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Summary

This dissertation represents three years work on the topic statistical methods for
history matching of oil production. The work has resulted in a comprehensive
treatment of existing techniques and the development of a novel technique which
combines gradient information with a stochastic history matching method.

History matching is an important part of the management of an oil field
and poses many problems due to the complexity of typical reservoir models and
the shear size of the simulation model used to perform fluid flow simulations.
The term history matching refers to the process of adjusting a reservoir model
such that simulated production data agrees with actual measured production
data. From a producing field there will be measurements of production data
from the beginning of production until the present time. Such measurements
over time are referred to as historic data. The reservoir model is adjusted until
the production history is identical (or close) to the production calculated by a
numerical fluid flow simulation. The reservoir model is mainly used to forecast
future production which is crucial for many aspects of the field management
and development. The reason for history matching the reservoir model is that
it is thought to have better predictive capabilities if it at least describes the
past production well. In other words: why would we trust a prediction from a
reservoir model which does not even agree with historic production data?

The dissertation is divided into three parts which are subdivided into a
number of chapters:

• Background and introduction

– Introduction to history matching and literature review

– Introduction to geostatistics

– Introduction to reservoir simulation and adjoint sensitivity calcula-
tion
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• Methods for history matching

– Gradual deformation

– Probability perturbation

– Deterministic history matching

– Hybrid method

• Appendix with details on various topics

In the first part a detailed introduction to geostatistics is supplied. Geo-
statistics makes up the backbone of many history matching methods, including
the two stochastic methods used in the dissertation. A solid understanding of
the geostatistical background of these methods is important. One other issue
is important not only for geostatistically based algorithms but for all issues re-
lated to history matching: reservoir simulation. The mathematical background
for reservoir fluid flow simulation is presented together with a more detailed
treatment of the numerical solution of the discretized flow equations. Efficient
calculation of sensitivities of production data with respect to grid block prop-
erties (e.g. permeability) is a central issue in the use of deterministic methods
as well as in the proposed hybrid method. Therefore, a comprehensive treat-
ment of the adjoint sensitivity calculation is provided in the chapter concerning
reservoir simulation. Implementational details are discussed in further detail in
the appendix.

The part of the dissertation related to history matching methods is divided
into four chapters which deal with individual methods. The last chapter is
devoted to the introduction and discussion of a novel technique which combines
an existing geostatistical method with gradient information.

The methods which are discussed in the dissertation are exemplified in cases
where they are applied to history matching problems. Emphasis is put on ex-
emplifying the proposed hybrid method since it is a new approach and as such
is not dealt with in previous works. The hybrid method has shown to improve
the performance of traditional probability perturbation. The work has been
limited to binary facies models. However, the method should be extendable to
more complex cases where more facies are present. The proposed method seeks
to improve the convergence of the probability perturbation method by includ-
ing qualitative gradient information. The qualitative information is extracted
from the gradient of the objective function by a simple filter which filters out
numerically small elements of the gradient. A new parameter denoted degree of
trust is introduced. This parameter is used to control the impact of gradient
information. If this parameter is set to zero the proposed method reduces to
traditional probability perturbation.

The use of gradual deformation to pick out good starting guesses for a deter-
ministic history matching approach is also discussed. A sequential methodology
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where gradual deformation is followed by a deterministic adjustment of the reser-
voir model is suggested. This method may be a good choice if the field exhibits
smooth variations of permeability and if the distribution of permeability can
be represented by a Gaussian distribution. However, the use of a deterministic
method for the final adjustment may introduce geological artifacts which may
ruin the geological consistency of the reservoir model.
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Resume p̊a dansk

Denne afhandling sammenfatter tre års arbejde med emnet statistiske metoder
til history matching af olieproduktion. Arbejdet har resulteret i en omfattende
beskrivelse af eksisterende teknikker og har desuden resulteret i udviklingen af
en nyskabende metode, som kombinerer gradient information med en stokastisk
history matching metode.

History matching er en vigtig del af driften af et oliefelt og er ofte forbun-
det med problemer relateret til kompleksiteten af reservoiret og selve størrelsen
af reservoirsimuleringsmodellen. Begrebet history matching dækker over arbe-
jdsprocessen, hvor de fysiske parametre i en reservoirsimuleringsmodel bliver
justeret s̊aledes, at en simulering af olieproduktionen stemmer overens med
egentlige m̊alte produktionsdata. For et producerende felt vil der generelt være
m̊alte productionsdata fra starten af produktionen indtil nutid. Disse m̊alte data
over tid kaldes historiske data. Modellen justeres, indtil reservoirsimuleringen
giver produktionsdata, som er identiske med (eller tæt p̊a) de historiske data.
Reservoirmodellen skal først og fremmest bruges til at forudsige fremtidig pro-
duktion, hvilket er essentielt for mange dele af reservoirets drift og udvikling.
Form̊alet med at history matche modellen er, at dens prædiktive egenskaber an-
tages at være bedre, hvis modellen i det mindste beskriver historisk produktion.
Med andre ord: Hvorfor skulle vi stole p̊a prædiktioner fra en model, som ikke
engang stemmer overens med historiske, m̊alte data?

Denne afhandling er delt ind i tre dele, som er delt ind i et antal under-
kapitler:

• Baggrund og introduktion

– Introduktion til history matching og litteraturstudie

– Introduktion til geostatistik

– Introduktion til reservoir simulering og adjoint sensitivitetsberegning
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viii

• History matching metoder

– Gradual deformation

– Probability perturbation

– Deterministisk history matching

– Hybrid metode

• Appendiks med uddybende detaljer vedrørende diverse emner

I første del introduceres grundbegreberne inden for geostatistik. Mange his-
tory matching metoder er baseret p̊a et geostatistisk fundament, hvilket ogs̊a gør
sig gældende for de to stokastiske metoder omhandlet i denne afhandling. Derfor
er en solid viden om geostatistik en forudsætning for at forst̊a disse metoder. En
anden vigtig del af history matching er reservoir simulering. Den matematiske
baggrund for strømning af fluider i porøse medier præsenteres sammen med
en mere detaljeret gennemgang af den numeriske løsning af de diskretiserede
ligninger. B̊ade deterministiske metoder og den foresl̊aede hybrid metode for-
drer en effektiv beregning af afledte af produktionsdata med hensyn til parame-
tre i det diskretiserede grid, s̊asom permeaabilitet. Derfor behandles ogs̊a en
adjoint baseret tilgang til beregning af s̊adanne afledede. Detaljer relateret til
implementeringen af adjoint metoden er angivet i appendiks.

Den del af afhandlingen, som omhandler metoder til history matching, er
delt ind i fire kapitler, som hver især omhandler en specifik metode. I det sidste
kapitel introduceres og diskuteres en nyskabende metode som kombinerer en
eksisterende geostatistisk metode med gradient information.

Metoderne, som diskuteres, bliver i videst mulig udtrækning eksemplificeret
ved anvendelse p̊a history matching problemer. Et specielt fokus lægges p̊a
at eksemplificere brugen af den foresl̊aede hybridmetode, da denne er ny og
derfor ikke er beskrevet i tidligere arbejder. Den hybride metode har vist sig
at forbedre traditionel probability perturbation, idet hurtigere konvergens ob-
serveres. Arbejdet er begrænset til at omhandle binære reservoirmodeller, men
den foresl̊aede metode burde kunne udvides til mere komplekse tilfælde med
flere en to kategoriske variable. Den foresl̊aede metode forsøger at forbedre
konvergensen af traditionel probability perturbation ved at inkludere kvalitativ
gradient information. Denne information bliver ekstraheret fra gradienten af ob-
jektfunktionen ved anvendelse af et simpelt filter, som frafiltrerer numerisk sm̊a
elementer i gradienten. En ny parameter, kaldet degree of trust introduceres.
Denne parameter kan bruges til a styre indvirkningen af gradientinformationen.
Sættes denne parameter til nul, reduceres den foresl̊aede metode til traditionel
probability perturbation.

Brugen af gradual deformation metoden til at udvælge gode startgæt til en
deterministisk history matching metode bliver ogs̊a diskuteret. En sekventiel
metode, hvor gradual deformation efterfølges af en deterministisk justering af
reservoirmodellen foresl̊as. Denne metode kan være et godt valg, hvis reservoiret
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udviser en jævn og glat variation af permeabiliteten, og hvis permeabiliteten kan
repræsenteres af en normalfordelt distribution. Brugen af den deterministiske
metode kan imidlertid introducere artifakter i den geologiske model, og den
geologiske konsistens kan g̊a delvist tabt.
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Chapter 1

Introduction

A good description of key physical properties of an oil reservoir is essential for
the reservoir engineer when the operation of the reservoir is planned. A long-
standing problem in reservoir engineering is the inference of reservoir properties
such as permeability or porosity from measured production data at the wells.
The term history matching covers the process of adjusting a reservoir model
such that a numerical simulation of the production agrees with actual measured
production data, referred to as the historical data. Apart from honoring the
historical data it is crucial that the reservoir model agrees with geological infor-
mation. Such information may originate from core samples, seismic surveys, or
experience from previous fields or outcrop data. The term reservoir model cov-
ers the geological description of a reservoir and includes many properties such as
permeability, porosity, and many more. The best reservoir model will in general
be the one that integrates most of the available knowledge. This knowledge may
be very diverse ranging from historical production data to qualitative knowledge
about the reservoir geology. The diversity of information sources makes it a dif-
ficult task to history match a reservoir model. The purpose of the present work
is to investigate and device efficient history matching techniques which honor
such diverse information sources.

The main reason for history matching of an oil or gas field is to use the
reservoir model for prediction of future production. The main motive for history
matching observed production data is that the predictive power of the resulting
reservoir model is assumed to be best if at least the historic data is reproduced.
A good prediction of the production is valuable when the operation of the field
is planed and a properly history matched model may even be used to point out

17



2 Introduction

areas in the reservoir with left-behind oil.
History matching is essentially a parameter estimation problem or an inverse

problem where reservoir parameters are inferred from the measured production
data. History matching goes under the category of ill-posed inverse problems
because the problem is usually strongly underdetermined as a result of the
large dimensionality of the unknown parameters compared to the number and
the quality of the measurements. This also means that an infinite number of
solutions to the problem exist, which all honor the measured data equally well.
To deal with the ill-posedness of the problem, two approaches have gained a
wide interest within the reservoir engineering community:

• Geostatistically based parameterizations

• Gradient-based optimization with regularization

Both approaches are discussed in this dissertation. Chapters 5 and 6 deal
with two geostatistically based methods and Chapter 7 deals with gradient-
based history matching and regularization. In Chapter 8 a hybridized method
is presented. The hybrid method combines a geostatistical method with gradient
information in order to yield a more efficient method.

1.1 Statement of the problem

The purpose of history matching is to formulate a reservoir model for which a
numerical flow simulation will result in dynamic data which are consistent with
actual observed data at the wells. Such dynamic data may be production data
such as fluid flow rates, fraction of oil or gas in the production, and pressures in
the wells. A common way of quantifying the mismatch between the simulated
data and the observed data is to apply a sum-of-squares measure of the misfit:

E =
1
2

Nobs∑
i=1

wi(dobs
i − dsim

i )2, (1.1)

where Nobs is the number of measurements of the production data. di is
the ith measurement of production data. wi are weighting factors which can be
used to put special emphasis on particular data points.

With permeability as the unknown parameter the history matching problem
can be stated as:

k∗ = Argmin
k

[E(k)] , (1.2)

where k is the permeability tensor.
In realistic history matching problems, the unknown parameter is not re-

stricted to grid block permeabilities but involves numerous other parameters

18



1.1 Statement of the problem 3

such as grid block porosities, relative permeabilities, initial saturations, fault
locations, and more unknowns. Throughout this dissertation history matching
will be restricted to inference of permeability. However, the adjoint code dis-
cussed in Chapter 4 has been extended such that derivatives with respect to
porosity are available. This means that the deterministic method in Chapter 7
can be used for inference of porosity as well.

In field applications the size of the simulation grid may be of the order
of 105 − 106 grid blocks. Consequently, reservoir simulations take up a large
amount of time and history matching can be a tedious task. Because of the
computational load of reservoir simulation it is desirable to devise an efficient
history matching technique which can integrate various geological information
into the history match without running excessively many fluid flow simulations.

Traditionally, history matching has been carried out manually by experi-
enced reservoir engineers who, from experience, know where and what to change
in the reservoir model. The workflow of manual history matching is sketched
in Figure 1.1. It may be difficult for the reservoir engineer to obtain a match
of the production data and at the same time ensuring that the reservoir model
is consistent with information regarding the geology of the reservoir. The work
made in this project has focussed on the development and application of geo-
statistically based methods for history matching. The main strength of such
methods is that the resulting reservoir model is easily constrained to statistical
properties and other types of information regarding the geology.

19



4 Introduction

Figure 1.1: Principal workflow of manual history matching. Depending on the mismatch be-
tween simulated production data and observed data the reservoir engineer adjusts the reservoir
model.

20



Chapter 2

Literature review

The present chapter presents a literature review of previous works related to
history matching. Because of the importance of history matching the field has
been subject to extensive research over the years. Consequently, this review will
by no means be exhaustive but will focus on recent achievements and emphasis
will be put on methods with a geostatistical framework.

Since history matching of production data is used to model the physical
properties of the reservoir and to forecast future production there is a consider-
able economical motivation to improve the history match. Traditionally, history
matching has been done manually by experienced reservoir engineers. Manual
history matching is a tedious process which involves numerous reservoir simu-
lations. Additionally, it may be difficult to integrate new information into the
reservoir model. Consequently, a number of history matching techniques have
been developed to facilitate the process of history matching. In this dissertation
history matching techniques are grouped into two categories depending on the
degree of human intervention needed to apply them:

Assisted history matching: Used to group techniques which require some
expert intervention. This may be choices regarding the type of facies in
certain areas or other decisions on the geology which have to be made
during the course of the history matching.

Automated history matching: Denotes methods which can provide a his-
tory match automatically without any intervention from engineers or ge-
ologist during history matching. Decisions regarding the geology are spec-
ified prior to the history matching.

21



6 Literature review

A method known as the pilot point method was introduced in de Marsily,
Lavedan, Boucher & Fasanino (1984) who history matched pressure data from
an interference test in a one-phase two-dimensional reservoir by adjusting the
transmissibility field. An initial estimate of the permeability field (or trans-
missibility field) was found by kriging conditioned to hard data (i.e. samples).
A number of grid points were then chosen as pilot points and used together
with the sampled permeabilities to condition a kriged estimate. An objective
function was optimized by adjusting the ”measured” value at one or more pilot
points. Thus, the pilot point method uses fictive measurements at pilot points
as a parameterization of the history matching problem. The method is further
developed in RamaRao, LaVenue, de Marsily & Marietta (1995) where gradient
information is used to pick out the most influential pilot points. The pilot point
method is in its original formulation an assisted history matching technique
since the choice of pilot points is done manually. By inclusion of the gradient
information the method can be automated because the gradient can be used to
pick out suitable pilot points.

Another stochastic method was introduced in Hu (2000) and is denoted grad-
ual deformation. The gradual deformation method exploits the fact that certain
linear combinations of independent Gaussian fields conserve second order statis-
tics. A number of parameters, known as deformation parameters are used to
weigh each independent realization when the linear combination is formed. By
adjusting these weights the resulting realization can be perturbed in order to
achieve a better history match. In Hu (2002) a methodology is extended to
handle dependent realizations. Gradual deformation is essentially a geostatisti-
cally based parameterization of the underlying optimization problem in history
matching. The parameterization can reduce the mathematical complexity of
history matching significantly. With gradual deformation the number of inde-
pendent variables in the optimization problem can be reduced from possibly
hundreds of thousands to only one. The gradual deformation method is a rela-
tively simple methodology which makes it easy to implement in an existing his-
tory matching framework. However, the method is limited to deal with geologies
which can be represented by a Gaussian distribution. Thus, some form of trans-
formation of the adjusted parameter needs to be performed if it is not Gaussian.
In practice, this means that gradual deformation is not suited for more complex
geologies which cannot be derived from a Gaussian distribution (Caers 2007).
The nature of the algorithm behind gradual deformation makes it possible to im-
plement the gradual deformation method as a fully automated technique. In the
literature as well as in this dissertation problems with convergence are reported.
The gradual deformation method makes use of an extensive parameterization
of the history matching problem which narrows down the search space used to
minimize the production data mismatch. In order to improve convergence Hu
& le Ravalec-Dupin (2004) incorporated gradient information into the gradual
deformation method and improvements of the performance were reported. More
information on gradual deformation is found in chapter 5 where the method is
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Literature review 7

applied to simple history matching problems.
A technique sharing some of the ideas behind gradual deformation was intro-

duced by Caers (2003) and is referred to as the probability perturbation method.
A more detailed description of the method is provided in Chapter 6. History
matching of reservoirs where the geology is complex may be difficult to do manu-
ally. Also, application of gradient-based methods to categorical facies models is
likely to challenge the effectiveness or even the applicability of a gradient-based
method due to the discrete nature of the problem. The probability perturba-
tion method (PPM) is highly flexible and works with Gaussian distributions
and more complicated geological scenarios where multiple-point statistics (see
section 3.5) is required to describe the geology sufficiently well. PPM exploits
the algorithmic structure of sequential simulation algorithms which make use
of local conditional probability functions. Through a conditional probability
function PPM can perturb the probability of a given event on the grid block
scale. Where gradual deformation perturbs physical properties at the grid block
scale directly, PPM perturbs probabilities at the grid block scale which after a
sequential simulation results in a perturbation of the desired physical properties.
PPM does not rely on any assumptions regarding the statistics of the adjusted
property, e.g. permeability. Therefore, the method is suited for any kind of
geology which can be realized by sequential simulation.

Another technique which has been subject to extensive research in the recent
5 years is the so-called ensemble Kalman filter. The use of Kalman filters has
a long tradition in the field of process control where the filter gives the opti-
mal reconstruction of the states in a linear state space model (Madsen 1998).
The governing flow equations for fluid flow in porous media do not result in
a linear relationship between model parameters and production data (history
matching is a non-linear problem). In order to account for the non-linearity
an ensemble of Kalman filters are applied simultaneously to the history match-
ing problem (Nævdal, Mannseth & Vefring 2002, Nævdal, Johnsen, Aanonsen
& Vefring 2003). In Nævdal et al. (2002) permeability in a two phase, two-
dimensional reservoir is history matched. The reservoir is operated by a smart
well consisting of three compartments. The matched production data is well
bottomhole pressure, pressure in the compartments, total fluid production, and
the inflow of the two phases into each compartment. In Nævdal et al. (2003)
the method is applied to a three phase problem. The Kalman filter updates dy-
namic properties like grid block pressures and saturations as well as grid block
permeability (and other adjusted parameters) in each time step where a mea-
surement is available. Thus, the reservoir model is not static but changes as
more and more production data is integrated into the model. This may seem as
an undesirable feature, since geological models of the reservoir traditionally are
treated as static. A feature of Kalman filters is that integration of new produc-
tion data does not require that the history matching is restarted from scratch.
Ensemble Kalman filters represents a large area of research and it is out of the
scope of this dissertation to describe the method in more detail.
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8 Literature review

Cheng, Kharghoria, He & Datta-Gupta (2004) use a streamline based method
to compute sensitivities of watercut with respect to the permeability field of a
real reservoir. Most optimization algorithms make use of the gradient of the
objective function with respect to the adjustable variables. A major problem
when standard finite difference simulators are used to simulate the production
and calculate the respective sensitivities is the computational load associated
with such operations. The faster streamline approach comes in very handy in
this problem since this method is considerably faster. However, the streamlines
are not able to account for what is referred to as cross-streamline effects. Such
effects might be

• Mobility effects

• Rate changes

• Infill drillings

By the use of a hybrid method combining the streamline model with a com-
mercial finite difference simulator (Eclipse) Cheng et al. (2004) have developed
a fast gradient based history matching method which does not suffer from the
inability to catch cross-streamline effects. The use of streamline derived sen-
sitivities poses an unfortunate problem related to the principle of streamline
simulators. A streamline derived sensitivity with respect to e.g. permeability
only contains information averaged over the entire streamtube1. Therefore, a
permeability change will be realized by multiplying the grid notes covered by the
particular streamtube by a constant value. Such an update of the permeability
field may easily be influenced by the distribution and shape of the streamlines.
Consequently, geometric artifacts may arise during the history matching (Wang
& Kovcek 2000, Agarwal & Blunt 2003).

More traditional optimization methods have also been applied to history
matching. Wu, Reynolds & Oliver (1998) Li, Reynolds & Oliver (2003) use the
Levenberg-Marquardt method to optimize the history match in a two-phase and
a three-phase system, respectively. In these works an objective function of the
following form is minimized:

E(m) =
1
2
((m−mprior)T C−1

M (m−mprior)+(g(m)−dobs)T C−1
D (g(m))−dobs),

(2.1)
where m denotes the set of unknown reservoir parameters (vertical and horizon-
tal permeability and well skin factors). Matrices CM and CD denote covariance
matrices of the model parameters and observed data, respectively. The operator
g denotes the process of running a reservoir simulation.

1The space between streamlines is referred to as a streamtube as it can be regarded as a
separate tube decoupled from the rest of the reserovir.
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2.1 Summary 9

Minimization of the objective function (2.1) is done by application of the
Levenberg-Marquardt algorithm. An adjoint methodology is used to calculate
the sensitivities needed for the optimization. The described methodology is not
based on a geostatistical framework and therefore the result is not guaranteed to
be consistent with geological information such as semivariograms. However, the
objective function as given in equation (2.1) can be considered as a regularized
form of the general measure of production data misfit given in equation (1.1).
The objective function penalizes deviations from a prior model which can be
seen as a regularization of the problem. The regularizing term ensures some
consistency of the result and is a convenient means of keeping a handle on
the optimizer to avoid unphysical or highly implausible results. The use of
regularization techniques is discussed in Chapter 7.

2.1 Summary

The existing literature contains many works related to the subject history match-
ing. Many proposed methods for automated or assisted history matching are
based on a geostatistical framework. This includes the gradual deformation
method which reduces the problem of history matching to a relatively simple
optimization problem. The use of the gradual deformation method requires
that the reservoir geology can be represented by a Gaussian distribution. This
means that complex reservoir geologies with curvilinear features are not suited
for history matching with the gradual deformation method. Another method,
denoted probability perturbation, can be applied to history matching of fields
with such complex geological features. Common to gradual deformation and
probability perturbation is that the convergence of the methods is slow because
of their stochastic nature. The parameterizations used in the methods restricts
the search space available for optimization resulting in poor convergence. The
gradual deformation method has been extended to use gradient information in
order to improve the convergence. Such an extension has until now not been
presented for the probability perturbation method.
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Chapter 3

Geostatistics

This chapter deals with the mathematical, statistical, and physical background
of geostatistics. The motivation for this chapter is to provide a general know-
ledge on some of the geostatistical terms used in the dissertation. The part
related to geostatistics relies on the excellent discussion on geostatistics pro-
vided by Goovaerts (1997).

First, the basics of classical geostatistics are discussed followed by a short
introduction to multiple-point statistics. The discussion is supplemented with
examples and figures where it is possible.

3.1 Basic geostatistics

Geostatistics deals with spatially varying properties and has found a wide range
of applications, from mining and oil exploration to agricultural purposes as well
as image analysis. The concepts in geostatistics can be applied to many problems
which exhibit a spatial dependence. Originally, geostatistics was developed for
mining and mineral exploration in the 1950’s and was further developed by the
French engineer Georges Matheron during the 1960’s. Traditionally, geostatis-
tics has been limited to second-order statistics such as covariance or variograms.
However, during the last ten years the more advanced multiple-point statistics
has gained attention. Multiple-point statistics has enabled geostatisticians to
deal with complex geologies which are difficult or impossible to describe with
the traditional 2-point statistics used in the ”classical” geostatistics.

First, the basic statistical properties are introduced. Consider some property
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12 Geostatistics

z which is assumed to be a spatially distributed variable (for instance porosity
or permeability). z(r) is now treated a realization of the stochastic variable
Z(r). r is indicating that z is a regionalized variable. The expectational value
of Z(r) is given as

E{Z(r)} = µ(r), (3.1)

and the covariance is given by

C(r, h) = E{[Z(r)− µ(r)][Z(r + h)− µ(r)]}. (3.2)

If the mean of the property in question is independent of position, that
is µ(r) = µ, Z is denoted as 1th order stationary. If also the covariance is
independent of the position, Z is denoted as 2nd order stationary.

The variogram is defined as

2γ(h) = E{[Z(r)− Z(r + h)]2}. (3.3)

The intrinsic hypothesis of geostatistics states:

Hypothesis The variogram is independent of the position and only depends
on the lag, i.e. the distance between the two points (Goovaerts 1997).

Mathematically stated the intrinsic hypothesis says

γ(r, h) = γ(h). (3.4)

If the stochastic variable Z is second order stationary the intrinsic hypothesis
is valid.

Under 2nd order stationarity the semivariogram is given as

γ(h) = C(0)− C(h). (3.5)

The validity of equation (3.5) can be shown by the following proof:
The variance is defined as

σ2 = E{[Z(h)− µ]2} = E{Z2(h)} − µ2, (3.6)

and the covariance is defined as

C(h) = E{[Z(r)− µ][Z(r + h)− µ]}
= E{Z(r) · Z(r + h)} − µE{Z(r)} − µE{Z(r + h)}+ µ2

= E{Z(r) · Z(r + h)} − µ2.

(3.7)

The variogram is defined as
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3.1 Basic geostatistics 13

2γ(h) = E{[Z(r)− Z(r + h)]2} = E{Z2(r)}+ E{Z2(r + h)} − 2E{Z(r) · Z(r + h)}

From equations (3.6) and (3.7) the expression becomes

2γ(h) = 2(σ2 + µ2)− 2(C(h) + µ2) ⇔ γ(h) = σ2 − C(h) = C(0)− C(h).

From a number of observations the experimental semivariogram is easily
calculated by the formula

γ̂(h) =
1

2N(h)

N(h)∑
k=1

(
z(rk)− z(rk + h)

)2

, (3.8)

where N(h) is the number of pairs of observations with a distance corresponding
to the lag h.

A number of empirical semivariogram models can be used to describe spatial
variation of z in the particular space, e.g. the oil reservoir. In equations (3.9a -
3.9c) the three most common models are given.

