pore structure in this type of resins.

7.4.5 Estimation of Elastic Parameter, Kel

The elastic coefficient could be estimated simultaneously with the activity coefficient model

parameters from the experimental absorption curves. However, in order to reduce the amount

of parameters it has in this work been chosen to approximate the elastic coefficient from

water-vapor sorption isotherms. Boyd and Soldano24 have measured water-vapor sorption

isotherms of styrene cation exchangers on H+ form with various crosslinking. From the water-
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vapor sorption curves the osmotic pressure has been calculated for sulphonated polystyrene

ion exchanger on H form in equilibrium with pure water. The results are shown in figure 7.4.
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Figure 7.4. Osmotic pressure of sulphonated polystyrene ion exchanger on H-form in equilibrium with

pure water. (�) Calculated from experimental data of Boyd and Soldano24.

Knowing the water content and osmotic pressure of the different resins on H-form used in this

study, the elastic coefficient of the different resins could be calculated using eq. [7.13] with

the given UNIQUAC volume parameters. The results for the different resins are shown in

table 7.8.

Table 7.8. Elastic parameters

% DVB 10.5 12 16 16.5 18.5

Kel (atm.) 276.6 337.7 519.4 544.5 651.6

7.4.6 Regression of Model Parameters

All size, surface and interaction energy parameters for water and ionic species have been

taken from previous works10-13. Size and surface parameters of the polymeric segment have

been calculated from the r and q parameters of styrene25 and SO3
-- 26. The binary interaction

parameters for the interaction between the polymeric segment and water, K+, Ca++ have been

estimated. The interaction parameters with the other anionic species have been set to 2500 in

order to reduce the amount of parameters. All UNIQUAC parameters are shown in table 7.9 –

7.10.



Chapter 7. Sorption of Solutes and Solvent in Ion Exchange Resins
___________________________________________________________________________

� ��	

Table 7.9:Volume and surface parameters

r q

H2O 0.92 1.40

K+ 2.23 2.43

Ca++ 3.87 1.48

Cl- 10.39 10.20

NO3
- 5.40 6.21

PSS- 14.97 13.05

Table 7.10: Parameters ( 0 ) ( 0 )
ij jiu u=

H2O K+ Ca++ Cl- NO3
- PSS-

H2O 0 - - - - -

K+ 535.0 0 - - - -

Ca++ 496.4 -275.6 0 - - -

Cl- 1523.4 1465.2 1805.6 2214.8 - -

NO3- 998.9 818.6 943.3 2175.0 2753.7 -

PSS- 2302.52) 2285.32) 5465.82) 25001) 25001) 2661.02)

1) Parameter has been assigned to this value in order to reduce the number of adjustable parameters

2) Parameters have been estimated from absorption isotherms of Amberlyst 1200 resins

Only (0)
iju are given due to the fact that only data at ambient temperature (24°C ±1) were

treated in this work. The optimal object function used for regression of the energy parameters

was found as:

2 2

, , , ,

, ,

, ,
Exp Calc Exp Calc
w R w R i R i R

Exp Exp
w R i R

n n n n
OF i K Ca

n n
+ ++� � � �− −

= + =� � � �
� � � �

� � [7.17]

The average deviations of the salt absorption given in the following sections are calculated

from:

, , , ,

, ,100%, 100%

Exp Calc Exp Calc
S R S R w R w R

Exp Exp
S R w R

n n n n

n n
AAD AAD

N N

− −

= ⋅ = ⋅
� �

[7.18]
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7.4.7 Gel type Resins

The interaction energy parameters of the Extended UNIQUAC model was estimated from the

absorption isotherms of the gel type resin Amberjet 1200. The model results are shown in

figure 7.5. The figure shows that there is a good agreement between the experimental data and

the correlated results. However, there are some deviations in the case of KNO3 absorption at

high bulk phase concentration.
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Figure 7.5. Experimental and modeling results of the salt absorption in the gel type resin Amberjet
1200. (−) Extended Uniquac model. (�) Experimental results of the absorption of KNO3, (�) KCl,

(�) Ca(NO3)2, (�) CaCl2

The salt absorption in the two gel type resins with higher degrees of cross-linking have been

predicted using the energy parameters regressed from the absorption isotherms of the

Amberjet 1200 resin and the elasticity parameters estimated from water-vapor sorption

isotherms. The calculated results for all 3 resins are shown in table 7.5. The results are nearly

all within the experimental error and the results show that the model is capable of correlating

the different degrees of exclusion for the various salts.

The model predictions are compared with the experimental values for the absorption of KCl

in the 3 different gel type resins in figure 7.6. The figure shows good agreement between the

experimental data and the calculated results. This proves that even though some of the
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physical properties, e.g. the capacity, of a sulphonated polystyrene resin varies, the elastic

properties of different resins with same degree of cross-linking are with good approximation

equal.
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Figure 7.6. Experimental and modeling results of the KCl absorption in the gel type resins. (−)
Extended UNIQUAC model. (�) Amberjet 1200, (�) Amberjet 1500, (�) Amberjet 1600

7.4.8 Macroreticular Resins

Macroreticular resins are made of two continuous phases; a continuous pore phase and a

continuous gel phase. A sketch of a macroreticular resin is shown in figure 7.7.

In this work it is assumed that the concentration of salt in the pore phase of the resin is equal

to the concentration of salt in the bulk phase and that the gel phase of the resin behaves

similarly as for a gel type resin with same degree of cross linking. The total amount of salt in

the resin is then given as an addition of salt in the pore phase region and the bulk phase. The

amount of salt in the pore phase is given by:

, ,
eq
S pore phase S B pore phasen c V= ⋅ ��

where ,S Bc is the concentration of salt in the bulk phase and porephaseV� is the volume of the pore

phase per equivalent of resin (L/eq.).
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Figure 7.7. Sketch of a macroreticular resin. ,S Bm is the concentration of salt in the bulk phase and

,S Rm is the salt concentration in the gel phase.

