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Summary

 

This thesis presents a semi-analytical upscaling method for solving two-phase 
immiscible incompressible flows in layered porous media with very good inter-layer 
communication. Waterflooding of petroleum reservoirs is discussed as an example for 
this method. This method applies asymptotic analysis to the 2D waterflooding equations 
and generates multiple 1D equations for water saturation in a multi-layer reservoir 
model. Cases in absence of gravity and presence of gravity are studied. Although this 
method is derived from 2D models of reservoir, it can be used for reduction of the 3D 
problems to the series of 1D problems by application of the streamline methods. The 
commercial finite element solver COMSOL is used to simulate the complete 2D 
waterflooding problems as comparisons to the presented semi-analytical upscaling 
method.  

This thesis consists of eight chapters. They are summarized below: 

Chapter 1 introduces the background of the subject of fluid flow in porous media and 
one of its basic applications, waterflooding of petroleum reservoirs. Multi-dimensional 
Buckley-Leverett displacement theory is explained. Motivation and objectives of the 
PhD project are described in this chapter. List of publications and conference 
proceedings is also included. 

Chapter 2 includes a review of the development of pseudo functions is followed by a 
short description of the generalization of reservoir models. This chapter also includes a 
review of the upscaling methods for multiphase flow in layered porous media.  
Two extreme cases result from the layered reservoir model. The first case is that the 
barriers between layers are impermeable and the inter-layer crossflow is negligible. The 
second extreme case corresponds to perfect communication between the layers, where 
the exchange between them is instantaneous (the case of vertical equilibrium). 
Literature on both cases is discussed in this chapter.  

Chapter 3 discusses the Kurbanov-Hearn method, which has previously been applied for 
upscaling. In our opinion, this method insufficiently takes into account the interaction 
between the layers. A more general and more precise study on two-phase immiscible 
incompressible flows in layered reservoir model under absence of gravity is then 
presented.  
The problem is presented and transformed to the dimensionless form. The anisotropy 
parameter is defined as a measure for the degree of inter-layer communication. An 
asymptotic analysis based on large value of anisotropy parameter is applied to 2D flow 
equations. Finally, in a layered 2D model of reservoir, for example a vertical cross 
section of a reservoir, the asymptotic 2D equation is reduced to a set of 1D 
homogeneous hyperbolic equations.  
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The average saturation profiles and oil recoveries generated by our method and that by 
commercial finite element solver COMSOL are compared. 

This chapter also introduces the implementation of complete 2D waterflooding 
simulation on COMSOL time-dependent PDE module. The settings for boundary and 
initial conditions are specified. Meshing, solver and the COMSOL-Matlab interface 
functions are introduced.  

Chapter 4 presents a detailed discussion of the water banks and transition zones in the 
water saturation distribution profiles for individual layers. The water banks are formed 
because water tends to flow from the higher to the lower horizontal mobility variation 
under the existence of the inter-layer crossflow.  

Chapter 5 takes the gravity effect into consideration. Two additional dimensionless 
parameters are needed in this case: the gravity-viscous ratio and fluid density ratio. 
These parameters describe the buoyancy effect onto segregation. In the multi-layer 
reservoir model, the asymptotic 2D integral-differential equation for saturation is 
derived and afterwards reduced to a set of 1D equations. When the gravity effect is 
moderate, this system of equations is hyperbolic. As the gravity effect increases, the 
system may change into parabolic form. When gravity effect becomes large, the two 
phases of flow may be completely separated. Our method needs to be modified in order 
to handle this case. 

Chapter 6 shows the implementation of the vertical 1D upscaling method introduced in 
Chapter 3 and Chapter 5 into streamline-based reservoir simulation. In this way, we are 
able to solve the complete 3D problem by means of multiple 1D equations without 
transforming the problem into time-of-flight (TOF) domain. Unlike the conventional 
streamline simulation method, our 1D equations are written in terms of the path of 
streamlines, which is the space domain. Thus cases with gravity effect can be solved 
directly, without application of operator splitting. Results by our vertical 1D method 
along streamlines fit well with the results by 3D finite difference method.  

Chapter 7 presents the conclusions from the thesis.  

Chapter 8 presents suggestions for further development of the work carried out in this 
PhD project.  