Spherical model

γ∗(h) =


0 h = 0

C0 + C1

(
2
3

h
R − 1

2
h3

R3

)
0 < h < R

C0 + C1 h ≥ R

(3.9a)

Exponential model

γ∗(h) =

{
0 h = 0
C0 + C1

(
1− exp

(
− 3h

R

))
h > 0

(3.9b)

Gaussian model

γ∗(h) =

{
0 h = 0

C0 + C1

(
1− exp

(
− 3h2

R2

))
h > 0

(3.9c)

The parameter C0 is denoted the nugget effect and acts as a measure of
measurement error and discontinuity in the vicinity of h = 0. The quantity
C0 + C1 is denoted the sill which is the value of the semivariogram as the lag
tends to infinity. R is the range of influence and is a measure of the extent to
which a measurement has an impact on a new estimation.
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14 Geostatistics

3.2 Spatial interpolation

The most simple way of approximating a property field from a set of spatially
distributed measurements of the property in question is to approximate the field
by the mean value at all positions. This, however, does not honor any variability
detected through the measurements, nor does it agree with the experiences made
in practice in geostatistics or reservoir engineering. As a consequence, one might
carry out a spatial interpolation where the spatial distance from a measurement
to the point of estimation acts as a weighting factor. This can be achieved by
weighting each measurement with its inverse distance to the estimated point.
Equations 3.10 and 3.11 shows an estimation scheme with distance weighting.
di is the distance from the estimation point to the ith sample and N is the
number of samples (measurements).

wi =
1/di∑N

j=1 1/dj

(3.10)

ẑ = wz, where z = [z(r1), z(r2)...z(rN )] (3.11)

A distance weighting as described above is a huge improvement with re-
spect to its applicability compared to just using the mean of the samples as an
estimation. However, the approach does not honor any knowledge about the
statistics of the field. This includes knowledge about the variance in the form of
a semivariogram or semivariogram model. A technique which can incorporate
such knowledge into the estimation procedure is kriging.

3.2.1 Kriging

The background of kriging methods is presented in the following section. Again,
a linear estimator for the property z is the basis for the method. In its general
form the linear estimator takes the form

ẑ0 = w0 +
N∑

i=1

wizi = w0 + wT z, (3.12)

where wi is the weight of the ith sample, zi. The zi’s are assumed to be re-
alizations of the stochastic variable Zi consisting of two parts, a mean value
and a residual - i.e. Zi = µi + εi. The variance of the residuals is assumed to
have a constant variance of σ2 and a mean of zero. The expected value of the
estimation error is

E{Z0 − Ẑ0} = E{Z0 − w0 −wT Z} = µ0 − w0 −wT µ, (3.13)

where µ = [µ1 µ2...µN ]T .
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3.2 Spatial interpolation 15

A central estimate implies that the expected estimation error is zero which
implies that equation (3.13) should be equated to 0:

µ0 − w0 −wT µ = 0. (3.14)

The estimation variance is given by (for explanation on the algebraic oper-
ations refer to any book on multivariate statistics, e.g. (Conradsen 2003)).

σ2
E = Var{Z0 − Ẑ0} = Var{Z0}+ Var{w0 + wT Z} − 2Cov{Z0, w0 + wT Z}

= σ2 + wT (Cw − 2Cov{Z0,Z}).
(3.15)

C is the covariance matrix of Z.

Simple Kriging

In simple kriging the estimation variance is minimized. From equations (3.12)
and (3.14) the following expression is obtained

Ẑ0 − µ0 = wT (Z − µ). (3.16)

The partial derivative of the estimation variance with respect to the weight
vector is equated to zero:

∂σ2
E

∂w
= 2Cw − 2Cov{Z0,Z} = 0. (3.17)

This gives a system of equations for simple kriging:

Cw = Cov{Z0,Z} ⇔ C11 . . . C1N

...
. . .

...
CN1 . . . CNN


 w1

...
wN

 =

 C01

...
C0N

, (3.18)

where Cij is the covariance between the sampled points and where C0i is the
covariance between the sampled data and the estimated point. The covariances
can be found from the semivariogram. The variance of the estimation is

σ2
SK = σ + wT (Cw − 2Cov{Z0,Z}) = σ −wT Cov{Z0,Z}. (3.19)
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16 Geostatistics

Ordinary Kriging

In ordinary kriging the mean value of Zi is assumed to be constant for all
measurements. This results in the expression

E{Z0 − Ẑ0} = µ0(1−wT 1)− w0, where 1 = [1 1...1]. (3.20)

Equation (3.20) only holds (for all µ0) when w0 = 0 and 1−wT 1 = 0. The
minimization of the estimation variance is now carried out under the constraint
1 − wT 1 = 0. In practice, such a constraint is included through a Lagrange
multiplier (2λ) . The constraint is added to the objective function (3.15) giving
the Lagrange function

L = σ2
E + 2λ(wT 1− 1). (3.21)

The partial derivatives with respect to w and λ are equated to 0

∂L
∂w

= 2Cw − 2Cov{Z0,Z}+ 2λ1 = 0 (3.22a)

∂L
∂λ

= 2(wT 1− 1) = 0. (3.22b)

The system of equations for ordinary kriging is thus given as

Cw + λ1 = Cov{Z0,Z}
1T w = 1.

(3.23)

More precisely, the equations take the form
C11 . . . C1N 1
...

. . .
...

...
CN1 . . . CNN 1

1 . . . 1 0




w1

...
wN

λ

 =


C01

...
C0N

1

 . (3.24)

Again, the covariances are obtained from the semivariogram, which may be
approximated by experimental data or by known or expected values of the sill,
range of influence, etc..

The variance associated with ordinary kriging is given as

σ2
OK = σ + wT (Cw − 2Cov{Z0,Z}) = σ −wT Cov{Z0,Z} − λ. (3.25)

Application of kriging to clustered or non-equidistant samples may lead to
negative weights and maybe even negative estimates of permeability, porosity,
etc.. A number of techniques can be implemented to circumvent this rather
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3.2 Spatial interpolation 17

disappointing feature of kriging (da Rocha & Yamamoto 2000). Se also section
3.3 which discusses declustering techniques. An important detail lies in the fact
that the kriging variance does not depend on the values of the samples. Only,
the distribution of the samples has an impact on the kriging variance.

3.2.2 Accounting for anisotropy

In the previous sections a statistically homogeneous two-dimensional field has
been the basis for a linear estimation of permeability. Such a field is called
isotropic indicating that the variability of the property in question (for instance
permeability) does not depend on the direction of the separation vector h -
only the length is responsible for any variability. In many applications such an
assumption is invalid. An oil reservoir may be systematically build up by areas
with unique properties according to some underlying geologic process.

Hohn (1999, Ch. 2) defines geometric anisotropy as the situation where the
sill is independent of the direction of h and only the range of influence depends
on the direction.

Consider the two spherical semivariograms which account for horizontal vari-
ability and vertical variability, respectively:

γ1(h) =
3h

2R1
− h3

2R3
1

(3.26)

γ2(h) =
3h

2R2
− h3

2R3
2

. (3.27)

The anisotropy ratio is defined as

ν =
R1

R2
. (3.28)

Inserting νh in the first semivariogram gives

γ1(νh) =
3R1h

2R2R1
− R3

1h
3

2R3
2R

3
1

=
3h

2R2
− h3

2R3
2

= γ2(h). (3.29)

Thus, the semivariogram in the vertical direction can be calculated by the
semivariogram for the horizontal direction if the separation distance is multiplied
with the anisotropy ratio. Such an approach, however, only enables the user to
determine the semivariogram in two directions - the horizontal and the vertical
directions. If the direction lies between these a change of coordinate system
must be applied. Let a linear coordinate transformation be given as

h′h = a11hh + a12hv

h′v = a21hh + a22hv,
(3.30)
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18 Geostatistics

Figure 3.1: Illustration of the coordinate transformation.

where h = [hh hv]T and h′ = [h′h h′v]T .
Figure 3.1 shows an ellipsoid with axes corresponding to the directions of in-

fluences associated with the ranges R1 and R2. In the following discussion φ will
denote the angle between the principal axis of the ellipsoid and the horizontal
axis as depicted on Figure 3.1.

Hohn (1999, Ch. 2) gives the transformation

h′ =
[

1 0
0 ν

] [
cos φ sinφ
− sinφ cos φ

]
h = SRh. (3.31)

The transformation (3.31) aligns the kriging coordinate system with the axes
of influence.

The semivariogram value can now be determined by the use of the trans-
formed coordinates:

γ(h) =
3‖h′‖
2R1

− ‖h′‖3

2R3
1

, (3.32)

where

‖h′‖ =
√

h′2h + h′2v . (3.33)

Figure 3.2(a) shows a quadratic field where samples of permeability have
been made in an ordered grid. The samples reveal that a high-permeable area
is located on the diagonal going from the lower left corner to the upper right
corner. Figure 3.2(b) shows a kriged permeability field based on the samples.
The kriged field appears to be smooth and does not seem to represent a realistic
geology. This smoothing effect is a general feature of kriging and results from
the minimization of the error variance. This has lead to the development of
other techniques to generate more realistic property fields, e.g. the sequential
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3.3 Data declustering 19

methods described in section 3.4. The kriged result minimizes the estimation
variance and is therefore unique, hence kriging does not allow generation of
multiple realizations.

(a) Samples.

(b) Kriged field.

Figure 3.2: Illustration of a kriging result based on the samples shown to the left. The
kriged permeability field appears smooth - a general feature of kriging.

3.3 Data declustering

If the measured data from the oil field is not evenly distributed over the entire
reservoir area the geologist or the reservoir engineer is in danger of making
erroneous conclusions about the statistics of the reservoir. Figure 3.3 shows two
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20 Geostatistics

quadratic areas in which samples have been made. In the left area 4 samples
are clustered closely in the lower left corner. In the right area the samples
are more evenly distributed. Note that both areas share two sample points.
The estimated means based on the 5 samples in each area are 8.2 and 3.7,
respectively. Intuitively, the lower mean seems most reasonable because the
sampling in the right area appears to be more representative for the whole
area. When an arithmetic mean is calculated from the samples in the left area
the high-valued area in the left corner is overrepresented resulting in a high
estimated mean. When the data is clustered it is desirable to be able to put
more weight on measurements which are placed in the less densely sampled
areas. This can be achieved by the use of certain declustering techniques.

8 Data declustering

If the measured data from the oil field is not evenly distributed over the entire reservoir
area the geologist or the reservoir engineer is in danger of making erroneous conclusions
about the statistics of the reservoir. Figure 8.1 shows to quadratic areas in which samples
have been drawn. In the left area 4 samples are clustered closely in the lower left corner.
In the right area the samples are more evenly distributed. Note that both areas shares
2 sample points. The estimated means based on the 5 samples in each area are 8.2
and 3.7, respectively. Intuitively, the lower mean seems most reasonable because the
sampling in the right area appears to be more representative for the whole area. When
an arithmetic mean is calculated from the samples in the left area the high-valued area
in the left corner is overrepresented resulting in a high estimated mean. When the data
is clustered it is desirable to be able to put more weight on measurements which are
placed in the less densely sampled areas. This can be achieved by the use of certain
declustering techniques.

* 10

× 10 × 10

× 10

* 1

* 10

* 1× 1

× 1

× 5.5

µ̂ = 8.2 µ̂ = 3.7

Figure 8.1: Example showing how a clustered data set may lead to erroneous conclusions about the
statistics of a spatially varying variable. Common sample points are marked with *.

8.1 Common Techniques

References (Isaaks & Srivastava 1989, Goovaerts 1997, Deutsch & Journel 1998) contain
discussions on techniques used to decluster data sets. Especially the first reference gives
a good introduction to the concept of declustering. The two main methods are 1the

polygonal method and 2the cell-declustering technique.

In the polygonal method each sample point is assigned an area corresponding to a
polygonal surrounding the sample point with edges placed halfway between the point in
question and the other points - se Figure 8.2. This means that the area of the polygon
corresponds to the set of points which is closest to the particular sample point. Weighting
the individual points with weights proportional to the area of the polygon will ensure
that the impact of samples from densely sampled areas is reduced. Thus, the mean and
variance may be expressed as:

14

Figure 3.3: Example showing how a clustered data set may lead to erroneous conclusions
about the statistics of a spatially varying variable. Common sample points are marked with
*.

3.3.1 Common techniques for data declustering

Isaaks & Srivastava (1989), Goovaerts (1997), and Deutsch & Journel (1998)
contain discussions on techniques used to decluster data sets. Especially the
first reference gives a good introduction to the concept of declustering. The two
main methods are the polygonal method and the cell-declustering technique.

In the polygonal method each sample point is assigned an area corresponding
to a polygonal surrounding the sample point with edges placed halfway between
the point in question and the other points - se Figure 3.4. This means that
the area of the polygon corresponds to the set of points which is closest to the
particular sample point. Weighting the individual points with weights propor-
tional to the surface area of the polygon will ensure that the impact of samples
from densely sampled areas is reduced. Thus, the mean and variance may be
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3.3 Data declustering 21

expressed as:

µ̂ =
1
A

n∑
α=1

ωαz(uα) (3.34a)

σ̂2 =
1
A

n∑
α=1

ωα[z(z(uα)− µ̂)]2, (3.34b)

where

A =
n∑

α=1

ωα = Total Area. (3.34c)

ωα denotes the surface area of particular polygons.

µ̂ =
1

A

n
∑

α=1

ωαz(uα) (8.1a)

σ̂2 =
1

A

n
∑

α=1

ωα[z(z(uα)− µ̂)]2 (8.1b)

where

A =
n

∑

α=1

ωα = Total Area (8.1c)

ωα denotes the areal of particular polygons.

Figure 8.2: Sketch showing samples and their corresponding polygonals of influence. Figure taken
from (Goovaerts 1997).

The most outspoken difference between the cell-declustering technique and the polygonal
method is that the division of the areal into subspaces of polygonals is unique - the cell-
declustering technique on the other hand can result in several outcomes. The idea behind
this technique is to divide the area into a number of equally sized rectangular subspaces
(cells) - se Figure 8.3. Then the number, B, of non-empty cells is counted. The number
of samples within the B cells are counted - the quantity nb, b = 1, ..., B refers to these
numbers.

× ×

×

× ×

× ×

n3 = 4

n1 = 1n2 = 1

n4 = 1

B = 4

Figure 8.3: Illustration of the cell-declustering technique.

15

Figure 3.4: Sketch showing samples and their corresponding polygonals of influence. Figure
taken from Goovaerts (1997).

The most outspoken difference between the cell-declustering technique and
the polygonal method is that the division of the area into subspaces of polygonals
is unique - the cell-declustering technique on the other hand can result in several
outcomes. The idea behind this technique is to divide the area into a number
of equally sized rectangular subspaces (cells) - se Figure 3.5. Then the number,
B, of non-empty cells is counted. The number of samples within the B cells are
counted - the quantity nb, b = 1, ..., B refers to these numbers.
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µ̂ =
1

A

n
∑

α=1

ωαz(uα) (8.1a)

σ̂2 =
1

A

n
∑

α=1

ωα[z(z(uα)− µ̂)]2 (8.1b)

where

A =
n

∑

α=1

ωα = Total Area (8.1c)

ωα denotes the areal of particular polygons.

Figure 8.2: Sketch showing samples and their corresponding polygonals of influence. Figure taken
from (Goovaerts 1997).

The most outspoken difference between the cell-declustering technique and the polygonal
method is that the division of the areal into subspaces of polygonals is unique - the cell-
declustering technique on the other hand can result in several outcomes. The idea behind
this technique is to divide the area into a number of equally sized rectangular subspaces
(cells) - se Figure 8.3. Then the number, B, of non-empty cells is counted. The number
of samples within the B cells are counted - the quantity nb, b = 1, ..., B refers to these
numbers.

× ×

×

× ×

× ×

n3 = 4

n1 = 1n2 = 1

n4 = 1

B = 4

Figure 8.3: Illustration of the cell-declustering technique.

15

Figure 3.5: Illustration of the cell-declustering technique.

The mean and variance is then given by:

µ̂ =
n∑

α=1

ωαz(uα) (3.35a)

σ̂2 =
n∑

α=1

ωα[z(z(uα)− µ̂)]2 (3.35b)

ωα =
1

B · nb
. (3.35c)

Thus, samples from cells with many samples are made less dominant than
samples from cells with few samples.

3.4 Sequential Simulation

The previously discussed kriging methods can be generalized to be part of the
so-called estimation methods. These methods are characteristic in the sense that
the estimated field is unique because the estimation variance is minimized. This
means that whenever a number of sample values are present and the variability
(the semi-variogram) is determined, only one realization will fulfill the require-
ment of minimum estimation variance. The so-called simulation techniques are
different with respect to this property. By relaxing the requirement of minimum
estimation variance the simulation techniques are able to provide multiple and
equiprobable realizations. One of the frequently used simulation methods is the
sequential Gaussian simulation method. Sequential Gaussian simulation relies
on the assumption that the distribution of the simulated property locally can be
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3.4 Sequential Simulation 23

described by a Gaussian distribution. During the past decade a number of new
simulation techniques have appeared and made it possible to simulate complex
geological scenarios (Strebelle 2000).

Whereas kriging can be done for all unknown points simultaneously, the si-
mulation techniques visit each unknown point sequentially. Figure 3.6 illustrates
the workflow in sequential simulation.

Figure 3.6: Illustration of the workflow in sequential simulation. The way the local proba-
bility function is modelled varies from method to method. In Gaussian simulation the pdf is
modelled as Gaussian.

A sequential simulation can be summarized by the following algorithm:

1. Model the cumulative density function (ccdf) at the first location u1 con-
ditional on the original n samples:

F (u1; z|(n)) = Prob{Z(u1) ≤ z|(n)}

2. Draw a value from the ccdf

3. At position ui model the ccdf conditional on the samples as well as pre-
viously simulated (drawn) values:

F (ui; z|(n + i− 1)) = Prob{Z(ui) ≤ z|(n + i− 1)}

4. Draw the ith value, set i = i + 1

5. Repeat steps 3 and 4 until all grid notes have been visited
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24 Geostatistics

In sequential Gaussian simulation the simulation of a new value from the
local conditional distribution amounts to solving a local kriging system. Thus,
points 2 and 4 in the algorithm outline correspond to solving a local kriging
problem.

If the unknown points are visited in a too systematic manner there will be a
risk of creating geologic artifacts. This problem arises because previously simu-
lated notes are used to model future pdfs in their neighborhood. Consequently,
visiting is usually done in a random or pseudo-random order to avoid creation
of geologic artifacts. The order is usually controlled by a seed number specified
by the user. By changing the seed multiple equiprobable realizations can be
obtained.

Figure 3.7 shows a sequential Gaussian simulation of a permeability field
conditioned to the samples in Figure 3.2(a). Compared to the kriged result the
simulated field is less smooth and appears more realistic.

Figure 3.7: Sequential Gaussian simulation of a permeability field based on the samples
shown in Figure 3.2(a). Compared to the kriged result the simulated field is less smooth and
appears more realistic.

The term ”sequential simulation” is used to describe methods which make
use of the sequential algorithm described previously. The difference between
various sequential simulation algorithms lies in how the local conditional distri-
bution function is modelled.
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3.5 Multiple-point statistics 25

3.5 Multiple-point statistics

Kriging and sequential Gaussian simulation are said to honor two-point statis-
tics since both methods only involve semivariograms and no other statistical
moments. However, 2-point statistics are not sufficient to reproduce curvi-linear
features such as channels or other geological objects (Caers 2003, Strebelle 2000,
Strebelle 2002). As previously shown, covariance is calculated from a 2-point
templates:

C(h) = E{Z(u)Z(u + h)}. (3.36)

(n + 1)-point statistics are given as ((Journel 2006)) :

C(h1,h2, ..,hn) = E{Z(u)
n∏

i=1

Z(u + hi)}. (3.37)

Thus, an (n+1)-point template is needed for (n+1)-statistics. Representa-
tion of complex geological objects requires higher order statistics than semivar-
iograms. However, reproduction of higher order statistics is a tedious task and
many of the preliminary implementations of algorithms which took multiple-
point statistics into account were CPU and RAM demanding (Strebelle 2002).
One approach to simulation of complex geological geometries is object based
simulation where a number of predefined objects are assigned to the grid blocks
during simulation. A drawback of these methods is that local conditioning to
data is difficult and it may be hard to represent complex geologies with a limited
number of objects (Strebelle 2002).

The most effective and reliable approaches to simulation of complex geolog-
ical geometries are the training image based methods. These methods require
a so-called training image (TI) which represents the type of geology to be sim-
ulated. Multiple-point statistics are extracted from the TI in various ways
depending on the individual methodology. Strebelle (2000) presented Snesim,
a sequential simulation method based on the concept of training images. In
a preprocessing step Snesim scans the TI and builds a search tree of events.
During simulation a search through this tree is made when the local conditional
distribution function is computed. The strength of this approach is that the
method is highly flexible, i.e. simulation of a new type of geology only requires
that a new TI is constructed in accordance with the desired geology. Thus,
Snesim makes it possible to generate multiple realizations based on conceptual
models of the geology. Such conceptual models may be supplied from geologists,
seismic, outcrops, or other sources. Snesim is only applicable to categorical (in-
dicator) variables. In the paper of Zhang, Bombarde, Strebelle & Oatney (2006)
an alternative to Snesim is introduced. The described method is named Filter-
sim because it uses filters to classify different patterns from the training image.
This method works with continuous variables and categorical variables. In Fil-
tersim the data events found by scanning the training image are grouped under
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a number of class prototypes. Via a distance measure the constellation of points
in the vicinity of the simulated point is compared to the class prototypes. From
the group of patterns belonging to the prototype with the largest similarity with
the constellation a pattern is drawn and attached to the simulated point.

Figure 3.8 shows an example of a TI with a channel structure. The TI con-
tains binary facies indicators for channel facies and non-channel facies. Figures
3.9(a and b) show two realizations of facies conditioned to the TI from Snesim.
The Snesim results reproduce the channel structure in both realizations but
show a large variation mutually.

Figure 3.8: Training image with a channel structure.

3.6 Summary of geostatistics

The basics of geostatistical methods such as kriging, sequential simulation, and
multiple point statistics have been presented. In later chapters these concepts
will make up the framework for history matching techniques. The probability
perturbation method which is discussed in Chapters 6 and 7 exploits the algo-
rithmic structure of sequential simulation and the methodology of this method
should be more clear after the introduction to sequential simulation provided in
the present chapter. The Snesim algorithm has been chosen as the sequential
simulator for generation of realizations conditioned to multiple-point statistics
in this dissertation. The Snesim algorithm is easy to integrate into a history
matching procedure and the algorithm is available through the SGeMS software
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(a) First realization. (b) Second realization.

Figure 3.9: Two simulation results from Snesim conditioned to the geology depicted in the
training image shown in Figure 3.8.

package from Stanford Center for Reservoir Forecasting (Remy 2004).
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Chapter 4

Reservoir simulation

This section deals with reservoir simulation with the main purpose of intro-
ducing important concepts related to simulation of fluid flow in porous media
which is an integral part of history matching. An in-house reservoir simulator,
denoted BOSS, has been the basis of the present work. This simulator was
developed at Center for Phase Equilibria and Separation Precesses (IVC-SEP)
at the Technical University of Denmark by Morten Rode Kristensen and the
author. This section introduces the basic concepts of fluid flow in porous media
as well as the numerical methods used to solve the discretized model equations.
For a comprehensive discussion of these topics and a detailed description of the
simulator the reader may consult Johansen & Kristensen (2006).

History matching is a computationally expensive process mainly due to the
computational load of reservoir simulation. In certain processes, e.g. gas injec-
tion, an accurate description of the thermodynamical behavior of the reservoir
fluids is necessary to capture important physical mechanisms. For instance, in
gas injection processes it is important that the solubility of the injected gas in
the oil phase is properly modeled and accounted for. In such cases it is important
that the oil and gas phases are treated as complex mixtures of given components
or pseudo-components when the fluid flow is simulated. When the reservoir sim-
ulator treats the fluids as complex mixtures it is said to be compositional. Even
with today’s modern supercomputers compositional reservoir simulations are
considered to be very heavy. Consequently, compositional simulation is often
carried out on coarse simulation grids in order to limit the time of computation
(Barker & Fayers 1994). Reservoir engineers have therefore resorted to simplify-
ing the physics of the fluids by introducing the so-called black-oil description of
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30 Reservoir simulation

the fluid phases. Black-oil simulators treat the oil component as a single com-
ponent fluid. Analogously, the gas component is treated as a single component
fluid. Thus, a black-oil system contains three components:

• water

• oil

• gas

The characteristic assumptions in black-oil simulators are:

• Oil and water components are immiscible

• Gas is dissolvable in both oil and water phases

• Oil and water does not vaporize into the gas phase

In addition the reservoir is treated as isothermal.
Black-oil simulations are less demanding with respect to computation time

compared to compositional simulation. Of course, the trade-off is that the
physics are treated less realistically. Because of the reduced computational
work related to the black-oil formulation this approach is relevant for history
matching purposes. In the present work a simplified two-phase system makes
out the basis for reservoir simulation. The phases will be treated as immiscible.
Simplification is done in order to reduce computational work and it is deemed
that the applicability of the history matching techniques treated later in the
dissertation is demonstrated sufficiently well with the simplified description of
the reservoir fluids.

4.1 Governing equations

The governing flow equations for flow of a two-phase system (water and oil)
in heterogenous porous media are now derived. The porous media belongs to
the domain Ω and has the boundary Γ. It is assumed that the temperature is
constant over the domain Ω and that the fluids do not flow across the boundaries.
As mentioned above miscibility between phases is not accounted for. The phases
are assumed compressible and the reservoir rock is also treated as compressible
in order to account for porosity changes with varying pressures. The void space
in the reservoir rock is always filed with fluids which translates into the following
basic relationship:

Sw + So = 1, (4.1)

where Sw and So are water saturation and oil saturation, respectively.
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4.1 Governing equations 31

The governing flow equations are derived from considerations of mass conser-
vation. In the following treatment capillary effects are neglected. If dispersion
and diffusion effects are neglected the governing flow equations for water and
oil are (Aziz & Settari 1979):

∂

∂t
[ϕρwSw]−∇ ·

[
ρw

kkrw

µw
(∇P − ρwg∇Z)

]
+ Qw = 0 (4.2a)

∂

∂t
[ϕρoSo]−∇ ·

[
ρo

kkro

µo
(∇P − ρog∇Z)

]
+ Qo = 0 (4.2b)

in which k is the permeability tensor, krj is the relative permeability of phase
j, µj is the viscosity of phase j ’ and Z is the depth of the reservoir (downwards
positive). g is the gravitational acceleration. Qw and Qo represent sources/sinks
due to wells. Darcy’s Law is used to represent phase velocities in (4.2).