The total salt absorption in the macroreticular resin particle can be calculated from the

relation:

, , , , ,
eq eq eq eq
S MR S gel phase S pore phase S R S B pore phasen n n n c V= + = + ⋅ �� � � � [7.19]

It is assumed that the pore volume is constant in the resin in spite of changes in equilibrium

conditions and that changes in the total volume of the particle only is caused by changes in the

volume of the gel phase. The volume of the pore phase has been estimated by comparison

with the corresponding gel type resins. The water content of the gel type resins in equilibrium

with pure water has been correlated with polynomial expressions as shown in figure 7.8.

From these expressions the water content in gel type resins with 12, 16.5 and 18.5 % DVB on

H-form has been estimated. The volume of the porous phase used in the model has been found

by subtracting the estimated numbers from the actual water contents of the macroreticular

resins. The results are given in table 7.11. The results in the table show that the pore phase

volume is constant in the 3 different forms. This holds even though the resin swells 15-25%

when replacing K+ ions with H+. It can therefore be concluded that the assumption of a

constant volume of the pore phase region is quite reasonable.
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Figure 7.8. Amount of water in the resin when in equilibrium with pure water as a function of

crosslinking and ionic form. (�) Experimental results from Amberjet 1200, 1500 and 1600, (–)

polynomial fit.

The total absorption in the macroreticular resins has been calculated using the model

parameters estimated from the data of the gel type resins and then adding the contribution

from the pore phase region corresponding to eq. [7.19]. All the results are shown in table 7.6

and it is seen that the average deviations are of the same magnitude as for the gel type resins.

Table 7.11. Pore volume of macroreticular resins

Vpore (cm3/eq)

Ionic form H-form K-form Ca-form Avg.

36W 35.8 35.2 35.0 35.4

40CW 47.8 49.2 48.5 48.5

35W 92.8 92.3 91.0 92.0

The results for the 36W resin are compared with experimental values in figure 7.9. The trend

of the results is similar to the one of the gel type resins; a very good prediction of the salt

absorption of all 4 salts. However, a slight deviation of the absorption of KNO3 at high bulk

concentrations is noted. The results show that absorption of salt in macroreticular resins can

be calculated using the assumption that the absorbed phase consists of a gel region and a
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porous region. In addition, it is shown that the properties of a gel phase region in the

macroreticular resins can be compared to the properties of a gel type resin with the same

degree of cross-linking. This implies that relevant parameters could be regressed from data of

gel type resins and then be applied for predictions of absorptions in macroreticular resins.

This means that the amount of data material could be reduced drastically when screening

different resins for the sorption properties.
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Figure 7.9. Experimental and modeling results of the salt absorption in the macroreticular resin
Amberlyst 36W. Extended UNIQUAC model (−). Experimental results of the absorption of KNO3

(�), KCl (�), Ca(NO3)2 (�), CaCl2 (�)

7.5 Conclusion

The absorption of water and salt at ambient temperature has been measured for 3 gel type and

3 macroreticular resins with varying degrees of crosslinking. The experiments were

performed for aqueous solutions of KNO3, KCl, Ca(NO3)2 and CaCl2 in the concentration

range of 0-3N. The absorption has been calculated on the basis of batch experiments

combined with measurements of the volume change of the resin when in equilibrium with the

electrolyte solutions. The experimental results have an experimental error of approximately

8% which is acceptable for this kind of studies.
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The experimental data have been modeled with the Extended UNIQUAC model combined

with an elastic term taking the elastic properties of the resin structure into account. The model

shows very good predictions with varying degree of crosslinking, and the deviations between

model results and experimental data are all within the experimental error.
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Table 7.5. Results for gel type resins

Resin/salt Im (mol/kg)

100×nS,R, calc.

(mol/eq.)

100×nS,R, exp.

(mol/eq.) % AAD

nw, calc.

(mol/eq.)

nw, exp.

(mol/eq.) % AAD

Amberjet

1200

KCl 0 0.00 0.00 8.50 8.28

0.5 1.34 1.38 7.85 7.69

1 3.90 3.66 7.39 7.34

1.5 7.08 6.83 7.00 7.04

2 10.65 10.30 6.66 6.78

2.5 14.47 14.10 6.35 6.30

3 18.42 17.40 4.198 6.06 6.12 1.331

KNO3 0 0.00 0.00 8.50 8.28

0.5 2.34 2.41 7.86 7.75

1 6.16 6.35 7.43 7.50

1.5 10.18 10.80 7.09 7.10

2 14.11 14.60 6.80 6.89

2.5 17.89 18.80 6.54 6.65

3 21.50 22.70 4.185 6.31 6.42 1.393

CaCl2 0 0.00 0.00 8.25 8.35

0.75 0.64 0.70 8.09 8.11

1.5 1.44 1.44 7.94 7.88

2.25 2.43 2.19 7.78 7.75

3 3.63 3.48 7.61 7.61

3.75 5.05 4.96 7.43 7.49

4.5 6.65 6.44 4.682 7.26 7.32 0.614

Ca(NO3)2 0 0.00 0.00 8.25 8.35

0.75 1.05 1.12 8.09 8.13

1.5 2.33 2.48 7.96 7.91

2.25 3.73 3.66 7.84 7.79

3 5.24 5.09 7.72 7.68

3.75 6.85 6.68 7.60 7.58

4.5 8.56 8.29 3.773 7.49 7.47 0.539
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Amberjet