 

The work presented in this thesis has resulted in three journal publications and two 
conference proceedings so far. 
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Resumé 

Denne afhandling præsenterer en semi-analytisk opskalering metode til løsning af to-
fase blandbar inkompressibel flow i lagdelt porøse medier med god inter-lags 
kommunikation. Som eksempel undersøges waterflooding via denne metode. Metoden 
anvender asymptotisk analyse på 2D waterflooding ligninger, og genererer derved et set 
af 1D ligninger for vand mætningen i en multilags reservoir-model. Både situationer 
med og uden tyngdekraft undersøges. Selv om denne metode er udledt på baggrund af 
en 2D reservoir model, kan den, ved at benytte strømlinjer, anvendes til løsning af 3D 
problemer, der derved er reduceret til løsning af et set af 1D ligninger. Den semi-
analytiske opskaleringsmetode sammenlignes med finite element løsninger af det 
fuldstændige 2D waterflooding problem implementeret i det kommercielle finite 
element program COMSOL. Denne afhandling består af otte kapitler. Disse kapitler er 
sammenfattet nedenfor: 

Kapitel 1 introducerer baggrunden for flow i porøse medier og en af dens 
grundlæggende applikationer, waterflooding i Enhanced Oil Recovery (EOR), og 
forklarer Buckley-Leverett forskydningsmekanismen, front advance teori.. Motivation 
og formålet af ph.d.-projektet er beskrevet i dette kapitel. Lister over publikationer og 
konference biddrag er også inkluderet.  

Kapitel 2 omfatter en gennemgang af udviklingen af pseudo-funktioner efterfølges af en 
kort beskrivelse af generaliseringer af reservoir modeller. Dette kapitel omfatter også en 
gennemgang af opskalering metoden til multifase flow i lagdelte porøse medier. 

Den lagdelte reservoir-model giver anledning til to yderliggående situationer. Den første 
situation er, at barriererne mellem lagene er uigennemtrængelige og derved er inter-lags 
crossflow uden betydelig. I den anden situation er der perfekt kommunikation mellem 
lagene, det vil sige, at der er øjeblikkelig udvekslingen mellem lagene (situation med 
vertikal ligevægt). Baggrundslitteraturen for begge situationer undersøges også i dette 
kapitel. 

Kapitel 3 starter med en grundig diskussion af Hearn metoden. Det er vores opfattelse, 
at Hearn metode ikke i tilstrækkelig grad tager hensyn til samspillet mellem lagene. En 
mere generel og mere præcis undersøgelse af modeller for to-fase blandbar 
inkompressibel flow i lagdelte reservoir uden tyngdekraft præsenteres. 
Først, bringes problemet på en dimensionsløs form. En anisotropisk parameter indføres 
som mål for graden af inter-lags kommunikation. Dernæst, foretages en asymptotisk 
analyse af 2D-flow ligningerne for store værdi af anisotropisk parameter, således at den 
vertikale trykgradient kan negligeres. Til sidst, reduceres de asymptotiske 2D ligninger 
til et sæt af 1D homogene hyperbolske ligninger for en lagdelt 2D-model af reservoiret, 
for eksempel, et lodret tværsnit af et reservoir. Resultater af gennemsnitlige mætnings 
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profiler og olie inddrivelse fundet via vores metode sammenlignes med finite element 
resultaterne. 

Dette kapitel introducerer også implementeringen af de komplette 2D waterflooding 
ligninger i COMSOL’s tidsafhængige PDE modul. Indstillingerne for grænsen 
betingelser og begyndelses betingelser er specificeret. Desuden beskrives meshing er og 
COMSOL-Matlab grænseflade funktioner. 

Kapitel 4 præsenterer en indgående drøftelse af vand bank og overgangszonens 
indflydelse på vand mætning fordelings profilen i de enkelte lag. Dette skyldes, at vand 
har en tendens til at flyde fra højere til lavere horisontal mobilitet variation under 
eksistensen af inter-lags crossflow. 

I Kapitel 5 tages der højde for tyngdekraftens indflydelse på systemerne der blev 
undersøgt i kapitel 3. Det antages at anisotropi parameteren er stor. Når der tages højde 
for tyngdekræften er der behov for yderligere to dimensionsløse parametre, tyngde-
viskositetsforholdet og væske densitetsforholdet. Disse tre effekter arbejder sammen 
som en del af opdriften og spiller en afgørende rolle i flow adskillelse. I multilags 
reservoir-modellen kan de asymptotiske 2D integro-differentialligninger reduceres til et 
sæt af 1D ligninger. I tilfældet hvor effekten af tyngdekraften er lille, er 
ligningssystemet hyperbolsk. Når værdien af effekten af tyngdekraften stiger, kan 
systemet skifte til parabolske form. Når effekten af tyngdekraften bliver store, kan det 
forekomme at de to faser af flowet er fuldstændigt adskilte. Vores metode skal ændres 
med henblik på at håndtere dette tilfælde, hvilket ikke er omhandlet i denne afhandling. 