To fully specify the flow conditions the boundary conditions must be speci-
fied. As mentioned above no-flow conditions prevail in this work:

uj · n = 0, j ∈ {w, o}, (4.3)

in which uj is the velocity of phase j and n is an outward pointing normal
vector.

The phase velocities are computed by Darcy’s law. The flow potential Φ and
Darcy velocities are defined as:

∇Φj = ∇P − ρjg∇Z (4.4)
uj = −kλj∇Φj , (4.5)

in which λj = krj

µj
is the relative phase mobility. The permeability tensor is

assumed diagonal. The phase mass fluxes driven by pressure and gravitational
forces are introduced as:

qF
j = −ρjkλj∇P (4.6)

qG
j = ρ2

jkλjg∇Z (4.7)

4.1.1 Well models

Until now only the external boundaries of the reservoir have been discussed.
However, wells constitute another type of boundary and must be dealt with
properly. The measurable production data for history matching are measured
at the wells or after the fluids have left the wells. It is evident that the treatment
of wells plays a central role in history matching and in reservoir simulation in
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general. The scale of the grid blocks used in reservoir simulation is often orders
of magnitude larger than the scale of wells. Thus, a 50m×50m×10m grid block
may for instance contain a well with radius 15cm. The numerical flow simulation
cannot resolve the small scale features related to the well which makes it less
apparent how to deal with wells in reservoir simulators. One solution may be
to refine the grid around wells. This can be achieved relatively easily by the
use of unstructured grids, e.g. Voronoi grids. Traditionally, this approach has
not been applied to a large extent since reservoir simulation in the past, and
to some extend also today, has required the use of structured grids. Instead, a
well model ensures that the numerically computed well pressure is identical to
an analytically derived pressure. The analytically derived pressure is exact for
radial flow of a single phase near the well (Aziz & Settari 1979).

With the convention of positive mass flow out of the reservoir, the general
mass flux terms for the wells are defined by:

Phase j from well ω: Qω
j = WIωρjλj (P − Pω) (4.8)

Net from well ω: Qω = Qω
w + Qω

o , (4.9)

in which Pω denotes the pressure in the well. Equation 4.8 is referred to as the
well equation.

Agreement with the analytically calculated pressure is enforced through the
well index, WI. For a vertical well the analytically derived pressure is given as:

Pω = Po +
µQω/ρ

θH(kxky)1/2
ln
(

rw

ro

)
, (4.10)

where ro denotes the radial position at which the pressure is equal to the nu-
merically calculated block pressure. Po is the pressure at ro, H is the height
of the well, kx and ky are permeability in the x-direction and the y-direction,
respectively. rw denotes the radius of the well. For a non-square block-centered
cartesian grid block Peaceman (1983) gives the following expression to determine
ro:

ro = 0.28

[(
ky

kx

)1/2

∆x2 +
(

kx

ky

)1/2

∆y2

]
(

ky

kx

)1/4

+
(

kx

ky

)1/4
(4.11)

For this model the well index in (4.8) is given by:

WI =

θ(kxky)1/2H

ln
(

ro

rw

)
+ s

 , (4.12)

where s is a skin factor used to account for damage to the formation in the
vicinity of the well.
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This methodology can be generalized to wells covering multiple grid blocks.
In this case a well index has to be defined for each grid block containing the
well. The term multiple-block well completion denotes wells covering multiple
grid blocks. The pressure in a well is needed when well rates are computed. If
a well covers multiple grid blocks it is necessary to include the pressure of the
fluid column when the pressure in a well segment is calculated.

In this work the following assumptions regarding the flow in the wells have
been made:

• No friction between liquids and well surface

• Wells are either vertical or horizontal - sloping wells are not an option

• Variable pressure gradient in the well

– Pressures in well segments are calculated from liquid inflows in each
overlying well segment - see equation (4.13).

The first assumption ensures that there is no pressure drop through the well
caused by friction. This simplifies the handling of the wells since special treat-
ment with advanced pipe flow models is avoided. In the current implementation
of the BOSS simulator sloping wells cannot be handled. However, the use of
vertical and horizontal wells is sufficient for the applications in this dissertation.
The pressure exerted by overlaying well segments is calculated weighting the
fluid densities with the inflow rates for the concerned fluid. The well pressure
in the N ’th segment is given by:

PN = P1 +
g

2

N−1∑
i=1

(
λ(w,i)ρ(w,i) + λ(o,i)ρ(o,i)

λ(w,i) + λ(o,i)

)
(zi+1 − zi), (4.13)

where P1 is the pressure in the top grid block, λ(p,i) is the relative phase
mobility of phase p in the grid block containing the i’th well segment. Figure
4.1 shows a schematic picture of a vertical multiple-block well completion.

The flow rate of phase p in well segment i is then given as:

q(w,i)
p = (WI)iλp(Pp − P (w,i)

p ), WI =
2πkh

ln ro

rw
+ s

(4.14)

4.2 Discretization

This section serves the purpose of introducing the very basics of the numerical
method used to solve the flow equations. A basic knowledge about the numerics
involved with reservoir simulation is needed in order to understand the back-
ground of the adjoint based sensitivity calculation discussed in section 4.3 which
plays a cental role in history matching applications discussed later.
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Figure 4.1: Schematic of a vertical well covering multiple blocks.

The governing flow equations (4.2) with the boundary conditions (4.3) are
solved using a finite volume representation of the discretized equations. The
grid is a variable volume block centered grid. For an elaborate discussion on
this topic the reader may consult Johansen & Kristensen (2006) or a textbook
on numerical methods for reservoir simulation, e.g. Aziz & Settari (1979).

Spatial and temporal discretization of the flow equations yields (Aziz, Durlof-
sky & Tchelepi 2005):

T n+1un+1 −D(un+1 − un)−G−Q = 0 = R, (4.15)

where u = [p1 S1 ... pN SN ] is the vector of unknowns which in the fully
implicit formulation consists of grid block pressures and (water) saturations. T
is the matrix of transmissibilities, D contains accumulation terms, G contains
gravity terms, and Q represents sink/source terms. R is the residual which is
driven to zero by a non-linear solver.

In the fully implicit formulation the accumulation term can be expressed as:

D(un+1 − un) =
V

∆t
(φρS|t+∆t−φρS|t) (4.16)

The matrix T consists of seven diagonals with each element being a 2 × 2
matrix for a water-oil system in three dimensions. The residual is driven to zero
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by a Newton-type nonlinear solver which necessitates the computation of the
Jacobian of the residual:

J =
∂R

∂u
=


∂r1
∂p1

∂r1
∂S1

∂r1
∂p1

. . . ∂r1
∂SNblk

∂r2
∂p1

∂r2
∂S1

∂r2
∂p1

. . . ∂r2
∂SNblk

...
...

...
. . .

...
∂r2Nblk

∂p1

∂r2Nblk

∂S1

∂r2Nblk

∂p1
. . .

∂r2Nblk

∂SNblk

 (4.17)

The Jacobian has the same structure as the transmissibility matrix and it
is therefore stored in a sparse format. The Jacobian plays an important role in
the computation of sensitivities for history matching as will be demonstrated
later in section 4.3.

In order to clarify the adjoint approach described in section 4.3 and in ap-
pendix A we will now consider how the flux between two grid blocks is ap-
proximated. For simplicity it is assumed that the flow is taking place in the
x-direction. Generalization to other directions is straightforward. Figure 4.2
shows a schematic of a one-dimensional grid. The distances between the center
of grid block i, j to the centers of the neighboring grid blocks are denoted ∆x+

and ∆x−.

Figure 4.2: Schematic of a one-dimensional grid.

The flux over the face between grid blocks (i, j) and (i + 1, j) is given by:

qF
i+1/2,j = Hres∆yj [kx]i+1/2,j [ρλ]i+1/2,j

pi+1,j − pi,j

∆xi+
= Υi+1/2,j(pi+1,j − pi,j),

(4.18)
where Υi+1/2,j denotes the interface transmissibility. Hres is the reservoir
height. for a three-dimensional grid Hred is replaced with ∆zj . The trans-
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missibility can be divided into a geometric part and a fluid part:

Υi+1/2,j = Γi+1/2,jHi+1/2,j (4.19a)

Γi+1/2,j =
Hres∆yjkx,i+1/2,j

∆xi+
(4.19b)

Hi+1/2,j =
(

ρkr

µ

)
i+1/2,j

(4.19c)

The geometric transmissibility, Γ , depends on the type of descretization and
the physical properties of the reservoir rock and is a static property which can be
calculated in a pre-processing step prior to simulation. The fluid transmissibility
(H), varies with pressure and saturation.

The interface permeability in (4.19b) is computed from harmonic averages
of the grid-block permeabilities:

kx,i+1/2,j =
∆xi + ∆xi+1

∆xi

kx,i,j
+

∆xi+1

kx,i+1,j

(4.20a)

The use of a harmonic average to compute interface permeabilities enforces
flux continuity across the interface. The fluid transmissibility, H, is upwinded
to the direction of flow as this approach has preferable stability properties (Aziz
& Settari 1979).

4.3 Adjoint sensitivity calculation

In chapters 7 and 8 the use of sensitivities of production data with respect to
permeability and porosity plays a central role. Calculation of sensitivities is
done using an adjoint approach which allows for an efficient calculation of the
sensitivities. This section introduces the method and presents its mathematical
background along with a few example calculations. A detailed description of
the computation of the derivatives needed for the adjoint approach is provided
in Appendix A.

The sensitivity of a production data, β, with respect to the property m is
defined as:

s =
∂β

∂m
. (4.21)

m is marked as a vector since the property in question is typically defined at
the grid block scale. The computation of sensitivities of production data can
be computationally heavy. However, the introduction of the so-called adjoint
approach has reduced the computational load significantly compared to previous
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methods for calculation of sensitivity coefficients (Li et al. 2003). The cost of
computing sensitivities is now comparable to that of doing a reservoir simulation
(P. Sarma 2005).

We are now setting up the basis to calculate the sensitivity of the scalar
function β with respect to a reservoir property m, e.g. absolute permeabilities
or porosities at the grid block scale. The function β will be treated as a function
of the vector of unknowns, u and m, i.e.

β = β(u1, ...,uL,m), (4.22)

where L is the last time step where the sensitivity is desired, which is usually
at the end of the simulation period. The adjoint formulation is based on the
formation of an adjoined system of equations in which the discretized model
equations (4.15) are acting as constraints. Adjoining the discretized equations
to β yields:

J = β +
L∑

n=0

(λn+1)T Rn+1, (4.23)

where λn+1 is the vector of adjoint variables, or alternatively, a vector of La-
grange multipliers for the model constraint at time step n + 1. The adjoint
variables should not be confused with the mobility which shares the same sym-
bol. It should be noted, however, that the adjoint variables are typed in bold
because they are vectors. R is the residual from the discretized flow equations.

Since the residual is driven to zero by the nonlinear solver in the simulator
the following equation holds (Wu et al. 1998):

∇mJ = ∇mβ. (4.24)

The size of the adjoint vector is similar to the size of the vector of unknowns,
i.e. it has the length 2N + Ninj where N is the number of grid blocks and
Ninj is the number of injectors. Here it is assumed that producers are pressure
constrained and that a fully implicit formation of the discretized flow equations
is used. In the following derivation the notation used in (Wu et al. 1998) and
(Li et al. 2003) is applied.

The total differential of the adjoint system of equations (4.23) is calculated:

dJ = dβ +
L∑

n=0

[
(λn+1)T (∇un+1(Rn+1)T )T dun+1 + (∇m(Rn+1)T )T dm

]
+

L∑
n=0

(λn+1)T (∇un(Rn+1)T )T dun.

(4.25)

Changing the sum to start from index 1 gives:
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dJ = dβ +
L∑

n=1

[
((λn)T (∇un(Rn)T )T

+ (λn+1)T (∇un(Rn+1)T )T )dun + (λn)T (∇m(Rn)T )T dm
]
+ BT,

(4.26)

where

BT = (λn+1)T [(∇uL+1(RL+1)T )T duL+1+(∇m(Rn+1)T )T dm]+(λ1)T (∇u0(R1)T )T du0.
(4.27)

The initial conditions are invariant which implies that du0 = 0. If λL+1

is chosen to be 0 the BT term is obviously zero. This will serve as the end
condition for the adjoint problem.

Lets us now take the total differential of the scalar parameter β:

dβ =
L∑

n=1

[
(∇unβ)T dun

]
+ (∇mβ)T dm. (4.28)

Equation (4.28) is combined with equation (4.26):

dJ =
L∑

n=1

[
(∇unβ)T + (λn)T (∇un(Rn)T )T + (λn+1)T (∇un(Rn+1)T )T dun

+ (λn)T (∇m(Rn)T )T dm
]
+ (∇mβ)T dm.

(4.29)

The essential operation in the adjoint approach is to simplify the total dif-
ferential in equation (4.29) by forcing the terms multiplying the du terms to
vanish. This is done by equating the proper terms to zero, i.e.:

(∇unβ)T + (λn)T (∇un(Rn)T )T + (λn+1)T (∇un(Rn+1)T )T = 0. (4.30)

Transposing equation (4.30) gives:

(∇un(Rn)T )λn = −(∇un(Rn+1)T )λn+1 − (∇unβ)T , (4.31)

which is the system of adjoint equations. If λn is consistent with the adjoint
equation (4.31) the sensitivity of β with respect to the parameter vector m can
be calculated from equation (4.29) which reduces to:

dJ =
L∑

n=1

[
(λn)T (∇m(Rn)T )T dm

]
+ (∇mβ)T dm. (4.32)
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The sensitivity is therefore given as (remember equation (4.24)):

dJ

dm
= ∇mβ =

L∑
n=1

[
(λn)T (∇m(Rn)T )

]
+ (∇mβ). (4.33)

Let us dwell a little on the structure of the adjoint system (4.31). The equa-
tion is linear in the Lagrange multipliers (or equivalently the adjoint variables).
The multipliers may be determined by stepping backwards in time starting
from t = tL. The condition λL+1 = 0 is used to initialize the system. The
matrix (∇un(Rn)T ) multiplying the lagrange multiplier λn can be identified as
the transposed Jacobian of the discretized model equations. The Jacobian is
formed during the forward simulation to be used in the nonlinear solver (which
is the Newton method) and is therefore known. The other matrix occurring in
equation (4.31) multiplying λn+1 is a diagonal matrix related to the accumu-
lation term in the model equations. This is due to the implicit nature of the
numerical method. The only part in equations (4.15) and (4.16) that depend
on un, i.e. the current vector of unknowns, is the accumulation term. All other
terms are evaluated implicitly in the next time step, i.e. as functions of un+1.

The scalar function β is chosen by the user and the choice of β depends on the
specific problem at hand. If the adjoint method is used in a minimization prob-
lem β might be chosen as the minimized function, i.e. the objective function.
In general reservoir engineering applications β may be the bottom hole pressure
at injectors or the watercut. If one needs the calculation of several sensitivities,
e.g. for bottom hole pressures for multiple injectors, an adjoint equation system
has to be formulated for each pressure. However, it is important to recognize
that only the right-hand sides of equation (4.31) change if several systems are
included. This means that only one factorization of the left-hand side matrix
is required which reduces the computational work significantly. If β does not
depend explicitly on m the derivative ∇mβ in the sensitivity equation (4.33)
will disappear.

The details of the adjoint sensitivity calculation are given in Appendix A.
The current implementation of the adjoint procedure supports the following

features:

• Sensitivity of watercut, oil rate, and injector bottomhole pressure with
respect to:

– Permeability

– Porosity

• Three-dimensional block centered grids

• Vertical and horizontal well completions
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4.3.1 Examples of sensitivity calculations

A few sample calculations of sensitivity with respect to grid block permeability
and porosity are presented in this section. In general, sensitivities can be difficult
to interpret when the reservoir is heterogeneous and when multiple wells are
involved. Hence, only relatively simple setups are considered here in order to
accommodate the clarity of the examples. The first case presented here is a
simple 1D setup with ten grid blocks. Water is being injected in grid block
number 1 and production is taking place in block number 10. Oil and water
are treated as incompressible. Figure 4.3 shows calculated sensitivities of the
injector pressure with respect to absolute permeability at the beginning of the
simulation. Numerical results obtained from perturbations (finite differences)
are indicated by the symbol ×. The sensitivities calculated with the adjoint
method agree with the numerical results. In this case the difference is in the
order of 10−2. The figure indicates that the grid blocks close to the grid block
containing the injector are most influential on the bottom hole pressure. The
sensitivity associated with the injector grid block is smaller than the sensitivities
associated with the grid block lying between the two wells. This is a consequence
of the block centered gridding used in the BOSS simulator. A well is placed in
the middle of a block which means that the distance the injected fluid can
travel inside a well-containing block is less than half of the grid block length -
the exact length depends on the well diameter but is always smaller than half
of the grid block length. This explains the counter-intuitive observation that
the blocks containing wells are less sensitive to changes in permeability than the
grid blocks in between.

The second example is based on a two-dimensional reservoir with a quarter-
nine-spot well configuration. The specifications of the wells are given in Table
4.1. The reservoir has dimensions 100m × 100m × 10m and permeability is
50mDa over the entire domain. Porosity is 0.25. The flow is solved on a
50 × 50 × 1 grid. Water is being injected at a constant rate in three corners
and production is taking place in the last corner. Oil and water are treated as
incompressible and the reservoir is fully oil saturated initially. Figure 4.4 shows
the calculated sensitivity of bottomhole pressure at the three injectors with
respect to grid block permeability. The shown sensitivities are scaled in order
to enhance the visual quality. It is evident that the permeabilities in the grid
blocks close to the wells are the most influential. Because of symmetry in the
well configuration the sensitivity of pressure in injectors 2 and 3 are symmetric
around the diagonal going from injector 1 to the producer.

As a last example of a sensitivity calculation a simple three-dimensional
problem is considered. A symmetry element of a five-spot pattern is applied for
the well configuration. This involves only one injector and one producer. The
specifications of the wells are given in Table 4.2. The wells are completed in
the z-direction and cover all three layers. The reservoir has dimensions 100m×
100m × 10m and permeability is 50mDa over the entire domain. Porosity is
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Figure 4.3: Sensitivity in the 1D case of injector BHP with respect to grid block permeability.
× indicates sensitivities obtained from finite difference approximations.

Table 4.1: Specifications of the wells. The wells are placed in a quarter-nine-spot pattern.
Only water is being injected.

Well Type i j Constraint

I1 Inj 1 50 Rate (5m3/day)
I2 Inj 1 50 Rate (5m3/day)
I3 Inj 50 1 Rate (5m3/day)
P1 Prod 50 50 BHP (10bar)

0.25. The flow is solved on a 10× 10× 3 grid. Figure 4.5 shows the calculated
sensitivity of oil rate with respect to grid block permeability and porosity. The
sensitivities are symmetric around the diagonal connecting the wells which is
expected because of the symmetric well configuration and the homogeneity of
the field.
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Table 4.2: Specifications of the wells for the three-dimensional setup. The wells are placed
in a symmetry element of a 5-spot pattern. Only water is being injected.

Well Type i j k1 k2 Constraint

I1 Inj 1 50 1 3 Rate (5m3/day)
P1 Prod 50 50 1 3 BHP (10bar)

(a) Injector 1. (b) Injector 2.

(c) Injector 3.

Figure 4.4: Sensitivity of bottomhole pressures in the three injectors with respect to grid
block permeability. A scaling has been applied to the sensitivities in order to improve the
visual quality.
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(a) W.r. to permeability.

(b) W.r. to porosity.

Figure 4.5: Sensitivity of oil rate with respect to grid block permeability and porosity.

59



44 Reservoir simulation

60



Part II

Methods for history
matching of oil production

61



62



Chapter 5

Gradual deformation

The gradual deformation method was briefly introduced in the literature review
in Chapter 2. A more detailed description is provided in the present chapter and
application of the gradual deformation method to synthetic history matching
examples is demonstrated.

5.1 Description of the method

Gradual deformation was introduced by Hu (2000) as a technique to constrain
history matches to simple statistics. In Hu (2002) and Hu & le Ravalec-Dupin
(2004) the method is further developed. The basics of the method is presented
in the following sections. For a comprehensive description on more advanced
uses of gradual deformation the reader may consult the papers from Hu and his
coworkers mentioned above.

Consider a realization of a spatially distributed property denoted by Zi to
imply that it is the ith realization from a stochastic process. In general, a vast
number of realizations which all honor given second order statistics (variogram)
exist. Therefore we need to distinguish between the individual realizations. The
essential operation in gradual deformation is to form a new realization from a
set of old ones as a simple linear combination:

Znew =
Nr∑
i=1

αiZi, (5.1)

where αi is a weighting factor. (Hu 2000) noticed that certain constraints on
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48 Gradual deformation

the geology of the resulting realization, Znew could be realized by imposing
simple constraints on the weighting factors and on the realizations Zi. If the
realizations Zi have the same variogram then the variogram will be conserved
in the new realization, if:

1. The old realizations, if needed, are transformed to being normally dis-
tributed and having zero mean

2.
∑Nr

i=1 α2 = 1

If only two realizations are used to form the new realization it is trivial to
see that the expression

Znew = sin (πρ)Z1 + cos (πρ)Z2 (5.2)

fulfills the requirements that the sum of squared weights is unity. In general,
if the number of old realizations is Nr the weights may be found as an N-
dimensional hypersphere (Hu 2000):

α1 =
n−1∏
i=1

cos ρiπ (5.3a)

αi+1 = sin ρiπ
n−1∏

j=i+1

cos ρjπ, i = 1, ..., n− 2 (5.3b)

αn = sin ρn−1π. (5.3c)

Equation (5.2) illustrates that the parameter ρ can be used to deform the
resulting realization. If ρ = 0 the resulting realization will be equal to Z2 and
for ρ = 1

2 Z1 will be reproduced. For ρ ∈]0, 1
2 [ and ρ ∈] 12 , 1[ the result will be

some mixture of the two old realizations. Consequently, ρ is referred to as the
deformation parameter. Figure 5.1 shows a gradual deformation of a spatially
distributed property. Two realizations are used in the gradual deformation.
Both are generated by sequential Gaussian simulation and are constrained to
the same variogram. The chosen value of the deformation parameter results
in a realization which is a mix between the two old realizations. The two old
realizations both exhibit a trend in the North-East direction which is reproduced
in the gradually deformed result. The gradually deformed result conserves the
second order statistics of the old fields. Consequently, the variogram is conserved
and the result is equiprobable to the old realizations with respect to second order
statistics.

As illustrated above the gradual deformation techniques is a convenient way
of generating equiprobable realizations of Gaussian distributions. However, the
main advantage of the method is that it can be used to reformulate history
matching. History matching is essentially an optimization problem where the
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5.1 Description of the method 49

Figure 5.1: Gradual deformation made with two realizations of permeability. The deforma-
tion parameter, ρ is 0.25. The realizations are made with sequential Gaussian simulation in
the geostatistical software package GSLIB (Deutsch & Journel 1998).

production mismatch is to be minimized by adjusting certain physical proper-
ties of the reservoir and reservoir fluids. If permeability is the only adjustable
parameter the problem of history matching can be stated by the general formu-
lation:

k∗ = Argmin
k

[E(k)] , (5.4)

where E is the objective function quantifying the production data mismatch.
In cases where permeability can be represented by a Gaussian distribution

it is possible to parameterize the permeability field by applying gradual defor-
mation. Thus, permeability can be fully described by a set of equiprobable
realizations and a set of deformation parameters. If the simple expression in
equation (5.2) is used for the deformation the permeability can be represented
by two realizations and only one deformation parameter. Thus, permeability
can be represented by an operator performing a gradual deformation. The
gradual deformation is a function of a number of equiprobable realizations and
the deformation parameters:

k = G(Zi, ρj), i = 1, 2..., Nrel, j = 1, 2, ..., Nrel − 1. (5.5)
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The realizations Zi are generated by a geostatistical simulator and are fixed.
This leaves the deformation parameters as the only adjustable parameters. The
idea behind gradual deformation in history matching is to search for the optimal
deformation parameters which minimizes the production data mismatch:

ρ∗ = Argmin
ρ

[E(ρ)] , (5.6)

In the simplest case where only two realizations are used in the gradual
deformation the number of deformation parameters is only one. This reduces
the history matching to a one-dimensional optimization problem. By parame-
terizing the permeability with the gradual deformation method the number of
independent variables is reduced significantly. Simulation models may have hun-
dreds of thousands of grid blocks which leaves the same number of independent
variables in the optimization problem. If additional parameters are adjusted the
number of independent variables is increased further.

The constraints on the deformation parameters ensure that the second order
statistics are conserved in gradual deformation. However, the definitions in
equations (5.1) and (5.2) do not conserve hard data. Therefore, conditioning
to hard data has to be done in a separate step. In Hu (2002) the gradual
deformation method is further developed such that the method also works with
dependent realizations. Apart from requiring that the deformation parameters
squared sum to unity the parameters also need to sum to unity in the power 1
in order to conserve hard data. Thus, the following constraints are imposed on
the deformation parameters:

∑
α2 = 1 (5.7a)∑
α = 1. (5.7b)

The additional constraint takes out one degree of freedom. Consequently,
the simple expression in equation (5.2) only holds for ρ = 0 and ρ = 1. In order
to increase the degrees of freedom the number of realizations used to perform
gradual deformation has to be increased. Hu (2002) suggests the following
expressions for gradual deformation of dependent realizations:

α1 =
1
3

+
2
3

cos ρπ (5.8a)

α2 =
1
3

+
2
3

sin(π(−1
6

+ ρ)) (5.8b)

α3 =
1
3

+
2
3

sin(π(−1
6
− ρ)), (5.8c)

and the new realization is given as

Z = α1Z1 + α2Z2 + α3Z3. (5.9)
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This formulation involves three old realizations but still only one deforma-
tion parameter and ensures that hard data is conserved along with the second
order statistics without a separate conditioning step. According to Hu (2002)
gradual deformation of dependent realizations compared to gradual deformation
of independent realization ensures better numerical stability of the method.

5.1.1 Gradual deformation in history matching

As described above, the gradual deformation technique can be used to parame-
terize the optimization problem related to history matching. Apart from simpli-
fying the optimization problem this parameterization makes it easy to constrain
the history match to hard data and variogram. An important detail must be
addressed before a history matching procedure is presented. In order to fulfill
the requirements for gradual deformation the deformed property has to have zero
mean and a standard normal distribution. This is not the case for permeability
and porosity which cannot take negative values. Consequently, deformation has
to take place on transformed variables. After deformation the result can be
backtransformed to physically meaningful values.