1500

KCl 0 0.00 0.00 7.10 6.89

0.5 0.95 1.01 6.59 6.54

1 2.82 2.59 6.20 6.22

1.5 5.20 4.92 5.86 6.01

2 7.93 7.68 5.54 5.62

2.5 10.89 10.30 5.26 5.37

3 13.99 13.50 5.443 4.99 5.04 1.600

KNO3 0 0.00 0.00 7.10 6.89

0.5 1.94 2.27 6.60 6.57

1 5.14 5.04 6.24 6.34

1.5 8.52 8.86 5.95 6.08

2 11.85 11.53 5.69 5.81

2.5 15.07 14.20 5.46 5.58

3 18.15 17.50 5.479 5.25 5.34 1.842

CaCl2 0 0.00 0.00 7.46 7.34

0.75 0.45 0.52 7.31 7.21

1.5 1.01 1.12 7.16 7.11

2.25 1.73 1.67 7.00 6.94

3 2.62 2.71 6.82 6.78

3.75 3.68 3.91 6.64 6.58

4.5 4.91 4.97 6.233 6.46 6.42 0.962

Ca(NO3)2 0 0.00 0.00 7.46 7.34

0.75 0.82 0.85 7.31 7.23

1.5 1.82 1.76 7.19 7.12

2.25 2.93 2.71 7.07 7.01

3 4.13 4.05 6.96 6.87

3.75 5.42 5.21 6.84 6.79

4.5 6.80 6.46 4.353 6.72 6.67 1.053

Amberjet

1600

KCl 0 0.00 0.00 4.52 4.61

0.5 0.42 0.35 4.21 4.35

1 1.29 1.40 3.93 4.03
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1.5 2.45 2.61 3.67 3.82

2 3.84 4.05 3.42 3.57

2.5 5.40 5.32 3.18 3.22

3 7.07 7.52 7.784 2.94 3.01 2.744

KNO3 0 0.00 0.00 4.52 4.61

0.5 1.32 1.18 4.21 4.13

1 3.55 3.25 3.95 4.06

1.5 5.95 5.74 3.73 3.87

2 8.35 8.15 3.53 3.65

2.5 10.70 9.54 3.34 3.49

3 12.99 12.20 7.370 3.16 3.30 2.536

CaCl2 0 0.00 0.00 5.85 5.68

0.75 0.18 0.21 5.73 5.56

1.5 0.42 0.46 5.61 5.48

2.25 0.74 0.78 5.47 5.37

3 1.15 1.21 5.32 5.24

3.75 1.67 1.84 5.15 5.09

4.5 2.29 2.41 7.906 4.99 5.05 2.036

Ca(NO3)2 0 0.00 0.00 5.85 5.68

0.75 0.44 0.48 5.74 5.64

1.5 0.99 1.04 5.64 5.55

2.25 1.60 1.76 5.54 5.47

3 2.29 2.42 5.44 5.31

3.75 3.04 3.08 5.34 5.24

4.5 3.86 3.65 5.715 5.23 5.16 1.896
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Table 7.6. Results for macroreticular type resins

Resin/salt Im (mol/kg)

100×nS,R, calc.

(mol/eq.)

100×nS,R, exp.

(mol/eq.) % AAD

nw, calc.

(mol/eq.)

nw, exp.

(mol/eq.) % AAD

Amberlyst

36W

KCl 0 0.00 0.00 9.06 9.05

0.5 2.69 2.81 8.52 8.61

1 6.26 6.63 8.10 8.20

1.5 10.29 10.60 7.73 8.00

2 14.62 14.80 7.40 7.64

2.5 19.13 19.50 7.08 7.11

3 23.73 23.30 2.97 6.78 6.89 1.52

KNO3 0 0.00 0.00 9.06 9.05

0.5 3.68 3.98 8.52 8.66

1 8.55 8.70 8.12 8.31

1.5 13.55 13.70 7.79 7.89

2 18.43 18.60 7.50 7.60

2.5 23.12 23.40 7.24 7.40

3 27.62 29.20 2.97 7.00 7.08 1.39

CaCl2 0 0.00 0.00 9.42 9.40

0.75 1.33 1.42 9.26 9.10

1.5 2.77 2.71 9.10 9.01

2.25 4.34 4.21 8.92 8.77

3 6.08 6.57 8.74 8.70

3.75 7.99 8.21 8.55 8.63

4.5 10.04 10.50 4.36 8.36 8.57 1.21

Ca(NO3)2 0 0.00 0.00 9.42 9.40

0.75 1.70 1.79 9.25 9.08

1.5 3.56 3.95 9.11 8.87

2.25 5.50 6.03 8.97 8.82

3 7.52 7.75 8.83 8.77

3.75 9.61 9.86 8.69 8.72

4.5 11.77 12.00 5.22 8.55 8.68 1.26
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Amberlyst

40W

KCl 0 0.00 0.00 7.00 7.09

0.5 2.82 2.99 6.67 6.88

1 5.99 5.63 6.36 6.48

1.5 9.36 10.06 6.07 6.02

2 12.87 13.10 5.79 5.90

2.5 16.48 16.00 5.51 5.60

3 20.11 19.60 4.39 5.24 5.38 1.89

KNO3 0 0.00 0.00 7.00 7.09

0.5 3.71 4.11 6.65 6.74

1 8.21 8.00 6.35 6.46

1.5 12.80 13.00 6.08 6.11

2 17.30 18.00 5.83 6.04

2.5 21.68 22.70 5.59 5.70

3 25.93 26.40 4.01 5.36 5.46 1.72

CaCl2 0 0.00 0.00 8.42 8.16

0.75 1.39 1.26 8.29 8.08

1.5 2.82 2.66 8.16 7.92

2.25 4.31 4.22 8.01 7.86

3 5.88 5.93 7.84 7.77

3.75 7.52 7.81 7.67 7.41

4.5 9.25 9.67 4.70 7.48 7.34 2.45

Ca(NO3)2 0 0.00 0.00 8.42 8.16

0.75 1.63 1.72 8.28 8.01

1.5 3.35 3.43 8.16 7.95

2.25 5.10 5.15 8.03 7.84

3 6.89 6.89 7.90 7.74

3.75 8.71 8.66 7.77 7.61

4.5 10.57 10.44 1.69 7.64 7.49 2.55

Amberlyst

35W

KCl 0 0.00 0.00 8.40 8.60

0.5 4.78 4.89 8.08 8.21

1 9.72 10.01 7.77 7.93



Chapter 7. Sorption of Solutes and Solvent in Ion Exchange Resins
___________________________________________________________________________