I Kapitel 6 gennemføres den vertikale 1D opskalering metoden introduceret i kapitel 3 
og kapitel 5 for strømlinje simuleringer. Vi kan derved løse et fuldt 3D-problem ved 
hjælp af et set af 1D ligninger uden at omdanne problemet til time-of-flight (TOF) 
domænet. I modsætning til den konventionelle strømlinje simulerings metode, er vores 
1D problemer skrevet langs strømlinjerne, det vil sige, i reel rummet. Derved kan 
situation der tager højde for tyngdekraften løses direkte, uden anvendelse af operator 
splitting. Resultater af vores lodrette 1D metode passer godt overens med resultaterne af 
3D finite difference resultater. 

Kapitel 7 indeholder en konklusion af afhandlingen. 

Kapitel 8 præsenterer forslag til videreudvikling af dette ph.d.-projekt. 

Arbejdet præsenteret i denne afhandling har givet anledning til tre tidsskrifts 
publikationer og to Konferencebidrag. 
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Chapter 1 Background 

 
The purpose of this chapter is to introduce the background of the subject of fluid flow in 
porous media and one of its basic applications, waterflooding of the petroleum reservoirs. 
The objectives of this Phd project are presented.  

 
 
   
1.1 Introduction 

Simultaneous two-phase immiscible flows in natural porous media arise in a number of 
processes important in nature and industry. These processes may be subdivided into two 
categories: (i) steady state, i.e., all properties of the system are time invariant at all points, 
and (ii) unsteady state, i.e., properties change with time. In steady state, the saturation of 
the medium with respect to all phases of the fluid contained in the system is constant at all 
(macroscopic) points. Hence, there is no displacement of any fluid by any of other fluids in 
the pores for steady state flows. Scheidegger (1974), Craig (1971), EL-Sayed and Dullien 
(1977) give examples of studies of these phenomena. On the other hand, in unsteady state, 
saturation at a given point in the system varies. Displacement phenomena fall in this 
category (Dullien (1979), Dake (1978), Bear (1972)). 

The theory of displacement is of great interest in engineering, for example chemical 
engineering (LNAPL (Light Non-Aqueous Phase Liquids) and DNAPL (Dense Non-
Aqueous Phase Liquids), Longino and Kueper (1996)), carbon dioxide sequestration in the 
aquifers (Pau et al. (2010)), medical and biochemical engineering, i.e. biological membrane 
and filters (Dullien (1979)), geosciences (Tyler and Wheatcraft (1990), (1992); Bird et al. 
(2000)) and petroleum engineering (see references below). Much of the study is driven by 
the needs of the petroleum industry and their desire to understand the dynamics of 
multiphase flow (Hunt (2005)). 

Probably, one of the oldest and the most widely studied industrial processes in petroleum 
engineering is the process of waterflooding, or displacement of oil by water in petroleum 
reservoirs. This is the most widely used method and fundamental physical process for 
secondary oil recovery.  

The efficiency of an oil recovery method is to a large extent determined by physical 
mechanism at the microscopic level, e.g. how the phases: oil, water and gas distribute in the 
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pore space of the geological rock. Melcher (1920), Burdine et al. (1949), Bondino et al. 
(2010) provide some of the studies about flows in pore-scale porous media. Prediction of 
macroscopic (field scale) properties of petroleum reservoir, such as water cut, oil recovery 
curve, inter-layer communication and so on, directly determines the selection of the 
recovery methods. The front advance theory by Buckley and Leverett (1941) characterizes 
the macroscopic displacement mechanism in porous media.      

 

 

1.2 Multi-Dimensional Buckley-Leverett Displacement Mechanism 

 

1.2.1 Model Description 

Consider an anisotropic heterogeneous petroleum reservoir developed by waterflooding. 
Assumptions for this reservoir model are: 

1. There is no fault, dip or bending on the reservoir geometry. 
2. The variation of reservoir properties orthogonal to the reservoir areal extent is larger than 

that along the areal extent.  
3. No leakage or inflow at the outer boundary of the reservoir. There is only inflow from 

injector and outflow from producer.  
4. Fluids velocity and pressure obey Darcy’s law.  
5. Water and oil fill the whole porous volume.  
6. All properties of reservoir, like absolute permeability , ,x y zk k k , porosity φ , irreducible 

water saturation wis , residual oil saturation ors  and end point relative permeabilities 