Hu (2000) and Hu (2002) suggest a history matching algorithm of the fol-
lowing form:

1. Generate initial permeability field, Z1 to initialize history matching

2. Initiate ρ = 0

3. set i = 0

4. Compute permeability fields Z2 and Z3

5. Set k = 0

(a) Perform gradual deformation with the three realizations, Z1, Z2, Z3

and ρ

(b) Backtransform the gradually deformed field to natural values

(c) Perform fluid flow simulation on the backtransformed field

(d) Update ρ according to the production data mismatch

(e) k = k + 1

(f) If k = kmax or other stop criteria is met, stop inner loop, else go to
(a)

6. If the objective function decreased set Z1 equal to the permeability field
associated with the best match

7. i = i + 1
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8. If i = imax or other stop criteria is met, stop, else go to 4

The above algorithm consists of two loops, an outer loop where the real-
izations of permeability Z2 and Z3 are changed and an inner loop where the
optimal deformation parameter is searched for. Computation of two new realiza-
tions is done by changing the seeds used to initialize the sequential simulation.
The realization which gives the best match of the production data is stored in
the field Z1. Thus, the best realization is carried forward to the next outer loop
in Z1 and it is reproduced when ρ = 0. Termination of the inner loop is typi-
cally done when a maximum number of inner iterations has been reached. The
outer loop is terminated when the production mismatch has reached a specified
tolerance or when a maximum number of outer iterations is reached. Hu (2000)
uses a gradient based optimization method in the inner loop to search for an
optimal deformation. Such an approach requires that the objective function is
continuous with respect to changes in the model parameters. This may be the
case for smoothly varying Gaussian fields but for facies models or truncated
Gaussian models the objective function is often discontinuous. In such cases a
derivative-free optimizer like bisection or the Dekker-Brent method is needed.
The implementation of gradual deformation used in this dissertation applies the
one-dimensional, derivative-free Dekker-Brent method in the inner optimization
loop. In appendix B the method is presented in detail. The implemented grad-
ual deformation procedure makes use of the sequential Gaussian simulator found
in geostatistical software library GSLIB (Deutsch & Journel 1998). Sequential
simulation is done using transformed variables witch are normally distributed
with zero mean. The fact that normal scores are applied in sequential Gaus-
sian simulation is exploited in the history matching procedure since gradual
deformation also requires that the variables used for deformation are normally
distributed. Backtransformation is only done when a reservoir simulation is
performed.

In the following section the gradual deformation method is applied to simple
synthetic history matching cases.

5.2 Application of gradual deformation in his-
tory matching cases

The first case involves history matching of a heterogeneous field by the use of
the gradual deformation method. The field considered here is a small symmetry
element of quarter-nine-spot well configuration. The reservoir is quadratic and
a gridding of 10×10 is used with injectors in three corners and a producer in the
last corner. Permeability is the only unknown property and porosity is assumed
constant in the entire domain. Watercut in the producer is matched together
with injector bottomhole pressures for the three injectors. Production data is
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5.2 Application of gradual deformation in history matching cases 53

measured at eight times. Specifications of the well constraints are provided in
Table 5.1.

One important assumption is made regarding the statistics of the heteroge-
neous permeability fields: perfect knowledge about the statistics of permeabil-
ity is assumed. This is important since transformation of the permeability is
needed when the gradual deformation is performed because the fields used in
the method have to be normally distributed with zero mean. Also, backtrans-
formation is needed when a reservoir simulation is run. If the distribution is
not well defined in these transformations there will be a loss of information.
In practice, transformations are done by table lookup and interpolation. The
assumption of perfect knowledge about the distribution means that this table
has a sufficiently high resolution to avoid loss of information. This may be a
serious drawback for the gradual deformation method. However, it is important
to recognize that the gradual deformation method is based on the conservation
of statistical properties. If such statistical knowledge does not exist the gradual
deformation method may not be the best choice from the start.

Table 5.1: Specifications of the wells. The wells are placed in a quarter-nine-spot pattern.
Only water is being injected.

Well Type i j Constraint

I1 Inj 1 50 Rate (5m3/day)
I2 Inj 1 50 Rate (5m3/day)
I3 Inj 50 1 Rate (5m3/day)
P1 Prod 50 50 BHP (10bar)

A reference field is generated by sequential Gaussian simulation and the
corresponding production data is simulated and used as reference data. The
reference permeability field is depicted in Figure 5.4(a). The reference data
serves as fictive measurements of the production and is the data to be matched.
The reference and all the realizations in the gradual deformations are generated
with sequential Gaussian simulation with identical statistical parameters and
are conditioned to 4 samples of permeability - one at each well location.

10 realizations are used in the matching, i.e. 10 outer cycles are performed.
In each cycle a total of 10 function evaluations are allowed to find the optimal
deformation parameter, yielding an overall of 100 objective function evaluations.
Evaluation of the objective function involves one reservoir simulation to find the
production data misfit.

Figure 5.2 shows the matched production data and the reference data. A
good match is observed with only small deviations from the reference. In Figure
5.3 the evolution of the objective function is depicted. The figure shows a rapid
decrease of the objective function in the first ten evaluations. Hereafter, the
objective function decreases at a somewhat lower rate. The slowdown of the
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convergence rate is a serious drawback for the gradual deformation method and
happens because the parameterization used by the method is too restrictive on
the search space used for the minimization.

Figure 5.4(b) shows the matched permeability field. The matched field re-
assembles the heterogeneity seen in the reference. A more rigorous test of the
consistency of the match can be done using a qq-plot as depicted in Figure
5.4(c). The figure shows the quantiles of the reference versus the quantiles of
the matched permeability field. If the the qq-plot is linear it is an indication that
the two fields are distributed similarly (Petruccelli, Nandram & M.Chen 1999).
The qq-plot does not appear particularly linear. However, an approximate linear
trend can be observed. This indicates that the matched permeability approxi-
mately represents the reference heterogeneity. Another reason for the deviation
from the straight line may be because of the relatively small number of grid
blocks. Such a small number of data may not be sufficient to reproduce the sta-
tistical properties found in the reference which gives rise to ergodic fluctuations.

5.2.1 Application to a larger problem

The previous example was based on a very coarse reservoir model with only
100 grid blocks and should be regarded as instructive rather than practical.
To evaluate the use of the gradual deformation method on problems of a more
realistic size a larger system will be introduced in the following discussion.

The reservoir we will deal with here is still defined in a two dimensional space.
However, the reservoir is now discretized into a 100×100 grid, i.e. we have 10000
grid blocks to deal with. Again, the work is limited to an incompressible two
phase system with water and oil present.

Figure 5.5 shows a permeability field with a 100 × 100 grid generated by
sequential simulation. This field will serve as the reference in the following dis-
cussion. The reference shows a high correlation in the North-Eastward direction
as a result of a non-isotropic variogram. Two water injectors are placed in the
field along with 5 producers. The location of the wells is given in Table 5.2.
The porosity is constant all over the reservoir and is set to 0.25.

Table 5.2: Specifications of the wells.

Well Type i j Constraint
I1 Inj 50 50 Rate (5m3/day)
I2 Inj 50 85 Rate (5m3/day)
P1 Prod 5 5 BHP (10bar)
P2 Prod 25 75 BHP (10bar)
P3 Prod 90 90 BHP (10bar)
P4 Prod 45 5 BHP (10bar)
P5 Prod 90 20 BHP (10bar)
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(a) Injector pressure.

(b) Watercut

Figure 5.2: Match of injector pressures and watercut in a quarter-nine spot setup with the
gradual deformation method. Ten realizations have been used in the matching process. Per-
fect knowledge about the permeability distribution has been assumed in the transformations
involved with sequential Gaussian simulation. × : Reference, ◦ : Match.
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56 Gradual deformation

Figure 5.3: Evolution of the objective function during matching of the quarter-nine spot
case with the gradual deformation method. Ten realizations are used and ten inner iterations
are allowed in the Dekker-Brent routine.

Gradual deformation was applied to obtain a match of watercut and oil
rates. Figure 5.7 shows the resulting permeability field and Figure 5.8 shows
the watercuts at the production wells. The evolution of the objective function is
shown in Figure 5.6. In more than 60 function evaluations the objective function
is reduced by approximately 35 pct.. This rather poor performance must be
attributed to the complexity of the problem. The well configuration makes
history matching difficult because the individual wells influence each other. In
other words, an improvement of the match at one well may lead to worsening
of the match at other wells. This problem may be avoided by application of a
suitable zonation strategy (Hoffman & Caers 2003). The qq-plot in Figure 5.9
indicates that the gradual deformation has conserved most of the statistics from
the reference. However, a small deterioration can be seen. This may be due
to accumulation of ergodic fluctuations from the deformations. The problem
of accumulation of ergodic fluctuations in connection with gradual deformation
is discussed in Hu (2002) where the more stable formulation involving three
realizations for gradual deformation is introduced. This formulation has better
numerical properties. However, the example just shown indicates that some drift
in the distribution is still possible. Histograms of the reference permeability
and the matched permeability are shown in Figure 5.10 . The histograms show
that the distributions are approximately similar. Consequently, the deviation
indicated by the qq-plot is not severe.

The use of the gradual deformation method in this dissertation is limited
to reservoir models which can be represented by continuous variables. In Hu
& Jenni (2005) the gradual deformation method is extended to object-based
reservoir models. The gradual deformation method is therefore not limited to
Gaussian fields but can be applied to more complex geologies if the geology can
be represented by a Gaussian distribution at some level.
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(a) Reference permeability.

(b) Best match from gradual deformation.

(c) qq-plot.

Figure 5.4: Reference permeability field and the field corresponding to the smallest produc-
tion data mismatch in gradual deformation. The qq-plot is linear if the reference permeability
and matched permeability are distributed similarly.
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Figure 5.5: 100 × 100 reference field generated by sequential Gaussian simulation. A trend
in the North-East direction is induced by a non-isotropic variogram.

Figure 5.6: Evolution of the objective function during gradual deformation.
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Figure 5.7: Resulting permeability after gradual deformation.

Figure 5.8: Watercut for the matched 180 days. × : Reference, ◦ : Match, � : Initial.
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Figure 5.9: qq-plot of the quantiles of the reference permeability field versus the quantiles
in the matched permeability field.

5.2.2 Regional gradual deformation

The gradual deformation method may be a too restrictive parameterization if
the reservoir geology is complex or if the well configuration makes it difficult
to match production data from one or more wells. One way of adding more
flexibility to gradual deformation is to use more realizations to form the gradual
deformation. This will involve more deformation parameters which means that
history matching is not a one-parameter optimization problem anymore. The
complexity of the optimization problem increases with the number of deforma-
tion parameters. Therefore, the number of deformation parameters should be
defined as the best compromise between complexity and flexibility of the result-
ing optimization problem. Hoffman & Caers (2003) suggest a strategy which
adds flexibility to history matching problems without increasing the complexity
of the history matching problem. In their work the probability perturbation
method makes up the framework for history matching. However, their pro-
posed strategy can be applied to other methods because of it’s simplicity and in
this dissertation it has been applied in conjunction with gradual deformation.
The main idea is to divide the reservoir into separate subregions and perturb
these subregions independently from each other. The area between a producer
and injector is an obvious choice to perturb in order to match the production
data from the concerned wells. Hoffman & Caers (2003) suggests the use of
streamline-derived regions to define subregions of the reservoir. Each zone is
then adjusted independently from the others in order to match production data
from wells placed in the zone. The use of a zonation technique together with
gradual deformation has some complications. Since each zone is modified in-
dependently there will be a risk that the spatial correlation of the adjusted

76



5.2 Application of gradual deformation in history matching cases 61

(a) Reference permeability.

(b) Best match from gradual deformation.

Figure 5.10: Histograms of the reference permeability field and the permeability associated
with the best production data match.
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property is destroyed at the borders of the zones. Ravalec-Dupin, Nætinger,
Hu & Blanc (2001) introduced a methodology where the gradual deformation
method is extended in a way such that correlation across zones is conserved.
This is achieved by performing the gradual deformation on uncorrelated normal
deviates and then imposing the spatial correlation in a subsequent step. In the
following examples the problem of conserving spatial dependence across zones
is neglected. The validity of the neglection depends on the specific geology and
the characteristic correlation length of the system. In the following example
where the permeability is simulated using sequential Gaussian simulation it is
a reasonably valid assumption to neglect spatial correlation across the bound-
aries. In more complex cases, e.g. channelized reservoirs, the spatial continuity
across boundaries is more important. The case considered here is only aimed
at demonstrating some of the advantages of a zonation approach and is by no
means exhaustive.

The following example is based on a symmetry element of a quarter-nine
spot well configuration. The quadratic reservoir is discretized into a 100 ×
100 grid. Reservoir simulation is done using the streamline simulator 3DSL
(Batycky 1997). The use of a streamline simulator makes it possible to define
streamline-derived regions and the computational load is reduced compared to
conventional finite difference based simulators. In this case the definition of the
regions is straightforward since the injectors are only connected to one producer.
Each injector/producer pair defines a drainage area in which the injected water
will flow. The main idea behind the zonation approach is that the drainage area
associated with one injector has a larger impact on the data from the particular
injector than other parts of the reservoir. Thus, the geological properties of
the drainage area will be adjusted in order to match production data at the
associated injector. Since only one producer is present production data from
the producer can not be attributed to only one drainage area since the producer
is connected to several injectors. Injector bottomhole pressures and producer
watercut are matched in the following example.

The following three-dimensional objective function is defined:

Ek =
NT∑
i=1

(
pSim

i − pObs
i

pmax
i

)2

k

+ (WCUTSim
i −WCUTObs

i )2k, k = {1, 2, 3}.

(5.10)

Watercut is part of all three elements of the objective function since the pro-
ducer data can not be attributed to a single drainage area. Figure 5.11(a)-(d)
illustrate how the regions are defined. The streamline simulator traces stream-
lines going from injectors to producer. From the streamlines the borders defining
separate zones can be derived. In the illustrated case separatrix lines are used
to define the borders. Alternatively, the streamlines may be used directly to
define the regions. In the latter case there will be parts of the reservoir which
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are not associated with a injector/producer pair. In more complex cases with
high heterogeneity and a more random well placement the use of separatrix lines
to define regions may be difficult to realize. Finally, the regions are defined ac-
cording to the borders. Each region is now associated with one of the elements
in the objective function given in equation (5.10). One important detail must
be stressed: Even though the objective function is multidimensional and the
reservoir is divided into subregions only one reservoir simulation is carried out
per iteration during history matching. If an element of the objective function
is decreased during history matching the gradual deformation of the associated
region is accepted even if the deformation leads to an increase in one of the
other elements. The main assumption of the strategy is that the other wells are
influenced very little when a region is modified.

Figure 5.12 shows the evolution of the three objective functions. The three
objective functions all decrease at different iterations. If global deformation
had been used the gradual deformation might not have been able to improve
the match because improvement of one matched property may lead to worse
matches at other wells.

The example demonstrates some of the advantages of zonation. However, for
more complex scenarios it may by difficult to define regions because of high inter-
dependency of the wells. Another issue arises from the non-stationary nature
of multiphase flow in porous media. The placement of the streamlines may
change considerably over time. If this is the case it is not obvious how to choose
representative regions. The use of zonation techniques is not discussed any
further in this dissertation. Because of time constraints and more importantly
restraints on the software available it has not been possible to investigate the
use of zonation any further.
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(a) Field. (b) Trace streamlines.

(c) Define borders. (d) Define regions.

Figure 5.11: Possible workflow for the computation of separate regions. The streamlines are
traced by a streamline simulator. In this work the 3DSL simulator was used (Batycky 1997).
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Figure 5.12: Evolution of the objective functions for the three regions during matching.
Note that the objective functions decrease at different iterations.
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Chapter 6

Probability perturbation

One of the main reasons for developing geostatistically based history matching
methods is that such methods make it easier to constrain the reservoir model
to certain geological properties. Often, geologic knowledge comes in the form of
conceptual models of the geology of the reservoir. The conceptual model may
be built from outcrops or previously developed fields and many other sources.
Since the conceptual model is build from analogous fields it is qualitative and
serves as a qualified guess on the type of geology found in the reservoir. The
conceptual model is not necessarily conditioned to other data such as samples
from the wells but is qualitative. Combination of qualitative information with
quantitative knowledge from samples taken at well locations and seismic sur-
veys is not an easy job because of the diversity of the information sources. The
emergence of the training image based sequential simulators has made it possi-
ble to generate realizations of complex geological scenarios conditioned to hard
data. The realizations can also be conditioned to soft data from e.g. seismic
data. In applications related to history matching the realizations have to honor
production data as well. Caers (2003) introduces a method known as the prob-
ability perturbation method (PPM), which exploits the algorithmic structure of
sequential simulation. PPM is a highly flexible data integration method which
can be applied to history matching problems where the geology is complex. In
this chapter the background of the method is presented and some sample ap-
plications are shown. The method is extended to include qualitative gradient
information in Chapter 8.
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6.1 Introduction to the probability perturbation
method

The probability perturbation method was introduced by Caers (2003) as a
method for data integration into constrained geologic models. PPM exploits the
fact that sequential simulations make use of local constrained probability func-
tions when unknown properties are simulated. When a grid note with undefined
properties is visited during sequential simulation a local probability function is
constructed from the data associated with the neighboring grid notes. The lo-
cal probability function will be denoted P (A|B) where A denotes an event, e.g.
”channel facies present” and B denotes the data in the neighboring grid notes.
The probability is constrained to the data B. The way the probability is com-
puted differs from algorithm to algorithm. In Gaussian simulation P (A|B) is
found by solving a local kriging system and in Snesim it is found by traversing
a search tree derived from a training image. Since the simulated value at a grid
note is found from a local probability function, secondary information can be
introduced into the simulation if it can be represented in terms of probability.

Secondary information could be seismic information used to condition a re-
alization of porosity or permeability. P (A|C) will denote the probability func-
tion given the secondary information, C.

A piece of secondary information has to be combined with the conditional
probability function P (A|B) when a property is drawn at a grid block. Com-
bining two conditional probabilities can be done by the following expression,
known as the τ -model (Journel 2002):

x

a
= (

b

a
)τ1(

c

a
)τ2 , (6.1a)

where

x = 1−P (A|B,C)
P (A|B,C) (6.1b)

b = 1−P (A|B)
P (A|B) (6.1c)

c = 1−P (A|C)
P (A|C) (6.1d)

a = 1−P (A)
P (A) . (6.1e)

P (A) is the global probability of the event A occurring, also denoted the marginal
distribution of A. In PPM the typical values for the exponents are τ1 = τ2 = 1
(Caers 2007).

For τ1 = τ2 = 1, rearrangement of equation (6.1a) gives

P (A|B,C) =
1

1 + x
=

a

a + bc
(6.2)
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The idea behind PPM is to integrate the production data mismatch in his-
tory matching into the generation of new realizations. This is done by treating
the mismatch as a piece of secondary information. PPM uses the following
parameterization to translate the production data mismatch into secondary in-
formation:

P (A|C) = (1− rc)i + rcP (A), (6.3)

where rc is a perturbation parameter and i is a realization of binary indicator
variables for a certain physical property at the grid blocks. C now represents the
production data. In equation (6.3) it is assumed that only two indicators can
represent the geology. This corresponds to the situation where the reservoir con-
sists of two facies. The binary indicator variable i consists of 0’s and 1’s which
indicate the type of facies at the grid blocks. P (A) is the marginal distribution
of the event A. The marginal distribution is the unconditional probability of
A and is usually the global proportion of A over the entire domain. When rc

in equation (6.3) is equal to 0 the conditional probability will be equal to the
binary indicator, i.e. P (A|C) = i. In this case a sequential simulation condi-
tioned to P (A|C) will result in a realization identical to i. If rc takes the value
1 the conditional probability is reduced to the unconditional probability and a
sequential simulation will result in a new binary indicator variable equiprobable
to i. If rc is between 0 and 1 the result will be a binary indicator which is a mix
between i and another equiprobable realization. Thus, the parameter rc can
be used to perturb the binary indicator variable. Analogously to gradual defor-
mation the geology of a reservoir can be perturbed systematically by adjusting
rc.

It is important to note that the conditional probability does not depend on
the production data mismatch, C. Therefore, it is intuitively better to consider
the production mismatch to be dependent on the resulting realization of binary
indicators. The production data therefore depends on the choice of rc. Conse-
quently, rc is a free parameter which can be adjusted in order to improve the
history match. Since P (A|C) as given in equation (6.3) is independent of the
production data mismatch, the probability perturbation method is a stochastic
search algorithm. The production data mismatch is included into the simula-
tion through P (A|C) as a soft probability constraint. This means that the result
from the simulation will honor statistical properties such as the variogram in the
case of Gaussian simulation and multiple-point statistics when training image
based simulators are applied.

PPM and gradual deformation both make use of parameterizations which
make it possible to constrain history matches to certain parameters. Where
gradual deformation is limited to geologies which can be represented by a Gaus-
sian distribution1, PPM is more flexible since no assumptions regarding the

1In Hu & Jenni (2005) the gradual deformation method is extended to object-based reser-
voir models.
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statistics of the indicator variable have been made. This makes PPM a good
choice for matching of complex geological scenarios. The similarity with gradual
deformation is also seen in the algorithm used for history matching which also
makes use of an inner loop to search for the optimal value for rc and an outer
loop over the seeds used for sequential simulation.

The PPM algorithm can be summarized as:

1. Generate an initial realization of binary indicators conditioned to available
hard data and a training image

2. Change the seed for the sequential simulator

3. Define P (A|C) = (1− rc)i(k) + rcP (A)

4. In an inner loop find the optimal rc and the corresponding realization i(k)
rc

5. If the objective function decreased, update i(k+1) = i(k)
rc

. Else set i(k+1) =
i(k)

6. k = k + 1

7. If not matched and k < kmax, go to 2

Caers (2003) uses the Dekker-Brent method to search for the optimal rc. In
the implementation of PPM used in this dissertation the Dekker-Brent method
has also been applied. This is due to the discontinuous behavior of the objective
function when the reservoir geology is binary and has curvilinear features. In
such cases a derivative-free method can be expected to be more feasible than
traditional derivative based algorithms. The perturbation parameter, rc, is not
required to be the same over the entire domain of interest. In Hoffman & Caers
(2003) regional probability perturbation is suggested. In their work different
zonation techniques are combined with PPM in order to increase the flexibility
of the method. The use of streamline-derived regions to divide the reservoir into
separate regions is shown to increase the capabilities of PPM. If the properties
of some regions of the reservoir are more certain than others it may be desired
to keep those properties relatively unchanged through history matching. This
can be achieved by keeping the perturbation parameter close to 0 in the regions
with high certainty.

The fact that PPM does not require that the adjusted parameter can be
represented by a certain distribution makes the method highly versatile. Con-
sequently, PPM can be used as the engine in a history matching setup which
can integrate information from very diverse sources. Such information may be
a qualitative description of the geology supplied by a geologist together with
hard data samples at well locations and a seismic survey. The conceptual model
from the geologists can be used as a training image for sequential simulations
conditioned to the hard data and soft data if it is available. Thus, a priory
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knowledge on the reservoir geology is integrated into the reservoir modelling
directly through conditioning and training images for the sequential simulator.
Finally, the production data can be integrated through an optimization proce-
dure with PPM as the main engine for the production data integration. The
history matched reservoir will reassemble the geological scenario depicted in the
training image and honor sampled values as well as secondary information which
has been input as soft constraints. Figure 6.1 illustrates the structure of a PPM
based history matching procedure.

Figure 6.1: Principal structure of an algorithm utilizing probability perturbation to constrain
history matches to various a priori data including a conceptual model of the reservoir geology.
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6.1.1 The role of the training image

The local conditional distribution functions used in sequential simulation can
be derived from a training image depicting a desired geology. In the Snesim
algorithm a search-tree is built from the training image as a preprocessing step.
Whenever a local distribution function is calculated the algorithm runs through
the search-tree and looks for patterns similar to the constellation of points in the
vicinity of the simulated point. Thus, the nature of the training image controls
the overall properties of the simulation result. The training image may be a
pixelized hand-drawing from a geologist or a pixelized areal photo of a process
analogous to the process that created the reservoir, e.g. a fluvial delta. A train-
ing image may also be derived from seismic explorations or from combinations
of the mentioned sources. One of the main advantages of the use of training im-
age based simulators in conjunction with PPM is that history matching can be
performed on complex geological scenarios without deteriorating the geological
consistency of the reservoir model. In the paper of Caers (2003) the PPM is
introduced and in order to keep the applications simple and clear it is assumed
that the training image is known. Of course, this is an approximation since the
geologic scenario is also an uncertain factor in real field applications. Handling
of uncertain geological scenarios is discussed in Suzuki & Caers (2006) where a
distance measure is used to search for training images which are likely to im-
prove the history match. Coupled to PPM this methodology is able to handle
uncertainties in the geological scenario in a history matching setup.

6.2 Application of PPM to history matching ex-
amples

This section illustrates the use of PPM on a number of simple but instructive
cases. The first case involves the channelized reservoir depicted in Figure 6.2.
The reservoir has been generated by an unconditional simulation in Snesim and
will serve as the reference field to be matched by the PPM procedure. The
reservoir consists of two facies, one is high-permeable (e.g. sandstone) and
forms the channels from which the oil is produced. A low-permeable (e.g. mud)
facies separates the high-permeable zones. The field is operated with two water
injectors and three producers placed in a pattern, which will result in a sweep
of injected water along the channels. The locations of the wells are given in
Table 6.1. The high-permeable facies has a permeability of 1000mDa and the
low-permeable facies has a permeability of 1mDa. The porosity is assumed
to be 0.25 over the entire domain. The field is discretized with a 40 × 40 × 1
equidistant Cartesian grid. When the field is history matched it is assumed that
the only unknown property is the location of the facies. The permeabilities of
the facies are assumed to be known in advance and the Snesim realizations are
conditioned to facies data at the well locations. History matching will be carried
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6.2 Application of PPM to history matching examples 73

out for injector bottomhole pressure, oil rates, and watercuts at the producers.
Measurements of the production data are picked out at 11 times in order to have
representative data for the dynamic behavior of the system. Ten outer iterations
are allowed in PPM. The inner iterations are allowed to perform a maximum
of five function evaluations. Note that one function evaluation corresponds to
running a full reservoir fluid flow simulation.