� ���

1.5 14.72 15.31 7.47 7.76

2 19.75 20.82 7.16 7.32

2.5 24.75 26.52 6.84 7.05

3 27.81 28.80 4.05 6.31 6.52 2.59

KNO3 0 0.00 0.00 8.40 8.60

0.5 5.61 5.29 8.05 8.24

1 11.85 9.99 7.72 7.86

1.5 18.10 17.70 7.41 7.54

2 24.24 22.30 7.11 7.30

2.5 30.23 29.42 6.80 7.07

3 36.14 36.63 6.63 6.49 6.77 2.67

CaCl2 0 0.00 0.00 10.15 9.98

0.75 2.39 2.20 10.02 9.76

1.5 4.78 4.43 9.89 9.56

2.25 7.20 7.12 9.74 9.39

3 9.65 9.09 9.57 9.35

3.75 12.15 12.49 9.40 9.30

4.5 14.69 14.80 4.53 9.21 9.24 2.17

Ca(NO3)2 0 0.00 0.00 10.15 9.98

0.75 2.57 2.32 10.00 9.75

1.5 5.17 4.91 9.86 9.62

2.25 7.78 7.63 9.71 9.46

3 10.38 10.14 9.57 9.33

3.75 12.99 13.40 9.42 9.27

4.5 15.60 16.10 4.44 9.27 9.21 2.03
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8. Conclusions

___________________________________________________________________________

The thesis has addressed the thermodynamics involved when describing the properties of aqueous solutions of

electrolytes and of mixtures with ion exchanging materials. The main conclusions are summarized in this

chapter.

___________________________________________________________________________

The first part of the thesis has addressed the thermodynamic properties of aqueous electrolyte

solutions. The volumetric properties for aqueous solutions of (H+, Na+, K+, NH4
+, Ca++, Mg++)

(Cl-,NO3
-,SO4

--) have been modeled using a modification of the Masson equation combined

with Young’s rule based on ion specific parameters. The model only requires 5 parameters per

ion in the entire range of concentration and temperature which is much less than seen in

previous works. In addition, due to the ion specific parameters, it is shown that using this

model, the parameters can be regressed on the basis of data from only a few selected salts.

This can be done without influencing the overall accuracy of the model and is a huge

advantage as reliable volumetric properties do not exist for all salts. The model has been

applied to multicomponent mixtures, and it has been shown that the relative errors of the

predicted results in both ternary and quaternary systems are well within the experimental

accuracy of the data. Due to the simplicity and good predictivity in multicomponent systems

the model could easily be implemented in industrial process calculations. The drawback of the

model is, that it does not give perfect correlations in systems where a high degree of

speciation exists. This problem has been solved for the H3PO4 system by including speciation

data, but these kinds of data are not always available. More investigations of extending the

model to highly non-ideal systems would therefore be important.

In the second part of the thesis, the Extended UNIQUAC model has successfully been applied

to describe the phase behavior and thermal properties of various acidic aqueous solutions of

electrolytes. The model is capable of describing the dissociation of both H3PO4 and HNO3 in

aqueous solutions and of describing the solubility of several different salts in aqueous

solutions of these two acids. In addition, the model reproduces the thermal properties of these

solutions with high accuracy. The Extended UNIQUAC model is very useful for industrial

relevant calculations. One of the reasons for this is that the model only includes binary

interaction parameters and thereby is relatively simple to use. Another advantage is the
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flexibility of the model, and the fact that the model usually gives good predictions in

multicomponent solutions. With the parameters given in this thesis, the model could easily be

applied to both optimization and design purposes in the fertilizer and related industries.

However, as mentioned in chapter 4 the model does not give perfect correlation for all the

investigated systems. These inaccuracies are partly due to parameters found in previous works

and the overall accuracy of the model could still be improved.

The latter part of the thesis has addressed the thermodynamics of ion exchange equilibria.

New experimental isotherms for a macroreticular ion exchange resin have been measured for

the H+ - (Na+, K+, Ca++) systems with (Cl-, NO3
-, SO4

--, H2PO4
-) as co-ions at 1N and 25°C.

The experiments have been performed using a column method and the accuracy of the data is

very reasonable. These new experiments illustrate the impact of speciation on ion exchange

equilibria isotherms.

Ion exchange isotherms have been modeled using an approach in which the ion exchanger is

considered a solid phase. The aqueous phase has been modeled using the Extended

UNIQUAC model, while the ion exchanger phase has been modeled using the Margules 1

coefficient model. The thermodynamic equilibrium constant has been calculated individually

from the experimental data. The method has been applied to a large amount of ion exchange

systems, and the results show that using the simple Margules model gives very similar results

as when using the more complex Wilson model.

The work shows that excellent predictions can be obtained at varying concentrations with

parameters regressed at one concentration. The new experimental data have been modeled by

regressing parameters from the chloride data and the predictions for the isotherms with other

co-ions are very reasonable. The conclusions from these calculations are that speciation

implicit is included in the aqueous phase activity coefficients. This means, that the

conventions used when the parameters of the aqueous thermodynamic model originally were

regressed should always be used when activities later on are calculated using the same model

parameters. However, due to the limited amount of data for ion exchange isotherms in

systems with high speciation, most of the results should mainly be taken as indications. More

comprehensive experiments should be performed to cover a larger system of ions and thereby

be used for validating the model.
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The approach for calculating binary ion exchange isotherms could easily be extended to

multicomponent systems and has in this work been successfully applied on a ternary system.

The method gives good predictions in the ternary system from the binary parameters, and the

results show that the three thermodynamic equilibrium constants calculated from the binary

systems obey the Triangle rule within 3%. This result is better than previously reported results

and indicates that the simple method for obtaining the thermodynamic equilibrium constant

used in this work gives consistent values. However, the method should be applied to more

ternary systems before any final conclusions can be made.