The objective function used for the quantification of the production mis-
match is:

E =
Ninj∑
j=1

NT∑
i=1

(
pSim

i,j − pObs
i,j

pObs
max

)2

+
Nprod∑
j=1

NT∑
i=1

(WCUTSim
i,j −WCUTObs

i,j )2, (6.4)

where NT is the number of times where production data is measured. Ninj

and Nprod are the number of injections wells and production wells. pObs
max is the

maximum pressure in the reference data.
6.3 shows the evolution of the objective function versus the number of func-

tion evaluations. In about 45 function evaluations PPM has improved the ob-
jective function with more than two orders of magnitude. In Figures 6.4, 6.5,
and 6.6 the matched production data is shown. The figures show the production
data for the realization used to initialize the history matching procedure and the
production data for the matched field and the reference. Note that the pressure
in the second injector for the initial realization has been omitted because it is
much higher than the matched pressure and the reference pressure. Inclusion
of the initial pressure would change the scale of the pressure axis. The figures
show that the PPM method is able to improve the production data match signif-
icantly within a reasonable number of function evaluations. Figures 6.7(a) and
6.7(b) depict the initial realization used to initialize the history matching and
the final matched field, respectively. The main difference between the two fields
is that the connection between injector 2 and producer 3 has been restored in
the matched field. The same overall heterogeneity is seen in the reference and
the matched field because the two fields are derived from the same training
image.

Table 6.1: Specifications of the wells.

Well Type i j Constraint
I1 Inj 25 20 Rate (5m3/day)
I2 Inj 5 2 Rate (5m3/day)
P1 Prod 38 4 BHP (10bar)
P2 Prod 13 38 BHP (10bar)
P3 Prod 2 34 BHP (10bar)
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Figure 6.2: Reference permeability field. White indicates facies 1 with permeability
1000mDa and black indicates the low permeable (1mDa) facies 2.

Figure 6.3: Evolution of the objective function during history matching. 10 outer iterations
are allowed.

6.2.1 Multiple history matches

PPM is a stochastic history matching method and may converge to different re-
sults depending on the initial field used to initiate history matching with. The
seeds used in the subsequent simulations of the facies also affect the final result.
Consequently, PPM can be used to obtain multiple history matches. An ensem-
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Figure 6.4: Bottomhole pressures for the two injectors. � : Initial, ◦ : Match, × : Reference.
The initial pressures in injector 2 are very high and are not included in the lower graph.

Figure 6.5: Watercuts for the three producers. � : Initial, ◦ : Match, × : Reference.

ble of history matched fields can be used to quantify the uncertainties in the
reservoir model and the forecasts of the production data. The field considered
before is now matched several times. This results in an ensemble of permeabil-
ity fields which are conditioned to the same hard data and training image and
which have been adjusted to honor the reference production data. The first case
with multiple history matches will take its starting point in the reference field
in Figure 6.2 with the same well configuration as before. Again, the production
data is measured at eleven representative times. The measurements include the
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Figure 6.6: Oil rates for the three producers. � : Initial, ◦ : Match, × : Reference.

late-time behavior of the reservoir. Therefore, the results are not applicable for
validation of the predictive capabilities of the reservoir models. Later, a more
realistic case, where only the early behavior of the reservoir is matched, will be
presented. 49 matches have been found by PPM. The evolution of the 49 objec-
tive functions is depicted in Figure 6.8. From the figure it is evident that not all
49 cases lead to good matches. If a threshold of 2.0 is chosen as a cutoff for the
objective function value only 21 cases will be retained. The 21 best realizations
are summarized in Figure 6.9 which shows the so-called E-type of the field. The
E-type contains the mean of the facies type indicators at each grid block, i.e.

E =
1

Nrel

Nrel∑
j=1

ij , (6.5)

where Nrel denotes the number of retained realizations.
Light areas in the E-type indicate areas where the certainty of finding the

high permeable sand facies is high (indicator 0), darker areas indicate where it is
more certain to find mud facies (indicator 1). The E-type is in good agreement
with the reference which is mainly because the generated realizations are derived
from the same training image as the reference. In addition, the certainty is
increased by the inclusion of hard data from the well locations.

Figures 6.10, 6.11, and 6.12 show the mean of the production data from the
21 matched fields. 95 pct. confidence intervals are indicated by the error bars
and the reference data is marked with circles 2. Most of matched production data
lies within or close to the 95 pct. confidence intervals. However the matched

2Confidence intervals are made under the assumption that the data is normally distributed.
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(a) Initial field.

(b) Matched field.

Figure 6.7: Initial permeability field and matched permeability field. The initial field is used
to initialize the PPM algorithm.

pressure in injector 2 lies systematically over the reference pressure. This implies
that the area close to this injector should be modified if a better match should
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Figure 6.8: Evolution of the 49 objective functions during history matching.

Figure 6.9: E-type of 21 fields which resulted in an objective function value less than 2.
White areas indicate areas with a high certainty of finding high permeable sand facies and
dark ares indicate areas with a high certainty of finding low permeable mud.

be obtained. The size of the error bars depends on the spread of the matched
production data. One way of reducing the spread is to increase the number of
matched fields and to set a lower cut-off for when to accept the match.
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(a) Injector 1.

(b) Injector 2.

Figure 6.10: The solid line shows the mean of the 21 best matches of injector pressures.
Circles indicate the reference pressures. The error bars indicate a 95 pct. confidence interval
for the matched production data.

Prediction with multiple matched fields

One of the most important reasons for history matching the production of an
oil field is to use the calibrated reservoir model to predict future production.
As illustrated above, the PPM method can be used to generate multiple history
matched fields. From the spread of the predicted production data the uncer-
tainty of the predictions can be assessed. The field shown in Figure 6.2 will be
used as the reference field again but only the first six measurements of produc-
tion data will be matched. This corresponds to matching the first 60 days of
production. The matched fields will then be used to predict the production until
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180 days of production. A total of 52 history matches have been run whereof 13
result in a final objective function value less than 2. Figures 6.13, 6.14, and 6.15
show the mean of the matches for the 13 best matches. The solid line indicates
the matched data and predictions are indicated with a dashed line. The circles
indicate the reference measurements of the production data and the error bars
show a 95 pct. confidence interval for the predictions and the matches3. Nearly
all of the measured production data lie within or close to the 95 pct. confidence
intervals (except for pressure in injector 2 again). However, the intervals are
wide witch indicate that the predictions are associated with a high uncertainty.
This is a valuable piece of information which may prevent wrong decisions for
future operations because of over-confidence in the reservoir model. Figure 6.16
shows the E-type field made from the 13 matches. The E-type resembles the E-
type from the case where the full production history was matched (Figure 6.9).
This is mainly because the fields are outcomes of the same process; they are
conditioned to the same hard data and training image. The spread of the pre-
dicted watercuts seem to decrease in the late time predictions. This is counter
intuitive since the spread of the predictions should increase as the prediction
horizon increases. However, the physics play an important role in the setup
considered here. The watercut will eventually converge to 1 irrespective of the
quality of the history match. This means that the late time behavior is less
uncertain than the early behavior. This is an important detail to keep in mind
when evaluating the quality of the matched reservoir model and its predictions
of future production.

6.3 Summary of the probability perturbation
method

The PPM method is a geostatistically based parameterization of the history
matching problem. The method takes advantage of the algorithmic structure
of sequential simulation where local distribution functions are used to simulate
unknown properties. In a probability based framework the PPM method can
be used to history match reservoir models with complex geological features.
The method can be used to acquire multiple history matched models which
can be used to asses the certainty of predicted production. One drawback of
the method is that it requires many reservoir simulations before an acceptable
match is obtained. This is due to the stochastic nature of PPM where gradient
information is not applied for the optimization.

3The data is assumed to be normally distributed around the reference data. It could be
argued that 13 predictions are insufficient to quantify uncertainty.
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(a) Producer 1.

(b) Producer 2.

(c) Producer 3.

Figure 6.11: The solid line shows the mean of the 21 best matches of watercut. Circles
indicate the reference. The errorbars indicate a 95 pct. confidence interval for the matched
production data.
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(a) Producer 1.

(b) Producer 2.

(c) Producer 3.

Figure 6.12: The solid line shows the mean of the 21 best matches of oil rate. Circles
indicate the reference. The errorbars indicate a 95 pct. confidence interval for the matched
production data.
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(a) Injector 1.

(b) Injector 2.

Figure 6.13: The solid line shows the mean of the 13 best matches of injector pressures. The
predicted pressure is indicated with the dashed line. Circles indicate the reference pressures.
The error bars indicate a 95 pct. confidence interval for the matched production data.
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(a) Producer 1.

(b) Producer 2.

(c) Producer 3.

Figure 6.14: The solid line shows the mean of the 13 best matches of watercut. The
predicted watercut is indicated with the dashed line. Circles indicate the reference. The error
bars indicate a 95% confidence interval for the matched production data.
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(a) Producer 1.

(b) Producer 2.

(c) Producer 3.

Figure 6.15: The solid line shows the mean of the 13 best matches of oil rate. The predicted
oil rate is indicated with the dashed line. Circles indicate the reference. The error bars indicate
a 95 pct. confidence interval for the matched production data.
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Figure 6.16: E-type of 13 fields which resulted in an objective function value less than 2.
White areas indicate areas with a high certainty of finding high permeable sand facies and
dark ares indicate areas with a high certainty of finding low permeable mud.
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Chapter 7

Deterministic history
matching

The history matching procedures described until now have been stochastic. In
a geostatistical framework history matching has been parameterized and simpli-
fied. Methods like PPM and gradual deformation make it easy to constrain the
match to statistical properties and the underlying optimization problem is much
simpler than the multi-dimensional problem encountered in the ”raw” history
matching problem. The main drawback for the stochastic methods is their slow
convergence toward a match. This is due to the complexity of history match-
ing of oil production. Another reason for the poor convergence are the severe
parameterizations which reduce the search space for the adjusted parameters
significantly. An alternative to the stochastic methods are the deterministic
methods which are based on well-known optimization algorithms. Where the
stochastic methods search for an improved reservoir model randomly, the deter-
ministic methods make use of derivative information when updating the reservoir
model. Thus, a deterministic history matching procedure requires an efficient
calculation of the sensitivities of the matched production data with respect to
the adjusted grid block properties. The fact that sensitivities with respect to
grid block properties are required has made the use of deterministic methods in
history matching computationally demanding. However, the emergence of the
adjoint method for the calculation of sensitivities and improved capabilities of
hardware have enabled the use of derivative-based methods on large field cases.
This chapter introduces a deterministic method and sample applications are
demonstrated. An integral part of the method is regularization of the history
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matching problem which is used to reduce the intrinsic ill-posedness of history
matching and to ensure some geological consistency of the result. Regularization
will also be discussed in the present chapter.

7.1 Introduction to deterministic methods for
history matching

The term deterministic methods covers all the classical derivative-based opti-
mization methods such as steepest descent methods, conjugate gradient methods,
and the well-known methods for nonlinear least squares problems: Gauss-Newton
and Levenberg-Marquardt. In this dissertation the choice of method has fallen
on the Levenberg-Marquardt method. The Levenberg-Marquardt method is
specially designed for nonlinear least squares problems which is exactly what
history matching problems often are formulated as. A brief introduction to
the theory behind the method will be presented along with a few important
implementational details. Wu et al. (1998) and Li et al. (2003) both discuss au-
tomatic history matching by the use of nonlinear least-squares methods. These
methods are pointed out as being more efficient than simpler techniques such
as the steepest descent method.

The Levenberg-Marquardt method is explained in standard textbooks on
optimization methods, e.g. Nocedal & Wright (1999). However, in order to
make the following discussion more clear for readers without any experience
with methods for non-linear least-squares problems, a short description of the
Levenberg-Marquardt method is provided in Appendix C.

The sum-of-squares objective function is defined as

E =
1
2

Nobs∑
i=1

wi(dobs
i − dsim

i )2, (7.1)

where d denotes production data. The observed and simulated production data
is collected in the vectors dobs and dsim, respectively. Minimization of the sum-
of-squares objective function is analogous to minimizing the 2-norm of dobs −
dsim, i.e. minimization can be formulated as:

m∗ = Argmin
m

[
‖dobs − dsim‖2

]
, (7.2)

where m represents the adjustable parameters, e.g. grid block permeabilities.
Negative values of permeability and porosity are prohibited since these para-
meters are non-negative per definition. This may cause problems when the
history matching problem is stated as an unconstrained optimization problem
and solved by a deterministic approach. To avoid negative values of the adjusted
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parameters it is convenient to apply a logarithmic transformation and optimize
with respect to a transformed variable:

log k∗ = Argmin
log k

[E(k)] (7.3)

The gradient with respect to the transformed variable is calculated as:

∂E

∂ log k
= k

∂E

∂k
. (7.4)

This transformation will be used in the deterministic approach to avoid
negative permeabilities during the optimization.

If Ntot measurements of production data are available the residual can be
defined as:

r = dobs − dsim =


dobs
1 − dsim

1

dobs
2 − dsim

2
...

dobs
Ntot

− dsim
Ntot

.

 (7.5)

The Jacobian of the residual vector is defined as:

Jr
i,j =

∂ri

∂mj
, (7.6)

where ri is the ith element of the residual and mj is the jth independent variable.
The gradient of the objective function is then given as

g =
∂E

∂m
= −(Jr)T r. (7.7)

In the following discussion the term sensitivity will denote the derivative of
a measurable quantity at the wells with respect to the grid block properties, i.e.

si =
∂dsim

i

∂m
. (7.8)

The adjoint procedure presented in Section 4.3 provides the sensitivities of
the production data with respect to grid block porosities and permeabilities.

History matching is an inverse problem and is usually ill-posed. The ill-
posedness arises because the measured quantities do not carry sufficient infor-
mation to characterize the reservoir description fully. This means that different
reservoir descriptions may lead to equally good matches. Consequently, the
objective function can be expected to exhibit an irregular behavior and to be
composed of many local minima. Another problem arises from the fact that
the number of measurable production data is smaller than the number of ad-
justable parameters in the history match. This makes the history matching
under-determined which hinders the use of many efficient optimization methods.
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One way of dealing with ill-posed and under-determined problems is to apply a
regularization strategy. In the following section the concept of regularization is
introduced.

7.1.1 Regularization in history matching

The sum-of-squares objective function takes the general form:

E =
1
2

Nobs∑
i=1

wi(dobs
i − dsim

i )2. (7.9)

As mentioned above the objective function can be expected to have many
local minima and exhibit a highly irregular behavior in most history matching
problems. One way of making the objective function behave more smoothly is
to apply regularization. A widely used method to regularize ill-posed problems
is Tikhonov regularization. A general Tikhonov regularization augments the
objective function with a regularization term which penalizes deviations from a
prior set of independent variables (Tikhonov & Arsenin 1977), which in general
history matching terms translates to:

E =
1
2

Nobs∑
i=1

wi(dobs
i − dsim

i )2 +
σ2

r

2

Nind∑
i=1

(m−m0)2, (7.10)

where σr is the regularization parameter which controls the impact of regulari-
zation.

The regularization term stabilizes the ill-posed optimization problem because
it has a smoothly varying and continuous behavior when m is changed. Obvi-
ously, the regularization term increases when the changes to the independent
variable become larger.

Wu et al. (1998) and Li et al. (2003) make use of a similar augmented
objective function:

E(m) =
1
2
((m−mprior)T C−1

M (m−mprior)+(g(m)−dobs)T C−1
D (g(m))−dobs),

(7.11)
where m denotes the set of unknown reservoir parameters (vertical and horizon-
tal permeability and well skin factors). Matrices CM and CD denote covariance
matrices of the model parameters and observed data, respectively. The variance
of production data is calculated in different ways depending on the type of data.
Measurement errors for pressures and gas oil ratios are calculated as indepen-
dent Gaussian distributions and errors on water oil ratios are scaled with the
magnitude of the measurement. The operator g denotes the process of running
a reservoir simulation. One of the advantages of penalizing deviations from a
prior set of independent variables is that prior information on the geology can by
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input through the regularization term. This ensures some geological consistency
of the match.

An augmented residual is defined as

r = dobs − dsim =



dobs
1 − dsim

1

dobs
2 − dsim

2
...

dobs
Ntot

− dsim
Ntot

σr(m1 −m0
1)

...
σr(mind −m0

ind)


, (7.12)

where the deviations from the prior set of variables are added to the vector
of production mismatches. In the following applications of the gradient-based
method the norm of the augmented residual is minimized. It can be difficult to
define a suitable value for the regularization parameter from a priori knowledge.
Therefore, some trial-and-error investigations where impacts of regularization
are tested may be useful before the actual history matching is initiated. As the
production mismatch decreases during optimization the regularization term will
become more and more dominant in the augmented objective function. Con-
sequently, the convergence of the optimization method will deteriorate as the
match becomes better. A dynamic update of the regularization parameter may
by used to reduce the impact of the regularization term as the production match
is improved. Haber, Ascher & Oldenburg (2000) suggest a simple continuation
strategy where the regularization parameter is gradually reduced when the re-
gularization term becomes too large compared to the other components of the
objective function. Such a strategy has been implemented in the methods used
in this dissertation.

The regularization term keeps a handle on what the optimizer does to the
reservoir model since extreme values are penalized harder. Therefore, the op-
timizer will generally seek to change many independent variables a little bit
instead of changing a few variables by a large amount. This results in a smooth-
ing effect and the resulting sets of independent variables can be expected to
behave smoothly. This may often be contrary to the geological expectation
where sharp contrasts in the reservoir properties are often seen. In a binary
facies model one would not expect smoothly varying properties and the use of
a gradient-based history matching method may not be appropriate. As shown
in Section 7.5 gradient based methods are not always suitable for a matching
of particular reservoirs; especially categorical facies models pose a challenge for
gradient based methods.
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7.2 Practical application of the gradient-based
history matching techniques

7.2.1 First simple example

The first case involves a simple quarter-nine-spot well configuration. The refer-
ence permeability field is shown in Figure 7.5(a) and is generated by sequential
Gaussian simulation. Production takes place in the upper right corner and wa-
ter injection is taking place in the three other corners of the reservoir. Porosity
is assumed constant in the entire domain and is assumed to be known. Per-
meability is known at the four well locations. A homogeneous field of 50mDa
is chosen as prior. Thus, deviations from 50mDa are penalized by the regulari-
zation term. Figures 7.1(a) and (b) show the matched production data. The
figure shows that the production data matches very well with the reference.
However, if the matched permeability field in Figure 7.5(b) is compared with
the true permeability in Figure 7.5(a) it is evident that the match is far from
the truth. This is an example of the non-uniqueness of the history matching
problem. A field with significantly different features than the true field is still
capable of producing production curves which are very close to the reference.
This circumstance shows that the prior field used as initial guess and in the
regularization is of high importance for the result. Figure 7.2 shows the evo-
lution of the objective function. The objective function is split into two parts,
one corresponding to the squared production mismatch and the second corre-
sponding to the regularization term. After 3 iterations the production data term
becomes smaller than the regularization term and hereafter no improvement of
the production mismatch occurs.

To illustrate the importance of the prior permeability the same reference
is now matched but with a different prior. The prior is now chosen to be a
realization from the same process that generated the reference. The prior is
now conditioned to the four samples and honors the second order statistics
found in the reference. The matched production data is seen in Figure 7.3.
Figure 7.4 shows the evolution of the objective function. Again, the match is
obtained after 3-4 iterations and improvement stops when the regularization
term exceeds the production mismatch term. The resulting permeability field
is shown in Figure 7.5 (c). As expected, the resulting match exhibits a less
smooth behavior than in the case where the prior field was homogeneous. All
this indicates that the prior permeability field has a very large impact on how
the resulting permeability field is distributed.
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(a) Injector pressure.

(b) Watercut

Figure 7.1: Match of injector pressures and watercut in a quarter-nine spot setup with the
Levenberg-Marquardt method using Tikhonov regularization. The prior field is homogeneous
with permeability 50 mDa. × : Reference, ◦ : Match.

Figure 7.2: Evolution of the objective function during matching of the quarter-nine spot
case with the Levenberg-Marquardt method with a homogeneous prior field. The objective
function is split into a production data mismatch part and a regularization part.
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(a) Injector pressure.

(b) Watercut

Figure 7.3: Match of injector pressures and watercut in a quarter-nine spot setup with the
Levenberg-Marquardt method using Tikhonov regularization. The prior field is heterogeneous
and comes from the same random process which was used to generate the reference field. × :
Reference, ◦ : Match.
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Figure 7.4: Evolution of the objective function during matching of the quarter-nine spot
case with the Levenberg-Marquardt method with a heterogeneous prior field. The objective
function is split into a production data mismatch part and a regularization part.

7.3 Combination of deterministic history match-
ing and stochastic methods

As we saw in the previous section the prior permeability field has a great influ-
ence on the result. Even with a prior with significantly different properties than
the reference the Levenberg-Marquardt method is able to match the production
data well. If there is a priori information about the statistics of the permeabil-
ity available it may only be passed to the Levenberg-Marquardt routine by the
prior field in the current setup. To make use of the advantages of gradual de-
formation as well as benefitting from the efficiency of the deterministic method
the following sequential approach to history matching is suggested:

1. By gradual deformation find a realization of permeability that matches
the production data sufficiently well.

2. Adjust the gradual deformation result by the use of Levenberg-Marquardt
with the gradual deformation result as the prior.

The sequential approach is also discussed in Johansen, Shapiro & Stenby
(2006).

The proposed combination uses the deterministic method as a final adjust-
ment of the permeability. If the match from the gradual deformation is suffi-
ciently good this will not introduce large changes to the permeability. Thereby,
the statistics of the prior is likely not to change significantly during the final
tuning. The sequential approach is applied to the same history matching prob-
lem as before. Figure 7.6 shows the matched data. As in the other cases a good
match is achieved. In figure 7.7 the objective function evolution during the final
adjustment is depicted. A decrease of the objective function happens quickly
and after 3-4 Levenberg-Marquardt iterations the match does not improve any
further. The production mismatch and the regularization terms weigh approx-
imately the same in the final iterations. The fact that the final value of the
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(a) Reference.

(b) Prior homogeneous.

(c) Prior heterogeneous.

Figure 7.5: The reference field and the resulting fields after matching. The reference is
generated by sequential Gaussian simulation and has a high correlation in the North-East
direction. The reference has a mean permeability of 33.9mDa, (b) has a mean of 56.0mDa
and (c) has a mean of 32.2mDa.
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norm of the production mismatch is lower than for the other cases is encourag-
ing but should not be interpreted as a direct measure of the appropriateness of
the method. Since many (or infinitely many) realizations of permeability may
result in perfect matches a low objective function alone is not guaranty for the
reliability of the result.

Figure 7.8(a) shows the result from the gradual deformation which is used
as the prior field in the Levenberg-Marquardt method. The final result after
adjustment is shown in Figure 7.8(b).

(a) Injector pressure.

(b) Watercut.

Figure 7.6: Match of injector pressures and watercut in a quarter-nine spot setup with the
Levenberg-Marquardt method using Tichonov regularization. The prior field is heterogeneous
and comes from a gradual deformation process. × : Reference, ◦ : Match.
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Figure 7.7: Evolution of the objective function during matching of the quarter-nine spot
case with the Levenberg-Marquardt method with a heterogeneous prior field from the gradual
deformation process. The objective function is split into a production data mismatch part
and a regularization part.
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(a) After gradual deformation.

(b) After adjustment.

Figure 7.8: Permeability fields for the case where the gradual deformation result is used as
prior for the Levenberg-Marquardt routine. (a) is the outcome of the gradual deformation
method. (b) is the final result. The mean permeability of (a) is 33.3mDa and the mean of (b)
is 32.2mDa.

7.3.1 Application to a larger problem

To evaluate the use of the Levenberg-Marquardt method and gradual deforma-
tion on problems of a more realistic size a larger system will be introduced in
the following discussion.

The reservoir we will deal with here is still defined in 2D. However, the
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reservoir is now discretized into a 100× 100 grid, i.e. we have 10000 grid blocks
to deal with. The fluids (water and oil) are still incompressible.

Figure 7.9 shows a permeability field with a 100 × 100 grid generated by
sequential simulation. This field will serve as the reference in the following dis-
cussion. The reference shows a high correlation in the North-Eastward direction
as a result of a non-isotropic variogram. Two water injectors are placed in the
field along with 5 producers. The location of the wells is given in Table 7.1.
The porosity is constant all over the reservoir and is set to 0.25.

Figure 7.9: 100 × 100 reference field.

Table 7.1: Specifications of the wells.

Well Type i j Constraint
I1 Inj 50 50 Rate (5m3/day)
I2 Inj 50 85 Rate (5m3/day)
P1 Prod 5 5 BHP (10bar)
P2 Prod 25 75 BHP (10bar)
P3 Prod 90 90 BHP (10bar)
P4 Prod 45 5 BHP (10bar)
P5 Prod 90 20 BHP (10bar)

As shown in the previous discussion it may be an advantageous strategy to
apply the gradual deformation method to find a prior permeability field for the
deterministic approach. By starting out with gradual deformation we ensure
that the prior is in better accordance with the measured production data and
that the following adjustment by the deterministic method is smaller. Since
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7.3 Combination of deterministic history matching and stochastic methods101

the final adjustment is likely to be small it is also likely that the second order
statistics which were conserved in the gradual deformation will be more or less
intact after the adjustment. Of course this approach relies on the assumption
that gradual deformation is capable of performing a sufficiently large part of the
matching on its own, i.e. that the objective function is brought to a sufficiently
low level.

Figure 7.10: Evolution of the objective function during gradual deformation.

Gradual deformation was applied to obtain a match of watercut and oil
rates. Figure 7.11 shows the resulting permeability field and Figure 7.12 shows
the watercuts at the production wells. The evolution of the objective function is
shown in Figure 7.10. In more than 60 function evaluations the objective func-
tion is reduced by approximately 35 pct.. This rather poor performance must
be attributed to the complexity of the problem. The well configuration makes
history matching difficult because the individual wells influence each other. In
other words, an improvement of the match at one well may lead to its worsen-
ing at other wells. This problem may be avoided by application of a suitable
zonation strategy (Hoffman & Caers 2003).

The result from gradual deformation is used as an initial model for the
Levenberg-Marquardt method. To avoid an overcorrection of permeability near
the wells the regularization parameter σr is scaled according to the kriging
variances. The regularization parameter at grid block (i, j) is calculated by:

σr,ij =
c

((σk
ij)2)n + k

, k ∈]0; 1], (7.13)

where (σk
ij)

2 is the kriging variance at the particular grid block. This ensures
that the regularization becomes larger close to the wells because the kriging
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Figure 7.11: Resulting permeability after gradual deformation.

Figure 7.12: Watercut for the matched 180 days. × : Reference, ◦ : Match, � : Initial.
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variance is zero at a sampled location and increases with the distance to the
location. For small variances the regularization parameter has the following
limiting behavior:

σr,ij →
c

k
, for (σk

ij)
2 → 0. (7.14)

Figure 7.13: Distribution of the regularization parameter, σr. The distribution is calculated
by the use of kriging variances.