In the last part of the thesis, the absorption of water and salt at ambient temperature has been

measured for 3 gel type and 3 macroreticular resins with varying degrees of crosslinking. The

experiments were performed for aqueous solutions of KNO3, KCl, Ca(NO3)2 and CaCl2 in the

concentration range of 0-3N. The absorption has been calculated using a method consisting of

batch experiments combined with measurements of the volume change of the resin when in

equilibrium with the electrolyte solutions. The experimental results have an experimental

reproducibility of 8% which is acceptable for this kind of studies. The conclusion of this is,

that the new procedures proposed in this thesis for these kinds of experiments are valid. The

experimental data have been modeled with the Extended UNIQUAC model combined with an

elastic term taking the elastic properties of the resin structure into account. Volumetric

properties of both the two phases are modeled using the method developed in this thesis and it

is shown that the volume of the resin phase could be considered as constant within small

variation in concentrations. The absorption in the macroreticular resins has been modeled

under the assumption that this type of resins consists of a gel type region and a discrete

porous region. The model shows very good predictions with varying degree of crosslinking

for both types of resins, and the deviations between model results and experimental data are

all within the experimental error. This means that the model is capable of predicting the salt

and water absorption in various polystyrene ion exchange resins from absorption isotherms of

one type of resin as long as the capacity, swelling in pure water and pure water density of the

various resins are known. This could be a huge help in screening different resins for special

properties. However, the models capabilities are not fully utilized in this study. First of all

more experiments should be performed in order to fully validate the obtained results.

Furthermore, it would be interesting to observe the models capabilities in systems with two or
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more competing counter-ions. These types of experiments are very time consuming and were

unfortunately not performed in this study due to a limited time in the laboratory facilities.
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Notation

ia Activity of component i

a Distance of closest approach (m)

A Helmholz energy (J)

Aij Wilson parameter

ADH Debye-Hückel parameter (kg½mol-½)

b Extended Debye-Hückel parameter (kg½mol-½)

c concentration (mol/L)

C Heat capacity (J/mol/K)

EP Equivalence point

F Faradays constant (C/mol)

g Molar Gibbs energy (J/mol)

G Gibbs energy (J)

H Enthalpy (J)

Im Ionic strength based on the molality scale (mol/kg)

K Solubility product

KC Apparent equilibrium constant

Keq Thermodynamic equilibrium constant

L Relative enthalpy (J/mol)

m Molality (mol/kg)

M Molecular mass (kg/mol)

MR Resin in M-form

n Mole number (mol)

n Vector of n
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NA Avogadros number

P Pressure (Pa)

q Capacity of resin (meq/g dry)

wq Fraction of water content of resin when equilibrated with pure water

R Gas constant (J/mol/K)

S Entropy (J/K)

t Temperature (°C)

T Absolute temperature (K)

U Internal energy (J)

v Molar volume (cm3/mol)

V Volume (cm3)

V Partial molal volume (cm3/mol)

w Weight (g)

x Mole fraction

y Equivalent fraction

z Ionic charge

Greek letters

εr Relative permittivity of water (C2/J/m)

0ε Vacuum permittivity

µ Chemical potential (J/mol)

ρ Density (kg/m3)

π Pi (3.1416)

γ Activity coefficient
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φ Volume fraction

φV Apparent molal volume (cm3/mol)

ijΛ Margules parameter

Superscript

dry Dry state property

i Initial

E Excess Property

eq At equilibrium

m Property based on molality scale

wet Property when in equilibrium with pure water

– Partial molar property

~ Property per equivalent of resin

´ Bulk phase property

´´ Resin phase property

0 Standard state – symmetrical convention

∇ Standard state – unsymmetrical convention

Subscript

B Bulk solution

i Component i

MR Resin in M-form

pyc Pycnometer

R Resin

s Salt
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Appendix A

The non-ideality in a dilute electrolyte solution according to the limiting law of Debye and

Hückel theory could be described by:
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Appendix B

The non-ideality in a dilute electrolyte solution according to the so-called extended Debye and

Hückel theory could be described by:
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Appendix C

Database of volumetric properties.

During the Ph.D. project density and other volumetric data have been collected for a large

amount of salts. At present time, data have been systematically collected from nearly 100

different articles.

All experimental data have been included in the data file dens.dat. The index system of the

data file is as follows:

First line in data series:
A B C D E

Data series:
F G H

Index for cation and anions follow the system of Thomsen.

Type of concentrations is indexed as follows:

1. Molality (mol/kg)

2. Molarity (mol/L)

3. Ionic strength of solution (mol/L)

4. Weight percent of salt

The index for types of exp. data is:

1. Apparent molal volume of salt (cm3/mol)

2. Density of solution (g/cm3)

Index for literature source

Index for type of experimental data

Index for concentration unit

Index for anion

Index for cation

Concentration

Exp. data point

Temperature in °C
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3. Density of solution (kg/m3)

4. 1000(d-d0) (g/cm3)

5. Specific gravity (cm3/g)

The index for the literature source corresponds with the numbering given in the file vol_lit.dat

where all references are given.

A computer program has been created for retrieving selected data from the data file. The input

parameters are:

• Number of ions

• Index of ions

• Temperature interval of interest

• Concentration interval of interest

The program then creates a file vol_dat.out with the relevant data converted into the form:

I J K L
Literature source

Density (g/cm3)

Apparent molal volume (cm3/mol)

Concentration in molality (mol/kg)
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Appendix D

Representation of volumetric data in aqueous systems with phosphoric salts.

In the original work presented in chapter 3 the species H2PO4
- was not included. The reason

for this is that only very few data points exist for the volumetric properties of these type of

salts. In addition to this, phosphoric acid does not fully dissociate and could therefore not

directly be represented by the general equations used in the chapter. In spite of the limited

data, parameters are given in this appendix for the calculation of fully dissociated H2PO4
-

salts. Furthermore, an alternative procedure is suggested for the calculation of the volumetric

properties of phosphoric acid. All parameters are only valid at 25°C.

Parameters for H2PO4
-

The parameters in eq. [3.26] is found from regression of apparent molal volume data of

NaH2PO4 and KH2PO4 measured by Surdo et al.1 The parameters are given in the table D.1

and the results are shown in figure D.1.

25
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m½ (mol½kg-½)
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Figure D.1. Representation of apparent molal volume of aqueous solutions of phosphoric salts. (�)

KH2PO4, (�) NaH2PO4, (– ) correlation calculated with eq. [3.26].
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The figure shows a good correlation of the two phosphoric salts and the deviation is within

the experimental accuracy. The results also show that it is fairly easy to implement a new

species to the system given in chapter 3.

Parameters for H3PO4:

As mentioned in chapter 4, H3PO4 is not a strong acid and is therefore not fully dissociated in

aqueous solutions:

3 4 2 4

2 4 3 4

H PO ( s ) H ( aq ) H PO ( aq )

H ( aq ) H PO ( aq ) H PO ( aq )

+ −

+ −

+

+

�
�

Eq. [3.26] can therefore not be directly applied to this species. Due to speciation the apperent

molal volume of H3PO4 is not a function of the square root of molality. To take this into

consideration the apparent molal volume of H3PO4 is calculated as a contribution from

dissociated H3PO4 and undissociated H3PO4:

3 4 3 42 4 2 4

3 4

3 42 4

,, ,
,

H PO V H POH V H H PO V H PO
V H PO

H POH H PO

n n n

n n n

φ φ φ
φ

+ + − −

+ −

+ +
=

+ +

The speciation is calculated using the dissociation data of Preson and Adams2. The data have

been correlated using a power expression as shown in figure D.2.

Table D.1: Parameters for eq. [3.26]

I (1)
iv (1)

ik

H2PO4
- 30.8 4.1

H3PO4 47.852 0.3039
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y = 0.1237x-0.3473

R2 = 0.9975
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Figure D.2. Degree of dissociation of H3PO4 in water. (�) data of Preston and Adams2,

(–) power correlation with parameters given in the figure.

The parameter for H3PO4 (aq) has been regressed from experimental data of Surdo et al.1 and

the result is shown in figure D.3.
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Figure D.3. Apparent molal volume of H3PO4 in aqueous solutions at 25°C. (�) Experimental data of

Surdal et al.1, (–) calculated using eq. [3.26] and parameters in table D.1.
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The figure shows excellent agreement and proves that eq. [3.26] could be extended to apply to

highly speciated systems by applying dissociation data. It has not been possible to validate

these parameters in multicomponent mixtures due to lack of experimental data. However, this

would be very important in future works if relevant data shows up in literature.
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(1) Surdo, A.L.; Bernstrom, K.; Jonsson, C.-A.; Millero, F. Molal Volumes and Adiabatic

Compressibility of Aqueous Phosphate Solutions at 25°C. Am. Chem. Soc. 1979, 83,

1255.

(2) Preston, C. M.; Adams, W. A. A Laser Raman Spectroscopic Study of Aqueous

Phosphoric Acid. Can. J. Spectroscopy. 1977, 22, 125.
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Appendix E

Determination of H+ in aqueous solutions.

Theory.
The amount of H+ (H3O

+) in a solution could be found by titration of the solution with a basic

solution:

3 22H O OH H O+ −+ →

If a glass electrode is in contact with the acid solution then according to the Nernst equation

the potential of the glass electrode corresponds to the hydrogen ion activity:

0 0logglass glass glassH
E E k a E k pH+= + = + ⋅

If the electrode also contains a reference electrode then the overall cell voltage is:

( )0
cell glass ref glass refE E E E E k pH= − = − − ⋅

Titrating the acid solution with a basic titrant and monitoring the pH as a function of the

volume titrant, the amount of H+ in the initial solution can be found. The equivalence point

will show as a steep rise in pH as shown in figure E.1.

Volume NaOH

pH

EP

Figure E.1
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Experimental procedure.

The chloride content of the solution was determined with a potentiometric method using a

Metrohm 799 GPT Titrino titrator with a silver chloride reference electrode. Merck NaOH

standard solutions at 0.1±0.001N were used as titrant.

100±0.1mL of eluent was transferred to a 50mL tritration beaker using a pipette. The

solutions were titrated using the Metrohm device and the equilibrium point found numerically

by the device. The experiment was repeated several times and the average experimental

reproducibility was found to be approximately 2%.
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Appendix F

Including the co-ion in reaction [6.1] gives:

A X X B

B A

z z z zA B A B
B A z B z A

X X

z z z z
z A X z BR z AR X z B

z z
+ + + +�

The thermodynamic equilibrium constant for the reaction is:

( )
( )

( )
( )

B
A X

zA

B X A

zB

z
z / z

ARBXB
A z / z z

AX AR

aa
K

a a
=

Where the activity of the salt
x Az zA X in the solution is defined as:

( ) ( )X A

z zX A

z z

A X A A X Xa m mγ γ=

Written in terms of activity coefficients equation [2.A] gives:

( ) ( )( )
( ) ( )( )

( )
( )

A X BX B

z zA A

B X A
X A

z zB B

z / z zz z

B B X X AR ARB
A z / z zz z

AR ARA A X X

m m x f
K

x fm m

γ γ

γ γ
=

( ) ( )
( ) ( )

( )
( )

( )
( )

( )
( )

B Bz zA B
A AzX

z z z zA A A A

z zA B A B AB zX

z z z zB B B B

z z
z z

AR AR AR ARB B X X B B
z z zz

A AA A X X AR AR AR AR

x f x fm m m

mm m x f x f

γ γ γ
γγ γ

= =
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Appendix G

Calculation of the thermodynamic equilibrium constant of ion exchange isotherms.