Figure 7.14 shows the evolution of the objective function versus the number
of function evaluations. In 10-15 function evaluations the objective function is
reduced by two orders of magnitude. The resulting permeability field is shown in
Figure 7.15. The deterministic method has provided a match of the production
data in few iterations. The price is that most of the geological consistency from
the prior is lost in the result. The matched field clearly shows artifacts which are
inconsistent with the geologic features in the reference and the prior. A higher
degree of regularization may lead to a result with less artifacts. However, in
this particular case application of a higher regularization parameter led to poor
convergence and a match could not be obtained within a reasonable number of
reservoir simulations.

7.4 Predictive capabilities

The main reason for history matching an oil reservoir is of course to use the
resulting reservoir model for prediction of future production. It is common
knowledge in reservoir engineering that integration of geologic knowledge into
the reservoir model is important for the model’s predictability. Therefore, it
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Figure 7.14: Evolution of the objective function during adjustment.

Figure 7.15: Resulting permeability after optimization.
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is relevant to ask the question: Does the deterministic adjustment of the per-
meability deteriorate the predictable capabilities of the reservoir model? This
question arises because the deterministic method does not conserve statistical
properties such as the variogram. However, such geological properties are im-
portant pieces of information and are closely connected to the flow patterns in
the reservoir.

To investigate the effects of the final adjustment on the predictability mul-
tiple history matches for a certain setup will be obtained. Again, gradual de-
formation will be applied first followed by an adjustment of the permeability
with the Levenberg-Marquardt algorithm. The reference field is shown in Fig-
ure 7.16. The field is operated with one producer which is placed in the upper
right corner of the field. Injectors are placed in the other corners, forming a
symmetry element of the conventional quarter-nine spot configuration. History
matching will be based on measurements of injector pressures and watercut at
8 times ending at 55 days. The production from 55 days up to 180 days can
then be used to evaluate the predictability of the model.

Ten matches have been obtained from gradual deformation. In the gradual
deformation ten outer loops have been allowed which means each of the obtained
matches have been gradually deformed with up to ten realizations of permeabil-
ity. Figures 7.17 and 7.19 show the ten matches of bottom hole pressures and
watercut, respectively. Remember that only the measurements up to 55 days
of production were matched. All the matches, except the pressure of injector 1,
are centered around the reference. For injector 1 the matches are clustered at a
slightly higher pressure than the reference.

The ten results from gradual deformation are now used in the deterministic
methodology as priors. The results from adjusting the outcomes of gradual
deformation with the Levenberg-Marquardt method are shown in Figures 7.18
and 7.20. It is evident from the figures that the adjustment has decreased
the spread of the matches around the reference. And, more importantly, the
unmatched production after 55 days is still described well. Off course, this
result is specific to the setup considered here. As we saw earlier, a complex
setup of wells can make history matching more challenging and geologic artifacts
may arise in that connection. In such cases the predictability of an adjusted
permeability field may be impeded. Thus, it would be mistaken to consider the
results shown here as being general to all history matching problems. However,
the fact that the predictions made with the adjusted fields are better indicates
that the proposed methodology can be used with success in some cases.
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Figure 7.16: Reference field. A quarter nine spot well configuration is applied. One producer
is placed in the upper left corner and injectors are placed in the other corners.
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(a) BHP in I1.

(b) BHP in I2.

(c) BHP in I3.

Figure 7.17: Matched injector pressures for ten cases only using gradual deformation. The
reference data is indicated by ×. Only the first eight reference data (until 55 days) were used
in the matching.

123



108 Deterministic history matching

(a) BHP in I1.

(b) BHP in I2.

(c) BHP in I3.

Figure 7.18: Matched injector pressures for ten cases where the deterministic method has
been used to adjust the match. The reference data is indicated by ×. Only the first eight
reference data (until 55 days) were used in the matching.
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Figure 7.19: Matched watercuts for ten cases only using gradual deformation. The reference
data is indicated by ×. Only the first eight reference data (until 55 days) were used in the
matching.

Figure 7.20: Matched watercuts for ten cases where the deterministic method has been used
to adjust the match. The reference data is indicated by ×. Only the first eight reference data
(until 55 days) were used in the matching.
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7.5 Limitations of gradient-based methods

In most of the cases in the previous sections the gradient-based method performs
well and is able to provide a good match of the production data within an
acceptable number of reservoir simulations. However, the case considered in
Section 7.3.1 illustrates some of the problems associated with gradient-based
methods. With a too loose regularization the result may be dominated by
artifacts which are inconsistent with prior geological knowledge. In this section
the limitations of the gradient-based methods are investigated further.

In the following setups only permeability varies with location. Porosity and
other parameters are held constant over the entire reservoir domain. The re-
servoir is defined on a 80 × 80 × 1 block centered grid with grid blocks of the
size 1m× 1m× 1m. A facies model of the reference reservoir is shown in Figure
7.21(c). A simple cookie-cut 1 technique is used to populate each facies type
such that there is some degree of heterogeneity within the two facies types. Two
injectors inject water and production takes place with three producers. The
specifications of the wells are given in Table 7.2. Water and oil are assumed
incompressible.

Table 7.2: Specifications of the wells.

Well Type i j Constraint
I1 Inj 68 5 Rate (1m3/day)
I2 Inj 75 40 Rate (1m3/day)
P1 Prod 10 25 BHP (10bar)
P2 Prod 10 55 BHP (10bar)
P3 Prod 20 70 BHP (10bar)

7.5.1 Homogeneous prior

The first case considered here uses a homogeneous prior of 432mDa which cor-
responds to the volume average of the reference field. To avoid overcorrection
near the wells a spatially varying regularization parameter is applied. It is
calculated by equation 7.13. Figure 7.22(b) shows the spatial variation of the
regularization parameter. The Levenberg-Marquardt method is used to adjust
permeability in order to achieve a better match of injector pressures and water-
cut. The matched data is depicted in Figure 7.23 together with the reference and
initial data. The corresponding adjusted permeability field is shown in Figure
7.22(a). The evolution of the objective function is shown in Figure 7.24 which
shows that the objective function is only reduced with approximately 50 pct.

1Cookie-cut: The permeabilities within each binary facies are populated by pasting the
permeabilities from two different realizations onto the facies model.
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(a) Distribution for facies 1.
µ = 994.9mDa.

(b) Distribution for facies 2.
µ = 0.52mDa.

(c) Reference facies distribu-
tion.

(d) Resulting reference. µ = 431.6mDa.

Figure 7.21: On top: The permeability fields used to form the references case together with
the facies model. Bottom: The resulting permeability field after a simple cookie-cut technique
has been applied. The locations of the wells are indicated in the facies model.
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after eight iterations in the Levenberg-Marquardt method. Further investiga-
tions with varying degrees of regularization and more iterations did not result in
significant improvements of the match. The use of a gradient-based method on
a binary field with large contrasts in permeability between each facies does not
perform well. This is because the deterministic method operates with continu-
ous variables and does not take the binary geology into account. Consequently,
the gradient-based method is not able the construct high permeable channels
but seeks to adjust the permeability in a continuous manner. The matched per-
meability field (Figure 7.22)does not look natural and is dominated by artifacts
from the optimization.

(a) Result.

(b) log10 σr.

Figure 7.22: Resulting permeability field. The results are from the case with a homogeneous
prior and regularization calculated by the use of the kriging variance.
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(a) Injector BHP.

(b) Watercut.

Figure 7.23: Production data. ×: Reference, ◦: Match, �: Initial. Results are for the case
with a homogeneous prior and regularization calculated by the use of the kriging variance.
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Figure 7.24: Evolution of the objective function in the case with with a homogeneous prior
and regularization calculated by the use of the kriging variance.

7.5.2 Unregularized case with smooth initial guess

As illustrated above, optimization based on the Levenberg-Marquardt method
was not able to match the production data when a homogeneous prior field was
used in the regularization term. This is because the reference field is composed
of channels with high permeability contrasts. The initial homogeneous field is
a poor starting point for the optimization because it produces flow patterns
significantly different from the reference. In this section a slightly modified field
is used as initial guess for the optimization. In addition, regularization is not
applied to the problem in order to increase the performance of the optimizer.
The prior is now moderately heterogeneous with smoothly varying permeabili-
ties around the wells. The principal direction of the heterogeneity is 45◦ which
makes the initial guess mimic the channel structure from the reference. The
areas between the wells are homogeneous with permeability 432mDa as before.
The initial guess is shown in Figure 7.25(a). Again, the injector pressures and
watercuts are matched. Figure 7.25(c) shows the evolution of the objective
function which is reduced by four orders of magnitude within 20 function eval-
uations. The matched data is shown in Figure 7.26(a+b). The figure shows
that the production data is matched very well. The matched permeability field
is depicted in Figure 7.25(b). The Levenberg-Marquardt method has restored
the high permeable channels between the injectors and the producers. However,
extreme values have been introduced in certain areas. In a postprocessing step
unlikely and extreme values may be filtered out but this has not been inves-
tigated here. Compared to the case where a homogeneous prior was used the
match is significantly better. This is mainly because the moderate heterogene-
ity ensures that the initial guess results in better initial flow patterns. The
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example shows that the choice of initial guess or prior is extremely important.
The two initial fields used here result in very different matches; the homoge-
nous prior leads to a bad match, whereas the moderately heterogeneous field
leads to a perfect match. The example also illustrates the non-uniqueness of
history matching problems. The field obtained with the moderately heteroge-
neous initial field leads to a perfect match of the measured production data but
is different from the reference field.

7.5.3 Prior with wrong geometry

A more heterogeneous field is now used as prior for the regularization term.
The prior is depicted in figure 7.27(a) and has a channel structure. The channel
structure connects injector 2 to producer 2 which means that the fluid flow
will be significantly different from the reference (see figure 7.21(d)). Now the
prior is conceptually in accordance with the reference but the channels are not
connected correctly. Figure 7.27(c) shows the evolution of the objective function.
The objective function is reduced with less than an order of magnitude within
35 function evaluations. The matched production data is shown in Figure 7.28
which shows that the Levenberg-Marquardt method has improved the match but
is still not able to match the production accurately. The resulting permeability
field is given in Figure 7.27(b) which shows that the optimizer has increased
the permeability between injector 2 and producer 3. This is done in order to
compensate for the wrong connectivity in the prior. The optimizer has therefore
tried to increase the flow to producer 3 in order to match the reference data.
Again, the optimizer has introduced extreme values in order to change the flow
paths in the reservoir.

7.6 Summary of deterministic methods

The examples presented in the current section illustrate some of the limitations
of gradient-based methods. Such methods are generally challenged when the
reservoir geology is complex and has features such as channels with a high
contrast in permeability. Especially categorical variables are difficult to deal
with when applying a gradient-based method and it may be very hard to honor
geological knowledge when the field is history matched. Through regularization
some handle on the geology is provided but a too severe regularization may
lead to restrictive computation times because of slower convergence. However,
for fields where the properties vary smoothly a gradient-based method can be
the most efficient choice. A sequential strategy where a geostatistically based
method is used to search for good initial guesses or priors for the gradient-based
method may be a suitable approach. Such a method benefits of the efficiency of
the gradient-based method but minimizes some of the related drawbacks such
as the smoothing effects.
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(a) Initial guess.

(b) Resulting field.

(c) Objective function.

Figure 7.25: Result from matching with an unregularized setup with a kriged field as the
initial guess. The kriging is conditioned to hard data at the wells.
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(a) BHP.

(b) Watercut.

Figure 7.26: History matching result with the field shown in Figure 7.25(b) as initial guess.
No regularization has been applied. ×: Reference, ◦: Match, �: Initial. The mismatch of the
pressures do not exceed 1 pct.
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(a) Prior.

(b) Result.

(c) Objective function.

Figure 7.27: Prior and result in the case with with a wrong facies distribution. There is
connectivity between all producers and an injector but producer 2 is connected to the wrong
injector. The jump in the objective function is the result of a reduction of the regularization
parameter.
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(a) Injector BHP.

(b) Watercut.

Figure 7.28: Production data in the case with with a wrong facies distribution. ×: Reference,
◦: Match, �: Initial.
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Chapter 8

Hybridization of PPM with
gradient information

In the previous chapters two geostatistical methods for history matching were
presented. In addition, deterministic methods were discussed and some of the
limitations of the gradient-based methods were investigated. Until now the only
combination of geostatistical methods with gradient-based methods has been
the sequential methodology presented in Section 7.3 where gradual deforma-
tion is used to search for improved priors for regularization and initial guesses.
The methodology is simple to implement because it is sequential. However,
the sequential workflow also limits the efficiency because the two methods are
separated from each other. This means that the problem of ensuring geologi-
cal consistency of the reservoir model is not resolved. In this chapter a hybrid
method is proposed. The proposed method takes advantage of the probabilistic
framework of the PPM method which is used to integrate qualitative gradient
information. In the following sections the background of the method is ex-
plained and some example uses are presented. In the final sections some more
complicated cases are discussed. The hybrid method has been presented in the
paper of Johansen, Caers & Suzuki (2007). Some of the examples shown in the
dissertation are also used in that paper.
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8.1 Background for the development of a hybrid
method

The details of the probability perturbation method are given in Chapter 6. The
following presentation of a hybrid method is based on the concepts introduced
previously and should be viewed in that context.

In order to introduce the methodology used to extract the qualitative infor-
mation from the gradient we will start by considering a simple but instructive
example. Figure 8.1 shows a binary permeability field where the white color
indicates a high permeable sand facies and black indicates low permeable mud.
A water injector is placed in the lower right corner and producers are placed in
the lower and upper left corners. Let the permeability field shown in Figure 8.2
be an initial guess of the true reservoir model.

Figure 8.1: Binary permeability field used to illustrate the problems associated with the
use of gradients in structural modeling. White color indicates high permeable sand facies and
black indicates low permeable mud.

The initial guess is similar to the reference except that the producer in the
lower left corner has been disconnected from the high permeable sand facies.
Consequently, the production data from the reference and the initial guess are
very different from each other because the area around the lower left producer
will not be swept by the injected water. Figure 8.3 shows the sensitivity of
the watercut at the upper producer at a particular time. The sensitivity of
watercut in the lower producer is in this setup equal to zero at all times be-
cause this well never experiences a water breakthrough. The figure shows that
the grid blocks forming the edges of the sand channel are the most sensitive
ones. The sensitivity in the lower left area is very small compared to the sen-
sitivity at the edges. Evidently, the sensitivity, and therefore also the gradient,
does not suggest that the connectivity to the lower left producer should be
re-established. A derivative-based optimization technique will therefore have
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Figure 8.2: Prior field to illustrate the problems associated with the use of gradients in
structural modeling. Compared to the field shown in Figure 8.1 the connectivity to the well
in the lower left corner is not present.

difficulties establishing the connectivity and consequently, it will not be able to
match the production data.

The following squeezing function is introduced:

gs = −sign(g(x))� (|g(x)|)n, n ∈]0; 1], (8.1)

where � denotes an elementwise multiplication, g is the gradient, and gs is a
squeezed version of the gradient. The transformation makes small entries in g
larger and large entries smaller.

If the sensitivity depicted in Figure 8.3 is subjected to the squeezing func-
tion it will take the form shown in Figure 8.5. The squeezed sensitivity field still
indicates that the edges of the channel are influential on the watercut. How-
ever, compared to the unscaled sensitivity the squeezed sensitivity field shows a
significant difference: the scaled sensitivity is high in a half-circular area placed
in the lower left part of the field. This indicates that the sensitivity contains
more information than what is immediately extracted from the unscaled sen-
sitivity. This information is overshadowed by the higher sensitivities at the
channel boundaries in the unscaled case. By scaling the sensitivity a valuable
piece of qualitative information has been extracted: namely that the area in the
lower left part of the field is more influential than other parts.

In the following discussion a methodology which makes use of such qualita-
tive information to guide the PPM method is presented. The presentation is
based on a binary representation of the reservoir geology. In this dissertation
multi-categorical facies models are not treated. However, generalization to more
complex cases involving more than two categories should be possible. Such a
generalization could be the topic for future research within the area.
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Figure 8.3: Sensitivity of watercut in P1 with respect to permeability at a particular time.

Figure 8.4: The squeezing function with two different exponents. The function makes small
entries numerically larger and makes large entries numerically smaller.
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Figure 8.5: Sensitivity of watercut in P1 at a particular time. The figure is scaled by the
use of the squeezing function (8.1) with n = 0.1.

Inclusion of the the qualitative gradient information into history matching
requires a robust method to extract the information from the gradient. One
way of extracting such information is to apply a truncation based scaling. A
component in the gradient, Gi, can be scaled as:

Gscl,i =


−1 if, Gi < −c · µG (Add channel)

1 if, Gi > c · µG (Remove channel)
0 otherwise (No change)

, (8.2)

where µG is given as

µG =
1

Nblk

Nblk∑
i=1

|Gi| (8.3)

and c is a number set by the user. µG is the mean absolute value of the
elements of the gradient.

The scaling given by equation (8.2) filters out the numerically smallest com-
ponents of the gradient by setting the value of the scaled gradient equal to 0 in
those grid blocks. If a component is smaller than −c · µG the scaled gradient is
assigned the value -1 at that grid block. Likewise a component larger than c ·µG

is assigned the value 1. Recalling that the negative gradient direction is guar-
anteed to be a descent direction, a negative value of the gradient will be taken
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as an indication that the permeability should be increased and a positive value
implies a decrease, i.e. channel facies should be added or removed, respectively.

8.1.1 Integration of gradient information in PPM

The gradient information is calculated for a particular permeability field. This
field should be the current best field, i.e. the field which has resulted in the
lowest objective function value so far. Since the gradient suggests changes to
the permeability field rather than suggesting an improved field directly, the
gradient should always be related to the permeability field for which it was
calculated.

Let i be a binary realization of indicator variables. Facies one will be at-
tributed to the indicator 0 and facies two has the indicator 1. The scaled gradient
Gscl is calculated for a certain history matching setup using the permeability
field dictated by i. The key idea in the proposed method is that a new binary
facies indicator map given as:

G′ = i−Gscl (8.4)

provides a good indication of how the permeability field might be improved.
As the framework for the PPM method is based on probabilities any ad-

ditional information about the permeability field, e.g. seismic or the gradient
information, needs to be formulated in terms of probability, too.

The qualitative gradient information can be formulated in terms of proba-
bilities by the following expression

P (A|D) = aG′(A|D) + (1− a)P (A), (8.5)

where P (A|D) denotes the probability of the event A given the qualitative gra-
dient information, D, a is a scalar which controls the impact of the gradient
information. For a = 0 the conditional probability reduces to the marginal dis-
tribution of A. For a = 1 the impact of the gradient is largest. Consequently,
a is referred to as the degree of trust in the gradient. The gradient information
in the form of P (A|D) needs to be combined with the conditional probability
used in PPM, P (A|C), where C denotes the production data mismatch. This
can be done by using the τ -model which is introduced in Section 6.1 where it is
used to combine the conditional probability P (A|C) with the local probability
function, P (A|B). Inclusion of the gradient information into PPM necessitates
the use of the τ -model twice, i.e.

1. Combination of gradient information with traditional PPM, i.e. the com-
putation of P (A|C,D) from P (A|C) and P (A|D)

2. Combination of P (A|C,D) and P (A|B) during sequential simulation
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8.1 Background for the development of a hybrid method 127

Compared to traditional PPM the first step is new. The second use of the
τ -model is performed when a new facies indicator is simulated at a grid note
and is done in traditional PPM as well as in the proposed method.

The following algorithm to integrate qualitative gradient information is pro-
posed:

1. Define a vector G′(A|D) as i(k) + Gscl

• G′(A|D) is formed by adding the current best realization, i(k), to
the scaled gradient. G′(A|D) indicates how the permeability can be
improved. D denotes the qualitative gradient information.

2. Truncate G′(A|D) to the interval [0; 1]

• The scaled gradient may suggest to remove channel facies at grid
blocks which do not have channel facies associated or it may suggest
to add channel facies to grid blocks which already have the channel
facies associated. Therefore, a truncation is needed to ensure that
the entries in G′(A|D) are either zeros or ones.

3. Define P (A|D) = aG′(A|D) + (1− a)P (A)

• The parameter a is used to control the contribution of the gradient
information to the PPM algorithm and is denoted degree of trust in
the gradient.

4. Define P (A|C) = (1− rc)i(k) + rcP (A)

• This step is the traditional PPM step which forms P (A|C) which is
adjusted to improve the match in an inner loop.

5. Combine P (A|C) and P (A|D) to form P (A|C,D) (τ -model)

• The τ -model is used to combine the probability field from regular
PPM with the gradient information.

6. Input P (A|C,D) as soft probability constraint to Snesim

• The optimal rc can now be found by application of for instance the
Dekker-Brent algorithm. This is similar to traditional PPM. The
only difference is that gradient information is now used to guide the
PPM method.

As in traditional PPM a number of outer loops over the seed for Snesim are
carried out until a sufficiently good match has been obtained or until a maxi-
mum number of iterations is made. Application of the gradient in every outer
iteration is not a requirement. It may prove advantageous to apply the gradient
information in every second or third iteration or so and then use traditional
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128 Hybridization of PPM with gradient information

PPM in the iterations in between. It is the user’s task to device a suitable
strategy for when to use the gradient information. A priori it is difficult to lay
out such a strategy but experiences from previous uses may be helpful.

An instructive example which illustrates the idea behind the method is based
on the reference permeability field depicted in Figure 8.6. The reference has
a distinct channelized structure with high permeable channels oriented in the
South-East direction. The permeability of the channel facies is 1150mD and
the permeability of mud facies is 1mD. A gridding of 80 by 80 has been used
for the model. The field is operated by two injection wells and three producing
wells. The exact locations of the wells are given in Table 8.1.

Figure 8.6: Reference facies distribution. The red color indicates high permeable sand facies
and blue is low permeable mud. Injectors are placed in the right ends of the channels and
production is taking place in three wells in the opposite side.

Table 8.1: Specifications of the wells. The wells are placed such that the water front will
sweep along the channels.

Well Type i j Constraint
I1 Inj 68 5 Rate (5m3/day)
I2 Inj 75 40 Rate (5m3/day)
P1 Prod 10 25 BHP (10bar)
P2 Prod 10 55 BHP (10bar)
P3 Prod 20 70 BHP (10bar)

Only water and oil is assumed to be present. The fluids are treated as
incompressible and relative permeability is modeled by a Corey-type power law.
The permeability field shown in Figure 8.7(a) is constrained to facies data at
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8.1 Background for the development of a hybrid method 129

the well locations. Watercuts and oil rates at the three producers are to be
matched. If the gradient of the sum-of-squares objective function is calculated
and scaled by equation (8.2) the scaled gradient shown on Figure 8.7(b) will
appear. The scaled gradient clearly suggests that the connectivity between the
producers and injectors needs to be restored.

(a) Permeability field. (b) Scaled gradient.

Figure 8.7: The left figure: Permeability field. To the right: Scaled gradient. Scaling is
done according to equation (8.2) with c = 1.

Figure 8.8 shows how the combined probability P (A|C,D) varies with the
perturbation parameter, rc. The effect of the scaled gradient is seen in the
low permeable areas which are disconnecting the wells. Figure 8.9 shows the
corresponding realizations from Snesim. From the figure it is seen that the
connectivity is restored at rc = 0.5. If reservoir simulations are carried out
for each of the realizations the plot shown on Figure 8.10 can be constructed.
The solid line represents the objective function versus rc in traditional PPM
where the gradient information is not applied. The dashed line represents the
realizations shown in Figure 8.10 where the gradient information is applied.
Inclusion of gradient information has lowered the value of the objective function
significantly. Another observation is that the objective function for the case
using the gradient information appears to be smoother. The fact that the current
best realization is used to form the gradient-based probability P (A|D) may
have a regularizing effect on the objective function. Consequently, the gradient-
guided PPM may be easier to work with in the inner iterations of the algorithm
compared to traditional PPM because of the regularizing effect on the objective
function.
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130 Hybridization of PPM with gradient information

Figure 8.8: P (A|C, D) for varying values of the parameter rc. Starting with rc = 0.0 in the
upper left, rc increases with 0.1 in the following figures. A degree of trust of 0.85 is used.
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8.1 Background for the development of a hybrid method 131

Figure 8.9: Resulting Snesim realizations for varying values of the parameter rc. Starting
with rc = 0.0 in the upper left, rc increases with 0.1 in the following figures.

147



132 Hybridization of PPM with gradient information

Figure 8.10: Objective function versus rc. The dashed line corresponds to the steps shown
in Figures 8.8 and 8.9 and the solid line is for traditional PPM without gradient information.

8.1.2 History matching with gradient guidance

The previous example was an instructive introduction to the concept of gradient-
guided PPM. To evaluate the potential of the method a more elaborate test is
performed. A full PPM history matching setup has been implemented with
the option to apply gradient guidance at selected outer iteration steps. The
framework for the case study is still the reference field shown in Figure 8.6
and the well configuration given in Table 8.1. The matched production data
are watercut and oil rate. The gradient information is applied according to a
simple strategy where gradient guidance is applied in every third outer iteration.
In the other outer iterations traditional PPM is applied. Nine history matched
realizations are constructed. Each of the matches is made with different starting
guesses and different seeds during iterations. History matches from traditional
PPM are also obtained and serve as comparison for gradient guided PPM and
traditional PPM. A maximum number of ten outer iterations is allowed.

Figures 8.11 and 8.12 show the evolution of the objective functions dur-
ing history matching for traditional PPM and gradient-guided PPM, respec-
tively. If the objective functions are compared after about 35 function evalua-
tions the gradient-guided PPM seems to perform better than traditional PPM.
The gradient-guided PPM reaches a slightly lower end value for most of the
objective functions. One of the objective functions in Figure 8.12 is not lowered
much at the end of the history matching. The initial permeability field is in
this case a poor starting point for the gradient guided method. However, it can
be observed in Figure 8.11 that the same initial permeability field is not easily
matched by the standard PPM method and a decrease is only obtained after a
large number of function evaluations.
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8.1 Background for the development of a hybrid method 133

Figure 8.11: Evolution of the objective functions for nine history matches. Gradient guid-
ance was not applied.

Figure 8.12: Evolution of the objective functions for nine history matches. Gradient guid-
ance was applied in every third iteration.
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134 Hybridization of PPM with gradient information

Figure 8.13: Evolution of the objective functions for nine history matches. Gradient guid-
ance was applied by the use of equation (8.6).