The thermodynamic equilibrium constant is defined as:

( ) ( )B A

z zA B

z z
B
A C AR BRln K ln K ln lnγ γ= + − [G.1]

From the definition of the equilibrium constant following therefore applies:

B A

z zA B

z z
C AR BRd ln K d ln( ) d ln( ) 0γ γ+ − = [G.2]

The Gibbs-Duhem equation for the ion exchanger phase gives:

z z z zA A B B
AR AR BR BRn d n d 0µ µ+ = [G.3]

When considering a unit of resin carrying one equivalent of exchange sites and introducing

the expression for the chemical potential, equation [G.3] gives:

B A

z z z z z zA A A B B B

z z
AR AR AR BR BR BRy d ln( x ) y d ln( x ) 0γ γ+ = [G.4]

where
zB

BRy is the equivalent molefraction of
BzBR defined as:

zB

zB

z zB A

B BR

BR
B BR A AR

z n
y

z n z n
=

+

Combination of equation [G.2] and [G.4] could be used for decoupling the equilibrium

constant from the resin phase activity coefficients:

Solving for
zA

ARγ :

B A

z zA B

z z
C AR BRd ln K d ln( ) d ln( ) 0γ γ+ − = ⇔ [G.5]

A B

z zB A

z z
BR C ARd ln( ) d ln K d ln( )γ γ= + [G.6]

Inserting this in [G.3] gives:

B A

z z z z z zA A A B B B

z z
AR AR AR BR BR BRy d ln( x ) y d ln( x ) 0γ γ+ = ⇔ [G.7]

A B A

z z z z z z zB B A A A B B

z z z
BR BR AR AR AR BR BRy d ln( ) y d ln( x ) y d ln( x )γ γ= − −

B B A

z z z z z z z zB B A A A A B B

z z z
BR C BR AR AR AR AR BR BRy d ln K y d ln( ) y d ln( x ) y d ln( x )γ γ+ = − −
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B B A

z z z z z z z zB A A B A A B B

z z z
BR AR AR BR C AR AR BR BR( y y )d ln( ) y d ln K y d ln( x ) y d ln( x )γ+ = − − −

B B A

z z z z z zA B A A B B

z z z
AR BR C AR AR BR BRd ln( ) y d ln K y d ln( x ) y d ln( x )γ = − − − [G.8]

Similarly for
zB

BRγ :

B A B

z z z z z zB A B B A A

z z z
BR AR C BR BR AR ARd ln( ) y d ln K y d ln( x ) y d ln( x )γ = − − [G.9]

Integration of equation [G.8] between a point Q on the ion exchange equilibrium isotherm and

the point, a, where the ion exchanger is on pure
AzAR form gives:

B B A

z z z z z zA B A A B B

Q Q Q Qz z z
AR BR C AR AR BR BRa a a a

d ln( ) y d ln K y d ln( x ) y d ln( x )γ = − − −� � � � [G.10]

ln ln ln
z z zB B B

QQ Q

BR C BR C C BRa aa
y d K y K K dy	 
= −
 �� � [G.11]

( )1 1 1

1 1

1 1
ln( )

1
ln

zAB

z z z zA A A A

z z z B A AzA B A A

z zA B

B B

Q Q bB A ARz
AR AR AR ARa a a

A AR B BR AR z z zAR

Q

AR BR

z z B A a

z z x
y d x dx dx

z x z x x x

x x

z z

= =
+ − +

	 
� �
= +� �� �� �−� �� �
 �

� � �

1 1

1
ln( ) ln ln( )z zA BA B

z z z zB B A A

A B

Q
Q QAR BRz z

BR BR AR ARa a
z z B A a

x x
y d x y d x

z z

	 
� �
= + = −� �� �� �−� �� �
 �

� � [G.12]

ln( ) ln lnB

z z zA B B

QQ Qz
AR BR C C BRa aa

d y K K dyγ 	 
= − +
 �� � [G.13]

( )
ln ln ln

( )

B

zA

z zB B B

zA

z
Q QAR

BR C C BRz aa
AR

Q
y K K dy

a

γ
γ

	 
= − +
 � �

ln ( ) ln ( ) ln lnB B

z z z zA A B B

Q Qz z
AR AR BR C C BRaa

Q f a y K K dyγ 	 
= − +
 � � [G.14]

Simarly for
zB

BRγ :

ln( ) ln lnA

z z zB A A

QQ Qz
BR AR C C ARb bb

d y K K dyγ 	 
= − −
 �� �
( )

ln ln ln
( )

A

zB

z zA A A

zB

z
Q QBR

AR C C ARz bb
BR

Q
y K K dy

b

γ
γ

	 
= − −
 � �
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ln ( ) ln ( ) ln lnA A

z z z zB B A A

Q Qz z
BR BR AR C C ARbb

Q b y K K dyγ γ 	 
= − −
 � � [G.15]

Inserting eq. [G.14] and [G.15] in eq. [G.1] gives:

( ( ))
ln ln ln

( ( ))

B

zA

zA B

zB

z
bAR

C BRz a
BR

a
K K dy

b

γ
γ

= + � [G.16]

The activity coefficients in the two pure states are per definition 1. Eq. [G.16] is therefore

reduced to:

1

C B0
ln K ln K dy= � [G.17]
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Appendix H

Isotherm data for H+ - K+, H+ - Ca++ and H+ - Na+ ion exchange on Amberlyst 40CW in
1N solutions.