An alternative way of integrating the gradient information has been investi-
gated. The perturbation parameter, rc, can be used to parameterize the gradient
information more directly by defining an alternative probability:

P (A|D) = (1− rc)i + rcG
′(A|D) (8.6)

where G′(A|D) is given by i + Gscl and truncated to contain the indicators 0
or 1. The rc parameter can now be used to perturb the probability from the
current best field to the truncated field G′(A|D) which represents the current
best field plus the qualitative gradient. Compared to the previously proposed
algorithm the parameter a (degree of trust) is no longer needed. Now the trust
in the gradient is integrated in rc - if the gradient information leads to a decrease
in the objective function the inner optimization loop will increase rc. The same
inner optimization as in traditional PPM can still be used since the adjustable
parameter is still rc and is limited to the interval [0; 1]. Since the current best
field is now used to form the probability P (A|D) more directly an even larger
regularization effect on the objective function can be expected.

Figure 8.13 shows the nine objective functions for the case where equation
(8.6) has been used to integrate gradient information. When the tails of the ob-
jective functions (from 30-50 function evaluations) are compared it is clear that
the gradient-guided PPM in general reaches a lower end value of the objective
function than in the case where gradient information is not applied. Secondly,
the final value of the objective function is reached in fewer function evaluations.
The individual matches are terminated after a varying number of function eval-
uations. This is because a termination criteria has been imposed on the inner
loop. If rc gets close to 0 the resulting realizations from Snesim will be identical.
Therefore, the inner loop is terminated if rc becomes smaller than a specified
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threshold. Because of the regularizing effect from the inclusion of the gradient
information it is likely that the Dekker-Brent algorithm reaches this threshold
in fewer iterations. This may be part of the explanation for the improved per-
formance of the gradient-guided PPM compared to traditional PPM. Figure
8.14-8.16 show the initial watercuts and matched watercuts from traditional
PPM and gradient-guided PPM (using equation (8.6)). Both methods are able
to match the watercut reasonably well. However, the matched watercut from
the gradient-guided PPM appears to be more centered around the reference
than is the case with traditional PPM.

The performance of the three history matching approaches is summarized
in Tables 8.2 and 8.3. The number of function evaluations required to reach an
objective function value of 0.5 or less is tabulated in Table 8.2. The improve-
ment of convergence is also observed in the table. The gradient-guided methods
generally reach an objective function value of 0.5 or less faster than traditional
PPM. Table 8.3 shows the final values of the objective function after history
matching. The final value is generally lower when gradient information is ap-
plied. Especially, the use of equation (8.6) to include the gradient information
results in lower final values of the objective function.

Figure 8.14: Nine matches of watercut for the three producers. The figures show watercuts
from the unmatched initial fields. The reference is marked with ◦.
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Figure 8.15: Nine matches of watercut for the three producers. The figures show the results
from traditional PPM. The reference is marked with ◦.

Table 8.2: Number of function evaluations needed to reach an objective function value of
0.5. > xx denotes that a value of 0.5 was not reached in xx function evaluations. gPPM1

denotes gradient-guided PPM by the use of the algorithm outlined on page 127 and gPPM2

implies that equation (8.6) was used to integrate gradient information. Bold face indicates
the lowest number of iterations in each case.

Case 1 2 3 4 5 6 7 8 9
PPM > 63 9 10 > 46 > 57 > 55 > 52 21 57

gPPM1 > 60 9 10 36 46 42 > 60 32 > 55
gPPM2 39 41 8 > 45 39 24 > 49 46 19

Table 8.3: Final values of the objective function. gPPM1 denotes gradient-guided PPM by
the use of the algorithm outlined on page 127 and gPPM2 implies that equation (8.6) was
used to integrate gradient information. Bold face indicates the lowest value in each case.

Case 1 2 3 4 5 6 7 8 9 Avg.
PPM 1.11 0.40 0.36 0.77 0.99 0.51 0.89 0.38 0.45 0.65

gPPM1 1.32 0.40 0.38 0.47 0.49 0.36 0.77 0.50 0.56 0.58
gPPM2 0.29 0.31 0.27 0.72 0.39 0.41 0.56 0.46 0.39 0.42
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8.1 Background for the development of a hybrid method 137

Figure 8.16: Nine matches of watercut for the three producers. The figures show the results
from gradient-guided PPM (using equation (8.6)). The reference is marked with ◦.

Figure 8.17: The realization associated with the lowest objective function value. The result
is from a gradient-guided PPM history matching.

153



138 Hybridization of PPM with gradient information

8.2 Applications on history matching cases

8.2.1 3D case with horizontal wells

The first case which is presented is based on a simple field which is represented
by a binary facies model in three dimensions. The reference field is depicted in
Figure 8.18. The field is composed of high permeable sand channels separated by
a low permeable mud facies. The permeability of the sand is 1000mDa and the
mud has a permeability of 1mDa. The reservoir measures 100m× 100m× 15m
and is operated by a horizontal injector placed in one side of the reservoir.
Production takes place in a parallel producer in the other side. The fluid flow
takes place in the direction of the channels. The field is discretized into a
50 × 50 × 5 grid, yielding a 12500 gridblock model. The reservoir fluids are
treated as incompressible. Consequently, it is not necessary to match both
oil rate and water cut because only one producer is present and the water is
being injected at a constant rate. The volumetric outflow is thus constant and
the oil rate can be derived from the watercut. Therefore, history matching is
limited to injector pressure and watercut. Production data up to 230 days is
matched and the production from 230 up to 500 days is used to evaluate the
predictive capabilities of the match. Figure 8.2.1 shows the matched pressure
and watercut. The figure shows that the injector pressure is harder to match
than watercut. There is a bias of the matched pressure which tends to be higher
than the reference. The matched watercut is more evenly distributed around
the reference. The spread of the predicted pressure and watercut increases
with time. Figures 8.2.1 shows approximated 95 pct. confidence intervals for
the predicted pressure and watercut. The confidence intervals are based on 15
matched fields. The field which led to the lowest objective function value is
shown in figure 8.21 and the E-type of the 15 best matches is shown in figure
8.22.

Figure 8.18: Reference permeability field. Blue color indicates low permeable mud and red
indicates high permeable sand. Production is taking place in horizontal well parallel to the
injection well. The wells are perforated in the entire reservoir interval. The field is discretized
into a 50 × 50 × 5 grid.

154



8.2 Applications on history matching cases 139

Table 8.4: Specifications of the wells. The wells are horizontal and drilled in the y-direction.

Well Type dir istart iend j k Constraint
I1 Inj y 1 50 1 3 Rate (15m3/day)
P1 Prod y 1 50 50 3 BHP (10bar)

(a) Injector pressure.

(b) Watercut.

Figure 8.19: Initial production data from the fields used to initiate history matching. The
reference data is marked with circles.

14 matches have been obtained by traditional PPM without gradient guid-
ance such that the effect from the gradient guidance can be evaluated. The
production data for the fields used to initialize history matching is shown in
Figure 8.2.1. The figure shows that the initial models generally lead to poor
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140 Hybridization of PPM with gradient information

(a) Injector pressure.

(b) Watercut.

Figure 8.20: Matched production data. The first nine measurements are used to match the
production. The production from 230 days is not used to history match the reservoir model
and can be regarded as projections of future production, i.e. forecasts.

matches. The matched production data for 14 history matches obtained with
traditional PPM can be seen in Figure 8.2.1. The spread of the matched pro-
duction data appears to be a larger compared to the matched production data
shown in Figure 8.2.1 where gradient guidance was applied. The permeability
field which led to the best match is shown in Figure 8.25.

Table 8.5 summarizes the number of function evaluations needed to termi-
nate history matching for traditional PPM and gradient guided PPM. In seven
cases the gradient guided method requires less function evaluations than tra-
ditional PPM. In three cases traditional PPM requires less evaluations than
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8.2 Applications on history matching cases 141

Figure 8.21: The matched permeability field which led to the best match of the production
data (injector pressure and watercut).

Figure 8.22: E-type of the 15 fields which resulted in an objective function less than 0.05.

157



142 Hybridization of PPM with gradient information

(a) Injector pressure.

(b) Watercut.

Figure 8.23: Matched production data and predictions with 95% confidence intervals. The
first 9 measurements are used to match the production. The production from 230 days is
not used to history match the reservoir model and can be regarded as projections of future
production, i.e. forecasts.

gradient guided method. The average number of function evaluations for 14
history matches are 34 for traditional PPM and 27 for gradient guided PPM.
The results indicate that the gradient guided method in most cases performs
better than traditional PPM. Table 8.6 shows the final values of the objective
functions for the 14 cases with and without gradient guidance. In this case the
gradient guided PPM does not perform as good as traditional PPM. However,
traditional PPM leads to a very bad match in case number 3 where the gradient
guided method performs significantly better.
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(a) Injector pressure.

(b) Watercut.

Figure 8.24: Matched production data. The first nine measurements are used to match the
production. The production from 230 days is not used to history match the reservoir model
and can be regarded as projections of future production, i.e. forecasts. The results are from
traditional PPM without gradient guidance.

Table 8.5: Number of function evaluations needed before termination of gradient guided
PPM and traditional PPM. In seven cases the gradient guided method terminates after fewer
function evaluations than traditional PPM. The average number of iterations for traditional
PPM is 34 and 27 for gradient guided PPM.

case 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PPM 28 36 49 50 48 4 40 49 32 5 49 23 20 36
gPPM 17 21 20 50 34 4 49 11 31 5 49 41 9 42
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Figure 8.25: The matched permeability field which led to the best match of the production
data (injector pressure and watercut). The result is from traditional PPM without gradient
guidance.

Table 8.6: Final values of the objective functions with and without gradient information.
The average values are 1.05 for traditional PPM and 0.72 for gradient-guided PPM.

case 1 2 3 4 5 6 7
PPM 0.10 0.14 5.77 0.22 1.00 0.14 0.43
gPPM 0.29 0.88 0.98 0.22 0.55 0.14 0.85
case 8 9 10 11 12 13 14
PPM 1.14 0.63 0.55 1.59 0.64 0.18 0.36
gPPM 0.90 0.86 0.55 1.59 0.94 0.76 0.24
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8.2.2 3D case with horizontal and vertical wells

A more complicated field is now discussed. A reference field is shown in Figure
8.26. The reference field is generated by Snesim and is discretized into a 50 ×
50×5 grid and has the dimensions 100m×100m×15m. Two facies are present:
high-permeable channel facies (1000mDa) and low permeable mud (1mDa).
Two injection wells are used to inject water and production takes place in three
wells. The locations of the wells are given in Table 8.7 and are also indicated
on the reference field. The wells are placed such that the injected water will
sweep the high-permeable channels. A mix of horizontal and vertical wells is
used and the wells are perforated in all grid blocks containing a well. Sequential
simulations are conditioned to facies data along the wells. Water and oil are
treated as incompressible. The production from the reference field is simulated
until 500 days. Only the first 200 days of production will be matched and the
remaining production data will be used to evaluate the predictive capabilities
of the models. Nine matches have been obtained using traditional PPM and
gradient-guided PPM with gradient guidance in every third outer iteration. A
maximum of ten outer iterations is allowed. The production data associated
with the nine initial reservoir models used to initialize history matching witch
are shown in Figures 8.27, 8.28, and 8.29. The figures show that the initial fields
lead to poor matches of injector pressure, watercut, and oil rate.

The matched production data for gradient guided PPM are shown in Figures
8.30, 8.31, and 8.32. The figures should be compared to the matches obtained
with traditional PPM which are shown in Figures 8.34, 8.35, and 8.36.

Figures 8.30 and 8.34 show the matched injector pressures for gradient-
guided PPM and traditional PPM, respectively. The gradient-guided PPM
gives significantly better matches of the pressure in injector 1. The difference in
the matches of pressure in injector 2 is not as marked but still shows that the
gradient-guided method performs better. The same conclusion can be drawn
from the matches of watercut and oil rates where the gradient-guided method
performs slightly better than traditional PPM. The oil production rate from pro-
ducer 2 is difficult to match. This producer is placed in a thin high-permeable
channel which makes it difficult to match its production data.

Table 8.8 shows the final values of the objective function for traditional PPM
and gradient guided PPM for the nine matches. In seven cases the gradient-
guided method ends with a lower value than traditional PPM. In the two re-
maining cases the methods perform equally well. The mean of the final values
are 1.34 and 0.87 for traditional PPM and gradient-guided PPM, respectively.
The table thus confirms that the gradient-guided PPM method performs best
in this history matching setup. Table 8.9 shows that the number of function
evaluations is approximately the same for traditional PPM and gradient guided
PPM. The field which led to the best match is depicted in Figure 8.33.

161



146 Hybridization of PPM with gradient information

Figure 8.26: Reference permeability field. Blue color indicates low permeable mud and red
indicates high permeable sand. Production is taking place in vertical wells and injection takes
place in a vertical and a horizontal well. The field is discretized into a 50 × 50 × 5 grid.

Table 8.7: Specifications of the wells. The wells are horizontal and drilled in the y-direction.

Well Type dir istart iend j k Constraint
I1 Inj y 1 25 1 3 Rate (15m3/day)
I2 Inj z 1 5 1 42 Rate (5m3/day)
P1 Prod z 1 5 50 9 BHP (10bar)
P2 Prod z 1 5 50 33 BHP (10bar)
P3 Prod z 1 5 36 50 BHP (10bar)

Table 8.8: Final values of the objective function. Bold face indicates the lowest value in each
case.

Case 1 2 3 4 5 6 7 8 9 Avg.
PPM 1.41 0.37 0.66 2.91 1.61 0.96 1.48 1.08 1.58 1.34

gPPM 0.73 0.38 0.66 0.92 1.01 0.59 1.48 0.82 1.26 0.87

Table 8.9: Number of function evaluations. Bold face indicates the lowest number in each
case.

Case 1 2 3 4 5 6 7 8 9 Avg.
PPM 43 48 53 45 49 49 53 56 49 49

gPPM 49 46 53 49 44 46 53 50 46 48
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(a) Injector pressure 1.

(b) Injector pressure 2.

Figure 8.27: Initial production data data from the fields used to initiate history matching.
The reference data is marked with circles. Some pressures have been omitted because they
are too high for the axis scaling.
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(a) Watercut 1.

(b) Watercut 2.

(c) Watercut 3.

Figure 8.28: Initial production data data from the fields used to initiate history matching.
The reference data is marked with circles.
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(a) Oil rate 1.

(b) Oil rate 2.

(c) Oil rate 3.

Figure 8.29: Initial production data data from the fields used to initiate history matching.
The reference data is marked with circles.
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(a) Injector pressure 1.

(b) Injector pressure 2.

Figure 8.30: Matched production data. The reference data is marked with circles. The
pressures from one match has been omitted because they are too high for the axis scaling.
Only production up to 200 days has been matched. The data from 200 to 500 days is forecasted.
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(a) Watercut 1.

(b) Watercut 2.

(c) Watercut 3.

Figure 8.31: Matched production data. The reference data is marked with circles. Only
production up to 200 days has been matched. The data from 200 to 500 days is forecasted.
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(a) Oil rate 1.

(b) Oil rate 2.

(c) Oil rate 3.

Figure 8.32: Matched production data. The reference data is marked with circles. Only
production up to 200 days has been matched. The data from 200 to 500 days is forecasted.
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Figure 8.33: The matched permeability field which led to the best match of the production
data. The result is from PPM with gradient guidance.
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(a) Injector pressure 1.

(b) Injector pressure 2.

Figure 8.34: Matched production data. The reference data is marked with circles. The
pressures from one match has been omitted because they are too high for the axis scaling.
Only production up to 200 days has been matched. The data from 200 to 500 days is forecasted.
No gradient guidance has been applied.
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(a) Watercut 1.

(b) Watercut 2.

(c) Watercut 3.

Figure 8.35: Matched production data. The reference data is marked with circles. Only
production up to 200 days has been matched. The data from 200 to 500 days is forecasted.
No gradient guidance has been applied.
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(a) Oil rate 1.

(b) Oil rate 2.

(c) Oil rate 3.

Figure 8.36: Matched production data. The reference data is marked with circles. Only
production up to 200 days has been matched. The data from 200 to 500 days is forecasted.
No gradient guidance has been applied.
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8.3 Summary of the proposed hybrid method

A hybrid method based on the framework of the probability perturbation method
(PPM) has been proposed. This method includes qualitative gradient informa-
tion into traditional PPM by the use of the τ -model proposed by Journel (2002).
By filtering out numerically small elements of the gradient of the objective func-
tion it is possible to extract valuable qualitative information which can be used
to guide the PPM method. The proposed gradient-guided PPM method has
been applied to history matching examples in 2D as well as in 3D. In all cases
the method performs better than traditional PPM, yielding lower end values
of the objective function. The gradient-guided method reaches the final value
in fewer iterations. This may be due to regularization effects as well as the
qualitative information extracted from the gradient. An existing framework for
traditional PPM can easily be extended to include the gradient guidance. This,
however, requires that an efficient calculation of sensitivities of production data
with respect to reservoir parameters is available. In the current setup an efficient
adjoint method is applied to calculate these sensitivities.
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Chapter 9

Conclusion

The PhD study has dealt with application and development of history match-
ing procedures in a geostatistical framework. The main contribution from the
project has been the development of a hybrid method which combines the geo-
statistical probability perturbation method (PPM) with qualitative gradient
information. The hybrid method has been applied to history matching prob-
lems with two-dimensional and three-dimensional reservoir models. A general
observation from these applications it that the inclusion of gradient information
improves the performance of the PPM method. The main characteristics of the
proposed hybrid method are:

• A scaling of the gradient of the objective function is performed in order
to extract qualitative gradient information.

• Two ways of integrating the gradient information are presented. One of
these make use of a parameter, denoted degree of trust, which controls the
impact of the gradient information. If this parameter is set to zero the
hybrid method reduces to traditional PPM.

• A simple strategy where gradient information is applied en every third
outer iteration of PPM is applied.

• An improvement of the performance has been observed when gradient
information is included in PPM.

• Inclusion of the gradient information has a regularizing effect on the objec-
tive function which appears to be more smooth with respect to changes in
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the perturbation parameter. This results in better performance compared
to traditional PPM.

Apart from presenting the hybrid method the thesis also contains an elabo-
rate discussion on various history matching techniques from the literature. This
includes:

• The probability perturbation method

• Gradual deformation

• Deterministic methods

The probability perturbation method is introduced in some detail as it makes
up the basis for the main contribution of the work. It has been possible to extend
PPM to include gradient information because of its probabilistic framework.
This framework makes PPM flexible in the sense that many diverse information
sources can be integrated into the method.

The gradual deformation method is a geostatistical parametrization which
enables an automated history matching procedure to perturb Gaussian distri-
butions in a systematic way. If the reservoir geology can be represented by a
Gaussian distribution the gradual deformation method can be applied to his-
tory matching of production data. The method conserves second-order statistics
such as variograms. The literature contains numerous works which take their
basis in this method. PPM method appears to be more flexible than the gradual
deformation method regarding the reservoir geology. However, in cases where
the geology can be represented by a Gaussian distribution the gradual deforma-
tion has advantages, e.g. it allows for multiple deformation parameters which
can increase the flexibility but also the complexity of the parameterization. The
cases considered in this thesis have been based on Gaussian fields of continu-
ous variables. However, the gradual deformation method has been extended to
object-based models in published literature.

The deterministic optimization method Levenberg-Marquardt has been ap-
plied to history matching problems. In order to stabilize the history matching
problem a Tikhonov regularization has been applied. Apart from improving the
numerical stability of the problem the regularization also provides a way of en-
suring some geological consistency of the result. The main conclusions regarding
deterministic methods are:

• Efficient when the geological model exhibits smooth variations of the ad-
justed parameter.

• Deterministic methods are inappropriate when the reservoir model con-
tains sharp contrasts, e.g. binary facies models.

• The use of deterministic methods induces the risk of creating artifacts in
the model, especially if a too loose regularization is applied.
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A simple strategy where gradual deformation is used to pick out good initial
guesses for the deterministic method is presented. This method can be used to
minimize some of the drawbacks of the deterministic methods just mentioned.
However, the methodology does not guarantee the geological consistency of the
result.

In connection with the project the following programs have been developed:

• Boss reservoir simulator

– The in-house reservoir simulator BOSS has been developed as a re-
search framework for the IVC-SEP group, Technical University of
Denmark. The presented history matching examples are all based on
simulations with this simulator, except the cases related to streamline-
derived regions.

• Adjoint extension to BOSS

– In order to investigate the use of deterministic methods the BOSS
simulator was extended with an adjoint sensitivity calculation fea-
ture. The current implementation can calculate sensitivities of injec-
tor pressures, watercuts, and oil rates with respect to grid block per-
meabilities and porosities. This implementation is together with the
PPM implementation the backbone of the proposed hybrid method.

• PPM implementation with gradient guidance

– The PPM method has been implemented in a framework which al-
lows history matching with and without gradient guidance. The im-
plementation calls the S-GeMS (Remy 2004) program to carry out
sequential simulations.

• Implementation of gradual deformation

– A gradual deformation history matching procedure has been imple-
mented. Sequential simulation of permeability is done using GSLIB
(Deutsch & Journel 1998).
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Chapter 10

Future work

Several methods for history matching of oil production have been implemented
and validated in this dissertation. The most promising method is the proba-
bility perturbation method (PPM) because of its flexibility with respect to the
reservoir geology. Inclusion of qualitative gradient information is made possible
by the methodology presented in Chapter 8.

This chapter seeks to present some relevant future work related to the pre-
sented history matching methods. Emphasis will be put on the PPM method-
ology since it seems to be the most versatile method and because it has a great
potential in solving practical history matching problems. The cases considered
in the dissertation have been represented by a binary geology - high permeable
facies and low permeable facies. The PPM method works with any geology - bi-
nary, multiple categories as well as continuous variables. Inclusion of more than
two facies is done by modifying the sequential simulation part of the history
matching setup. This can be done by using a training image consisting of more
than two categories. However, the use of the Snesim algorithm for simulation of
multiple categorical reservoir models is RAM demanding. According to Journel
(2006) the number of categories should not exceed four. With respect to the
gradient-guided PPM method a number of issues are relevant to investigate:

• Applications to more realistic field cases

– 3-phase systems

– Larger models, i.e. more grid blocks

• Application to models with more than two categories
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• Control strategy to indicate when to use gradient information

• Coupling to other sequential simulators, e.g. Filtersim, Simpat, etc.

The full potential of the gradient-guided PPM method will only be shown if
the method is tested in a real-life history matching problem. It has been out of
the scope of this work to include such a case. However, future work should be in-
vested in more realistic cases. This could include three-phase systems and larger
reservoir models. As already mentioned the work has been limited to deal with
binary facies models. Two facies may be insufficient to describe a reservoir fully.
Consequently, it is relevant to investigate the use of gradient guidance in cases
with multiple facies types. This would necessitate a more advanced gradient
scaling than the one used here. In the current setup the gradient is scaled ac-
cording the the numerical value of the elements in the gradient. If the element is
smaller than a specified negative threshold it is interpreted as an indication that
the permeability should be increased at the particular grid block and vice versa
if the value is larger than a positive threshold. For values in between the scaled
gradient is set to zero. This scaling assumes that only two facies are present
and an extension is needed if more than two facies types are included in the
reservoir model. Inclusion of gradient information happens by a simple strat-
egy in the current implementation. In every second or third outer iteration the
gradient information is included. A more advanced strategy to control when to
include the gradient information may be advantageous. Development of heuris-
tic techniques may be a way to control the inclusion of gradient information
better. The last point deals with the use of alternative sequential simulators.
Snesim offers a fast and flexible way of constraining the match to a conceptual
geological model. However, the pattern-based Simpat and Filtersim algorithms
are known to reproduce complex geologic features better. The price is that the
sequential simulation becomes more time demanding. Whether the increase in
computation times compares with the computational load of performing a fluid
flow simulation is questionable. Consequently, it is desirable to investigate the
use of alternative sequential simulators in the proposed methodology.

With regards to the deterministic methods, future work could be invested
in refining the regularization techniques used to stabilize the history matching
problem. The deterministic methods offer an efficient means of calibrating a
reservoir model to dynamic data. However, the efficiency is strongly dependent
on the specific geology. A deterministic method is not suited for calibrating
models with high contrasts, e.g. binary facies models.

The idea to use qualitative gradient information in history matching is an
interesting subject. Inclusion of qualitative gradient knowledge into existing
history matching work flows is an important research topic which could be the
basis for future research.
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Appendix A

Details of adjoint approach

The mathematical background for the adjoint sensitivity calculation is given in
Chapter 4, section 4.3. The purpose of this chapter is to describe the imple-
mentation of the adjoint methods in more detail.

A.1 Derivation of derivatives

The following sections describe the various derivatives used to calculate the
sensitivities of production data with respect to grid block permeability and
porosity. The production data covered are watercut and oil rate at producing
wells and pressure of injection wells.

A.1.1 Derivatives with respect to simulation variables

This section deals with the derivation of the terms appearing in the adjoint
equation (4.31). The derivatives needed in the adjoint equation are all with re-
spect to the vector of unknowns, u, i.e. with respect to grid block pressures and
saturations. The term (∇un(Rn)T ) in equation (4.31) is the transposed Jaco-
bian used in the solution of the non-linear discretized flow equations. Therefore,
the derivation of this term is not included in this section since computation of
the Jacobian as done in any reservoir simulator.
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Derivation of ∂β
∂u

, β = injector BHP

The total injection rate for an injection well can be found by summing equation
(4.14) over the active segments:

qi
tot =

Nlayers∑
j=1

λi,j
totWIi,j(pk

blk − pwell
i,j ), (A.1)

where k denotes the number of the grid block containing the jth segment of the
ith injector.

Combination of equations (4.13) and (A.1) and reordering yields:

P i
inj =

1∑Nlayers

j=1 λk
totWIi,j

·qi
tot −

Nlayers∑
j=1

λk
totWIi,jpk + g

Nlayers∑
j=2

(
λk

totWIi,j

j∑
m=2

ρw(zm − zm−1)

)
(A.2)

Note that k is the number of the grid block containing the jth segment and
that k changes with j (k = k(j)).

In equation (A.2) it is assumed that the injected water can be treated as
incompressible in the well. This is done in order to simplify the following deriva-
tions. With this assumption the derivative of injector bottomhole pressure with
respect to pressure in a grid block containing a well segment is given as:

∂P i
inj

∂pk′
=

λk
totWIi,j∑Nlayers

j=1 λk
totWIi,j

(A.3)

The derivative with respect to grid block saturations is:

∂P i
inj

∂Sk′
=

1(∑Nlayers

j=1 λk
totWIi,j

)2

(
∂λk′

tot

∂Sk′
WIi,jq

i
tot

+
∂λk′

tot

∂Sk′
WIi,jpk′

Nlayers∑
j=1

λk
totWIi,j −

∂λk′

tot

∂Sk′
WIi,j

Nlayers∑
j=1

λk
totWIi,jpk + DOBSUM

)
,

(A.4)

where DOBSUM is given as:
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DOBSUM = g
∂λk′

tot

∂Sk′
WIi,j

j∑
m=2

ρw(zm − zm−1)
Nlayers∑

j=1

λk
totWIi,j−

g

Nlayers∑
j=2

λk
totWIi,j

j∑
m=2

ρw(zm − zm−1)
∂λk′

tot

∂Sk′
WIi,j

(A.5)

Derivation of ∂β
∂u

, β = watercut

The watercut of a producer is given by the total water production divided with
the total production (water and oil). The individual flow rates of water and oil
into a well segment are given by equation (4.14). Watercut for the ith producer
is given by:

WCUTi =

∑Nlayers

j=1
ρw

ρstd
w

λwWIi,j(pblk
k − pwell

i,j )∑Nlayers

j=1
ρw

ρstd
w

λwWIi,j(pblk
k − pwell

i,j ) +
∑Nlayers

j=1
ρo

ρstd
o

λoWIi,j(pblk
k − pwell

i,j )
,

(A.6)
or in compressed notation:

WCUTi =
w

w + o
(A.7)

The derivative of the water rate with respect to pressure in the kth grid
block is given as:

∂w

∂pk
=

WIi,j

ρstd
w

(
∂ρk

w

∂pk
λk

w +
∂λk

w

∂pk
ρk

w)(pblk
k − pwell

i,j ) +
WIi,j

ρstd
w

ρk
wλk

w (A.8)

And similarly for the oil rate:

∂o

∂pk
=

WIi,j

ρstd
o

(
∂ρk

o

∂pk
λk

o +
∂λk

o

∂pk
ρk

o)(pblk
k − pwell

i,j ) +
WIi,j

ρstd
o

ρk
oλk

o (A.9)

The derivative of watercut with respect to pressure is then given as:

∂WCUTi

∂pk
=

∂w
∂pk

(w + o)− ( ∂w
∂pk

+ ∂o
∂pk

)w

(w + o)2
(A.10)

The derivative of water rate with respect to grid block saturation is given
as:

∂w

∂sk
=

ρk
w

ρstd
w

(pblk
k − pwell

i,j )WIi,j
∂λk

w

∂Sk
(A.11)
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and the derivative of oil rate with respect to grid block saturation:

∂o

∂sk
=

ρk
o

ρstd
o

(pblk
k − pwell

i,j )WIi,j
∂λk

o

∂Sk
(A.12)

The derivative of watercut with respect to grid block saturation is thus given
as:

∂WCUTi

∂Sk
=

∂w
∂Sk

(w + o)− ( ∂w
∂Sk

+ ∂o
∂Sk

)w

(w + o)2
(A.13)

Derivation of ∂β
∂u

, β = oil rate

The total oil rate is given as:

qo
tot,i =

Nlayers∑
j=1

ρo

ρstd
o

λoWIi,j(pblk
k − pwell

i,j ) (A.14)

The derivative of oil rate with respect to grid block pressure is:

∂qo
tot,i

∂pk
=

WIi,j

ρstd
o

(
∂ρk

o

∂pk
λk

o +
∂λk

o

∂pk
)(pblk

k − pwell
i,j ) +

ρk
oλk

oWIi,j

ρstd
o

(A.15)

and the derivative with respect to grid block saturation is given as:

∂qo
tot,i

∂Sk
=

WIi,jρ
k
o

ρstd
o

(pblk
k − pwell

i,j )
∂λk

o

∂Sk
(A.16)

Derivation of (∇un(Rn+1)T ) for equation (4.31)

In the implicit formulation of the discretized flow equations only the accumula-
tion term involves properties evaluated in the current time step. All other terms
in the discretized equations are evaluated implicitly in the in the next time step.
The accumulation term is given as:

D(un+1 − un) =
V

∆t
(φρS|t+∆t−φρS|t) (A.17)

The derivative of Rn+1 with respect to grid block pressure is:

∂Rn+1
2k−1

∂pk
=

Vk

∆t
φSk

∂ρk
w

∂pk
(A.18a)

∂Rn+1
2k

∂pk
=

Vk

∆t
φ(1− Sk)

∂ρk
o

∂pk
(A.18b)
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And the derivative with respect to grid block saturation is:

∂Rn+1
2k−1

∂Sk
=

Vk

∆t
φρk

w (A.19a)

∂Rn+1
2k

∂Sk
= − Vk

∆t
φρk

o (A.19b)

A.1.2 Derivatives with respect to permeability

The sensitivity equation (4.33) contains derivatives with respect to the model
parameter m. In the following sections the derivatives needed to compute the
sensitivity with respect to grid block permeabilities are supplied.

Derivation of ∂β
∂m

, β = Injector BHP and m = permeability

In the sensitivity equation (4.33) the term ∇mβ appears. This term accounts
for explicit dependence of the production data with respect to the property m.
The injector bottomhole pressure as given in equation (A.2) is differentiated
with respect to grid block permeability. Isotropic permeability is assumed, i.e.
kx = ky = kz.

∂P i
inj

∂k′
=

1(∑Nlayers

j=1 λk
totWIi,j

)2

(
qi
totλ

k′

tot

∂WIi,k

∂k′

−λk′

totpk′
∂WIi,k

∂k′

Nlayers∑
j=1

λk
totWIi,j + λk′

tot

∂WIi,k

∂k′

Nlayers∑
j=1

λk
totWIi,jpk − LT

)
,

(A.20a)

where LT is given as:

LT = gλk′

tot

∂WIi,k

∂k′

j′∑
m=2

ρw(zm − zm−1)
Nlayers∑

j=1

λk
totWIi,j−

λk′

tot

∂WIi,k

∂k′

(
g

Nlayers∑
j=2

λk
totWIi,j

( j∑
m=2

ρw(zm − zm−1)
)) (A.20b)

The notation j′ in the first sum appearing in equation (A.20b) indicates a
summation over overlying well segments.
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Derivation of ∂β
∂m

, β = watercut and m = permeability

The watercut is given as:

WCUTi =

∑Nlayers

j=1
ρw

ρstd
w

λwWIi,j(pblk
k − pwell

i,j )∑Nlayers

j=1
ρw

ρstd
w

λwWIi,j(pblk
k − pwell

i,j ) +
∑Nlayers

j=1
ρo

ρstd
o

λoWIi,j(pblk
k − pwell

i,j )
,

(A.6)
or in compressed notation:

WCUTi =
w

w + o

The derivative of water rate with respect to grid block permeability is:

∂w

∂k
=

ρk
wλk

w

ρstd
w

(pblk
k − pwell

i,j )
∂WIi,k

∂k
(A.21)

and analogously for the oil rate

∂o

∂k
=

ρk
oλk

o

ρstd
o

(pblk
k − pwell

i,j )
∂WIi,k

∂k
(A.22)

With these derivatives the derivative of watercut for the ith producing well
is given as:

∂WCUTi

∂k
=

∂w
∂k (w + o)− (∂w

∂k + ∂o
∂k )w

(w + o)2
(A.23)

Derivation of ∂β
∂m

, β = oil rate and m = permeability

The total oil rate for the ith producer is given as:

qo
tot,i =

Nlayers∑
j=1

ρo

ρstd
o

λoWIi,j(pblk
k − pwell

i,j ) (A.14)

The derivative with respect to grid block permeability is:

∂qo
tot,i

∂k
=

ρk
oλk

o

ρstd
o

(pblk
k − pwell

i,j )
∂WIi,j

∂k
(A.24)

Derivation of the ∇m(Rn) term for m = permeability

The term ∇m(Rn) in the sensitivity equation (4.33) plays an important role
since it relates changes to the property m to changes in the residual. Permeabil-
ity enters the discretized flow equations through the geometric transmissibility
defined in equation (4.19b):

188



A.1 Derivation of derivatives 173

Γi+1/2,j =
Hres∆yjkx,i+1/2,j

∆xi+
, (4.19b)

with the harmonic average of the interface permeability given by equation
(4.20a):

kx,i+1/2,j =
∆xi + ∆xi+1

∆xi

kx,i,j
+

∆xi+1

kx,i+1,j

. (4.20a)

The derivative of the water flux term with respect to grid block permeability
is:

∂qF
i+1/2,j

∂kx,i,j
= Hw

i+1/2,j(∆xi + ∆xi+1)
Href∆yi

∆x+

k2
x,i+1,j∆xi

(kx,i,i∆xi+1 + kx,i+1,j∆xi)2
(pi+1,j − pi,j)

(A.25a)

∂qF
i+1/2,j

∂kx,i+1,j
= Hw

i+1/2,j(∆xi + ∆xi+1)
Href∆yi

∆x+

k2
x,i,j∆xi+1

(kx,i,i∆xi+1 + kx,i+1,j∆xi)2
(pi+1,j − pi,j)

(A.25b)

A similar expression is obtained for the oil flux terms.
The number of the grid block with coordinates (i, j) is denoted n and the

number of the grid block associated with the coordinates (i+1, j) is denoted m.
With this notation the derivative of the residual with respect to permeability in
the two grid blocks is defined as:

∂R2n−1

∂kx,i,j
= Hw

i+1/2,j(∆xi + ∆xi+1)
Href∆yi

∆x+

k2
x,i+1,j∆xi

(kx,i,i∆xi+1 + kx,i+1,j∆xi)2
(pi+1,j − pi,j)

(A.26a)

∂qF
2n−1

∂kx,i+1,j
= Hw

i+1/2,j(∆xi + ∆xi+1)
Href∆yi

∆x+

k2
x,i,j∆xi+1

(kx,i,i∆xi+1 + kx,i+1,j∆xi)2
(pi+1,j − pi,j)

(A.26b)

∂R2n

∂kx,i,j
= Ho

i+1/2,j(∆xi + ∆xi+1)
Href∆yi

∆x+

k2
x,i+1,j∆xi

(kx,i,i∆xi+1 + kx,i+1,j∆xi)2
(pi+1,j − pi,j)

(A.26c)

∂qF
2n

∂kx,i+1,j
= Ho

i+1/2,j(∆xi + ∆xi+1)
Href∆yi

∆x+

k2
x,i,j∆xi+1

(kx,i,i∆xi+1 + kx,i+1,j∆xi)2
(pi+1,j − pi,j)

(A.26d)
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Because of flux continuity over the grid block face the following expressions
hold:

∂R2m−1

∂kx,i,j
= −∂R2n−1

∂kx,i,j
(A.27a)

∂qF
2m−1

∂kx,i+1,j
= −

∂qF
2n−1

∂kx,i+1,j
(A.27b)

∂R2m

∂kx,i,j
= − ∂R2n

∂kx,i,j
(A.27c)

∂qF
2m

∂kx,i+1,j
= − ∂qF

2n

∂kx,i+1,j
(A.27d)

The last expressions come from the fact that the mass of the fluids leaving
grid block n through the particular interface has to enter grid block m, i.e.
qF,n→m
p = −qF,m→n

p , p ∈ {o, w}.

Sink/source terms

The sink and source terms need to be accounted for in the derivation of the
∇m(Rn) term in equation (4.33).

The flow of water and oil into producer segment j under reservoir conditions
can be computed by the following generalized expression:

qi,j
w = −ρn

wλn
wWIi,j(pn

blk − pwell
i,j )

qi,j
o = −ρn

o λn
o WIi,j(pn

blk − pwell
i,j ),

where n denotes the number of the grid block containing the j’th segment of
the ith producer. pk

blk is the grid block pressure of grid block k and pwell
i,j is the

well pressure in the segment computed by equation (4.13).
For production wells the derivative of the sink/source term entering into the

residual is:

∂R2n−1

∂kn
= ρn

wλn
w(pn

blk − pwell
i,j )

∂WIi,j

∂kn
(A.28a)

∂R2n

∂kn
= ρn

o λn
o (pn

blk − pwell
i,j )

∂WIi,j

∂kn
(A.28b)

and for injections wells:

∂R2n−1

∂kn
= ρn

wλn
tot(p

n
blk − pwell

i,j )
∂WIi,j

∂kn
(A.29a)

∂R2n

∂kn
= 0 (A.29b)
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It is assumed that only water is injected. If a mixture of water and oil is injected
the term in equation (A.29a) has to be computed analogously to the water term.

Finally, the part in the residual related to the well equation has to be differ-
entiated with respect to grid block permeability. pk

blk is the grid block pressure of
grid block k and pwell

i,j is the well pressure in the segment computed by equation
(4.13).

For the ith injection well the well equation can be generalized as:

Nlayers∑
j=1

ρwλn
totWIi,j(pn

blk − pwell
i,j )− qi,tot

w = 0, (A.30)

where n denotes the number of the grid block containing the j’th segment of
the ith producer.

The derivative of the well equation with respect to the permeability in the
well segment becomes:

∂R2Ntot+i

∂kn
= ρn

wλn
tot(p

n
blk − pwell

i,j )
∂WIi,j

∂kn
, (A.31)

(A.32)

where Ntot is the total number of grid blocks.

Derivative of well index

For a vertical well in a two-dimensional grid the well index for a well segment
is given as:

WI =

θ(kxky)1/2H

ln
(

ro

rw

)
+ s

 , (4.12)

where kx and ky are the grid block permeabilities in the x-direction and y-
direction, respectively. If isotropic permeability is assumed, i.e. kx = ky = k,
the equation is simplified to:

WI =

 θkH

ln
(

ro

rw

)
+ s

 , (A.33)

and the derivative of the well index is simply:

∂WI

∂k
=

 θH

ln
(

ro

rw

)
+ s

 =
WI

k
. (A.34)

The definition ∂WI
∂k = WI

k is convenient when implementing the derivative
in a reservoir simulator.
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A.1.3 Derivatives with respect to porosity

Compared to the complexity and number of permeability derivatives discussed
above the computation of the required porosity derivatives is fairly simple.
Porosity does not enter into the computation of well pressures, watercuts, or
production rates at the wells. Therefore, there is no explicit dependence in β in
equation (4.33) on porosity. Consequently, the ∇mβ terms vanish. Addition-
ally, porosity does not enter into the computation of the inter grid block mass
fluxes which simplifies the computation of the derivative of the residual with
respect to porosity significantly. The only place in the discretized flow equation
where porosity enters is in the computation of the accumulation term - through
equation (4.16):

D(un+1 − un) =
V

∆t
(φρS|t+∆t−φρS|t) (4.16)

The derivative of the residual with respect to porosity in the nth grid block
is then is then:

∂R2n−1

∂φn
=

V n

∆t
(ρn

wSn|t+∆t−ρn
wSn|t) (A.35a)

∂R2n

∂φn
=

V n

∆t
(ρn

o (1− Sn)|t+∆t−ρn
o (1− Sn)|t) (A.35b)

∂R2n−1

∂φm
= 0, for n 6= m (A.35c)

∂R2n

∂φm
= 0, for n 6= m (A.35d)

A.2 Implementational details

In the adjoint equation (4.31) the transposed Jacobian of the residual appears.
In order to solve the adjoint equation the Jacobian has either to be stored
for each time step in the reservoir simulation or information on the grid block
saturations and pressures must be saved such that the Jacobian can be recom-
puted. In the adjoint implementation in BOSS the latter approach is used.
Consequently, the vector of unknowns, u, is stored for each time step in the
simulation if an adjoint sensitivity calculation is wanted. A set of adjoint vari-
ables exist for each measured production data at each measurement time. The
adjoint variables for the ith production data, at the jth measurement time will
be denoted λi,j . The index i denotes the type of production data, i.e. injector
bottomhole pressure, watercut, or oil rate for each well.

The vector of adjoint variables is given by equation (4.31). The adjoint
variables are determined by stepping backwards in time starting from the last
time where a production data has been measured. In order to solve for the
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adjoint variables for timestep n, λn, we need the adjoint variables for the next
time step, λn+1 since these appear in the adjoint equation (4.31). Consequently,
the present adjoint variables and the adjoint variables solved for in the last solve
need to be stored simultaneously. A set of adjoint variables exist for each time
step. However, it is not necessary to store them all in the strategy used in
the BOSS implementation. When the set of adjoint variables, λn have been
computed they can be used to compute one of the terms in the sum appearing
in the sensitivity equation (4.33). The general workflow for the computation
of sensitivities is sketched out below. The number of measured production
data is denoted Np. If watercut and oil rate is measured at Nprod producers and
injection bottomhole pressure is measured at Ninj injectors, Np will be 2Nprod+
Ninj . The number of times where the production data is measured is denoted
Nmes. When a non-linear-least squares method is used for history matching
a number of NpNmes sensitivities are required to form the an approximation
to the Hessian - see Chapter 7 for the details. As mentioned, only two sets of
adjoint variables need to be stored. In the following sketch-out of the workflow
the number of adjoint variables is therefore limited to two sets: λold

i,j and λi,j ,
where λold

i,j denotes the adjoint variables solved for in the previous solve and λi,j

denotes the new set.

1. Perform a reservoir simulation. Save grid block pressures and saturations
for each time step.

2. Initiate λold
i,j = 0, i ∈ [1, Np], j ∈ [1, Nmes].

3. Set t equal to the time of the last measurement and set n equal to the
corresponding number of time steps.

4. Read the stored pressures and saturations for the time t and compute the
Jacobian.

5. If t coincides with a measurement time compute ∇unβi,j for all i and set
Neq = Neq + Np and Nt = Nt + 1.

6. Solve the Neq adjoint equations with equation (4.31) and get
λi,j i ∈ [1, Np], j ∈ [1, Nt].

7. If t coincides with a measurement time compute ∇mβi,j .

8. Compute the Neq (λ)T (∇m(Rn)T ) terms in equation (4.33) and add
∇mβi,j .

9. Add the sensitivity terms to the sensitivity vectors: si,j = si,j +
(λi,j)T (∇m(Rn)T ) i ∈ [1, Np], j ∈ [1, Nt].

10. Set λold
i,j = λi,j
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11. n = n− 1

12. t = t−∆t

13. If n > 1 goto 4, else END

If a direct solver has been chosen for the solution of the adjoint equations a
factorization of the Jacobian is performed in each step. This is by far the most
expensive operation in the method. Hence, the backwards solve is comparable to
a reservoir simulation with respect the computation time where the factorization
is also the most expensive operation. An obvious improvement would be to store
the factorized Jacobian every time the Jacobian is refactorized in the forward
simulation. The non-linear solver in the forward simulation reuses the factorized
Jacobian until the convergence deteriorates. A refactorization of the Jacobian
is then performed. Consequently, it is likely that the factorized Jacobian cannot
be stored for each time step. However, the factorized Jacobian is needed for each
time step for the solution of the (linear) adjoint equation. A possible solution
may be to apply the so-called staggered corrector method suggested by Feehery,
Tolsma & Barton (1997) who suggest the use of a quasi-Newton type method
to solve a linear problem, where the system matrix is infrequently factorized.
This has not been implemented in the current code since time did not allow for
such extensions.
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Appendix B

Dekker-Brent derivative-free
optimizer

The Dekker-Brent optimization scheme is a derivative free optimization algo-
rithm utilizing a hybrid golden section search and interpolation method. The
method is robust and Brent (1973) guarantees it’s convergence. The implemen-
tation is only made for one-dimensional optimizations. An excellent description
of the algorithm is found in Brent (1973) and only the most important features
are discussed here.

During the optimization six points are stored, these will be denoted a, b, u,
v, w, x. The points a and b define the search interval in which the optimum is
searched for. x is the point where the lowest function value has been calculated,
w is the point representing the next lowest value, and v is the previous value
of w - finally, u is the point where the objective function was evaluated most
recently. Some of the points may coincide. Figure B.1 shows how the six points
may be distributed.

When the optimization is initiated some of the points are initiated as

v = w = x = a

(
3−

√
5

2

)
(b− a). (B.1)

The term 3−
√

5
2 ≈ 0.382 ensures that the first step corresponds to a golden

section step. Another factor may be used if it is deemed more reasonable. In
the present implementation, however, only golden section search is used.
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Figure B.1: A possible distribution of the six points and the midpoint indicated with m.

An important parameter in the algorithm is the tolerance given as

tol = eps|x|+ t, (B.2)

where first term is a relative tolerance and the last term is the absolute tolerance.
The routine will return the minimizer to an accuracy of less then 3tol. Let
the mid point of the interval be 1

2 (a + b). If |x − m| ≤ 2tol − 1
2 (b − a), or,

equivalently, max(x−a, b−x) ≤ 2tol, the procedure terminates and returns x as
the minimizer. If the procedure does not terminate two numbers are calculated:

p = ±[(x− v)2(f(x)− f(w))− (x− w)2(f(x)− f(v))] (B.3)
q = ∓2[(x− v)(f(x)− f(w))− (x− w)(f(x)− f(v))] (B.4)

The numbers p and q are defined such that the point x+ p
x is the location of

the turning point of the parabola passing through the points (v, f(v)), (w, f(w)),
and (x, f(x)). The point x+ p

q is thus used as the new value of the independent
variable (i.e. the point u). All this corresponds to a parabolic interpolation
step.

Let e be the value of p
q from the second-last cycle. If |e| ≤ tol or q=0 or

x + p
q /∈ [a; b] or |pq | ≥

1
2 |e| the polynomial step is not accepted and a golden

section step is taken instead, as

u =


(√

5−1
2

)
x +

(
3−

√
5

2

)
a if x ≥ m,(√

5−1
2

)
x +

(
3−

√
5

2

)
b if x < m.

(B.5)

The original strategy presented by Brent (1973) is used in the implementa-
tions of gradual deformation and the probability perturbation method. Only
one thing is corrected: After initialization one point is always known. If the
perturbation parameter or deformation parameter is equal to zero a reservoir
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simulation will result in the current best value of the objective function. There-
fore, the value of x is initialized to zero and not to the golden section step as
stated in equation B.1.
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Appendix C

The Levenberg-Marquardt
method

The Levenberg-Marquardt (LM) method is used in Chapter 7 where it is ap-
plied to history matching problems. This appendix provides some background
information on the LM method together with some implementational issues for
large scale problems. The derivation of the Levenberg-Marquardt equations is
based on the derivations given in Madsen, Nielsen & Tingleff (1999).

C.1 Gauss-Newton and Levenberg-Marquardt

We will consider the following generic optimization problem

x∗ = Argmin
x

[F (x)] , (C.1)

where the objective function, F , is defined as a least-squares measure of the
residual vector denoted f :

F (x) =
1
2
f(x)T f(x). (C.2)

In a history matching context the residual contains the production data
mismatches.

A Taylor expansion of the residual yields

f(x + h) = f(x) + J(x)h +O(‖h‖2), (C.3)
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where J it the Jacobian matrix defined as:

J(x)i,j =
∂fi

∂xj
(C.4)

For small ‖h‖ the following linear model of f is valid:

f(x + h) ≈ l(x) ≡ f(x) + J(x)h (C.5)

The linearized model for f is inserted into equation (C.2) which yields a
linearized model for the objective function:

F (x + h) ≈ L(h) ≡ F (x) + hT JT f +
1
2
hT JT Jh (C.6)

L is at a minimum when it’s derivative with respect to h is 0, i.e. when

JT f + JT Jh = 0. (C.7)

The step which minimizes L is denoted the Gauss-Newton step and is given
as

−JT f = JT JhGN . (C.8)

It can be shown that hGN is a descent direction. In the Gauss-Newton
method the vector of independent variables is updated with the Gauss-Newton
step, i.e. xn+1 = xn + hGN . Coupled with a line search the method will
have guaranteed convergence if the Jacobian has full rank. If the step becomes
too large the linearization in (C.6) will no longer be valid and convergence will
deteriorate.

The Levenberg-Marquardt method is a modified Gauss-Newton method where
the update is given as

(JT JµI)hM = −JT f , (C.9)

where I denotes the identity matrix and µ is a scalar referred to as the damping
parameter. The following observations are central:

• If µ is large the Levenberg-Marquardt step is approximately given as hM ≈
− 1

µJf , i.e. a small step in the steepest descent direction.

• If µ is small the Levenberg-Marquardt step is approximate equal to the
Gauss-Newton step, i.e. hM ≈ hGN

The Levenberg-Marquardt method does not need a line search because the
step length is controlled by the damping parameter. The value of the damping
parameter is updated as the optimization progresses. In the implementation
used for this dissertation the empirical update of the damping parameter de-
scribed in Madsen et al. (1999) is used.
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C.1.1 The Levenberg-Marquardt equation in the sparse
formulation

The key step in the algorithm is the computation of the Levenberg-Marquardt
(LM) step, denoted as hM :

(A + µI)hM = −g, (C.10)

where A is the Gauss-Newton approximation to the Hessian, i.e. A = JT J
and g is the gradient given as JT f with f being the residual. In regularized
problems the Jacobian consists of two parts, one part is from the sensitivities
of the production data, the other is related to the regularization. The Jacobian
can be represented as:

J =
[

Jp

Jr

]
(C.11)

The upper part of J is a full matrix but the part related to regularization is
sparse since the only nonzero elements in Jr are the diagonal elements. There-
fore, it seems inappropriate to from the Hessian explicitly since this matrix will
be a full matrix of size N × N , N being the number of grid blocks. Equation
(C.10) can be formulated as fp(x)

r(x)
0

+

 Jp(x)
Jr(x)√

µI

hm ≈ 0 (C.12)

where fp(x) denotes the production data mismatches and r(x) denotes the
regularization mismatch.

The solution of this system is efficiently obtained by the use of the LSQR
(Paige & Saunders 1982) solver which is specially designed to solve least squares
problems.
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C Covariance

C Covariance matrix

E Objective function N/D

E(·) Expected value

Gscl Scaled gradient Varying

J Jacobian Varying

P Pressure Pa, bars

P (A) Marginal probability of event A N/D

P (A|B) Conditional probability of event A N/D

Q Source/Sink , see equation (4.2), page 31 kg/day

Sj Saturation of phase j N/D

Z Depth m

Z Realization of geological model N/D

a Degree of trust in the gradient N/D

d Observable production data

g Gravitational acceleration m/s2

g Gradient Varying

i Binary facies indicator N/D
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k Permeability tensor mDa

ki Absolute permeability in the i-direction mDa

krj Relative permeability of phase j N/D

r Residual Varying

rc Perturbation parameter N/D

s Sensitivity vector Varying

αi Weight of ith realization in gradual deformation Varying

β Production data in adjoint equations

γ Semivariogram

λ Relative phase mobility 1
Pa·s

λ Adjoint variable Varying

µ Mean value

µ Viscosity Pa · s

ν Anisotropi factor

ρ Deformation parameter N/D

ρ Density kg/m3

σ Kriging variance N/D

σr Regularization parameter N/D
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