Type of Exchange Type of anion

H+ and Cl- NO3
- SO4

-- H2PO4
-

H
x + HRx

H
x + HRx

H
x + HRx

H
x + HRx

K+ 0.097 0.094 0.100 0.100 0.100 0.046 0.100 0.010

0.101 0.096 0.200 0.165 0.200 0.070 0.200 0.038

0.185 0.149 0.300 0.234 0.300 0.092 0.300 0.072

0.186 0.148 0.400 0.294 0.400 0.135 0.400 0.101

0.295 0.209 0.500 0.356 0.500 0.183 0.500 0.132

0.394 0.269 0.600 0.410 0.600 0.260 0.579 0.168

0.479 0.328 0.700 0.506 0.700 0.335 0.700 0.255

0.492 0.329 0.800 0.613 0.800 0.443 0.800 0.378

0.492 0.331 0.900 0.762 0.900 0.654 0.900 0.550

0.583 0.401

0.600 0.417

0.696 0.492

0.700 0.493

0.786 0.584

0.800 0.611

0.885 0.737

0.900 0.769

Ca++ 0.100 0.031 0.100 0.037 0.100 0.005

0.200 0.058 0.200 0.065 0.200 0.011

0.300 0.091 0.300 0.098 0.300 0.021

0.400 0.115 0.400 0.108 0.400 0.025

0.500 0.142 0.500 0.141 0.500 0.038

0.600 0.198 0.600 0.182 0.600 0.051

0.700 0.301 0.700 0.294 0.700 0.075

0.800 0.434 0.800 0.419 0.800 0.124

0.900 0.653 0.900 0.648 0.900 0.349
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Na+ 0.100 0.100 0.100 0.100 0.100 0.053 0.100 0.013

0.200 0.184 0.200 0.183 0.200 0.078 0.200 0.042

0.300 0.264 0.300 0.259 0.300 0.103 0.300 0.086

0.400 0.332 0.400 0.317 0.400 0.150 0.400 0.121

0.500 0.408 0.500 0.416 0.500 0.205 0.500 0.162

0.600 0.492 0.600 0.487 0.600 0.289 0.600 0.223

0.700 0.582 0.700 0.578 0.700 0.373 0.700 0.307

0.800 0.682 0.800 0.692 0.800 0.495 0.800 0.459

0.900 0.827 0.900 0.861 0.900 0.784 0.900 0.644
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Appendix I

Determination of Cl- in aqueous solutions.

Theory.

The amount of chloride ion contained in a sample can be evaluated by titrating the chloride

ion with a standard AgNO3 solution:

( ) ( ) ( )Ag aq Cl aq AgCl s+ −+ ↔

The equivalence point can be determined by monitoring the change in potential between an

indicating electrode and a reference electrode. The observed potential difference between the

two electrodes is given by:

, / ,obs ref anode AgCl Ag CathodeE E E= +

The Nernst equation for the AgCl/Ag electrode at 25°C could be expressed as:

( )/ 0.222 0.05916logAgCl Ag Cl
E V a −= −

Combining these two equations gives:

( )0.222 0.05916logObs ref Cl
E E V a −= + −

As standard AgNO3 titrant is added to the solution, the change in the chloride ion activity

produces a change in the observed potential. The equivalence point of the titration is found

when the change in the observed potential per aliquot of titrant added is at maximum. A

graphical output from a titration is shown schematically in the figure below.

V (AgNO3)

m
V

EP

Using a graphical analysis one can in this way accurately determine the titrant volume needed

to reach the equivalence point.
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Experimental procedure.

The chloride content of the solution was determined with a potentiometric method using a

Metrohm 799 GPT Titrino titrator. An Ag/AgCl electrode with saturated KCl as reference

was used. A standard solution of app. 0.1N AgNO3 was produced using analytical grade

AgNO3 from Merck and ultrapure water. The solution was calibrated by 3 successive

titrations of 0.500g dried KCl.

1mL of the solution of interest was transferred to a 50mL glass beaker using a 500-1000µL

micropipette. The pipette was calibrated using a weighing method and it was found that the

average error when dosing 1mL was 0.7%. A small amount of HNO3 was added to the beaker

to prevent AgNO3 from oxidizing during the titration. The solution was titrated with the

calibrated AgNO3 solution and the equivalence point was found by calculating the slope of

the curve. By carrying out the experiment 20 times, the average standard deviation of the

analysis method was found to be 3%.
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Appendix J

Determination of NO3
- in aqueous solutions.

Theory.

The UV absorbance in dilute solutions varies linearly with both the cell path length and the

analyte concentration. These two relationships can be combined to yield a general equation

called Beer's Law:

A Lcε=

A is the absorbance, L is the the path length of the cuvette in which the sample is contained

and the quantity ε is the molar absorptivity. The molar absorptivity varies with the wavelength

of light used in the measurement. Nitrate absorbs ultraviolet light at 220nm. By measuring the

absorbance in solutions of a known amount of nitrate at 220nm, it is possible to produce a

calibration curve which could be used for rapidly determining the nitrate content in solutions

which lies within the concentration range of the calibration curve.

Experimental procedure:

The nitrate content was analyzed using an Agilent UV spectrophotometer with a matched pair

of silica cells. Acid-washed, ashless hard-finish filter paper was used for cleaning the cells

before measurements. Standard solutions of KNO3 were prepared using dried KNO3. A

calibration curve was created each time the spectrophotometer was started. An example of a

calibration cure is given in the figure below.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

Absorbance

C
N

it
ra

te

From the figure it is seen that Beers law holds in the concentration range used for the

calibration curve.
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The analysis was performed by transferring 10mL (±0.02ml) of solution to a 100mL

volumetric flask to ensure that the concentration was within the range of Beers law. From the

volumetric flask a sample was transferred to one of the silica cells while the other silica cell

contained ultra pure water. The procedure (including dilution step) was repeated 20 times and

the average error of the measured concentration was found to be 4%.
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Appendix K

Photos of the different resins used in the experiments are presented in this appendix. The

harmonic mean size for the macroreticular resins is app. 0.6 – 0.8 mm and slightly lower for

the gel type resins.

Amberjet 1200 Amberjet 1500

Amberjet 1600 Amberlyst 40CW

Amberlyst 35W Amberlyst 36W
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