,wor owikr kr , may vary in space, but not with time.  
7. Isothermal system as fluctuations in temperature is regarded minimal (Sarkar et al. (1994)) 
8. Incompressible fluids. That indicates constant density of each fluid (Sarkar et al. (1994); 

Orr (2007)).  
9. Immiscible fluids.  
10. Negligible capillary forces and gravity.  
11. Constant viscosity of fluids. 
12. No fluids are absorbed in the porous medium of the reservoir.  
13. Chemical reactions are not considered.  
14. Relative permeabilities of water and oil depend on water saturation ws monotonically,  

obeying Corey power law for relative permeabilities (Corey and Rathjens (1956)) 
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−
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(1.1)

                  
( ) ( )2 2
1 1o owi or wi w orkr kr s s s s

−
= − − − −                                  (1.2) 

 

 

1.2.2 The Buckley-Leverett Theory 

Buckley and Leverett (1941) presented the well known frontal advance theory. The original 
work was confined onto unidirectional incompressible flow through a small element of 
sand within continuous sand body. Along the same line of Buckley-Leverett original theory, 
the general mass balance equation of for water phase in a multi-dimensional waterflooding 
process can be written as:  

 

0=⋅∇+
∂

∂
w

w u
t

s rφ
                                              

(1.3)                  

 

Where ws , φ , represent water saturation, porosity (may vary in space). wu
r  represent water 

velocity, which is a multi-dimensional vector. Total velocity of oil and water are defined as 
the sum of water velocity and oil velocity.  

 

ow uuU
rr

r

+=                                                       (1.4)                  

                  

Since we assume that water and oil fill the whole porous volume, water saturation and oil 
saturation should result in a sum of unit and the total velocity of these two phases should 
obey the continuity-incompressibility equation 

0=⋅∇ U
r

                                                            (1.5) 
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According to Darcy’s law, the phase velocities are proportional to the pressure gradient 
(which is the same in both phases due to negligible capillary forces). The proportionality 
coefficient for water phase, wλ  is equal to wwkrk μ/⋅ , where wkrk,  are absolute permeability 

and relative water permeability, and wμ  is viscosity of water. Absolute permeabilities and, 

therefore, water mobilities wλ  may be different in horizontal and vertical directions as well 
as at different position of reservoir. When gravity is not involved, we have  

 

UFpu ww

r

r =∇−= λ
                                                    

(1.6)                  

 

The velocity of oil phase is expressed in the similar way.  

 

UFpu oo

r

r )1( −=∇−= λ                                                (1.7) 

 

where F  is the fractional flow of water in the total flowing stream, defined as in terms of 
relative permeabilities wkr , okr  and viscosities wμ , oμ  : 

 

w w

w w o o

kr
F

kr kr

μ
μ μ

=
+

                                                (1.8) 

 

The concept of fractional flow is introduced by Leverett (1941). When relative 
permeabilities wkr , okr  are monotonic functions of ws , F  is also monotonic function of ws . 

Substitution of expressions of velocities into flow equations leads to a closed system for 
water saturation ws  and pressure p  .  

 

( ) 0=∇−⋅∇+
∂

∂
p

t

s
w

w λφ
                                          

(1.9)
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( ) 0=∇−⋅∇ pλ
                                              

(1.10)
                  

 

where total mobility λ is defined as the sum of water mobility and oil mobility:   

 

ow λλλ +=                                                    (1.11)                  

 

A generalization of these equations onto the action of gravity is presented in Chapter 5. 

For one-dimensional waterflooding problems in homogeneous media, the Buckley-Leverett 
theory introduces the transformation of Eq. (1.3): 

 

tws

FU

t

x
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⎟
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⎞

⎜
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⎝

⎛

∂
∂=

∂
∂

φ
                                               (1.12) 

 

The analytical solution for problems described by Eqs. (1.3), (1.12) can be found in 
Bedrikovetsky (1993). 

Welge (1952) present the simplified method to the Buckley-Leverret frontal advance 
equation. This method consists of integrating the saturation distribution over the distance 
from the injection point to the front, obtaining the average water saturation behind the front. 

 

 

1.3 Objectives  

 

Since it is not possible to obtain very detailed information about the heterogeneous 
reservoir, and computations accounting for all the peculiarities of reservoir structure are 
prohibitively time-consuming, upscaling techniques are needed to get the pseudo 
properties of the reservoirs: pseudo relative permeabilities and pseudo fractional flow 
functions. These functions are used in the framework of the traditional Buckley-Leverett 

5

29



Chapter 1 Background 

 

6 
 

theory of waterflooding (Buckley and Leverett (1941)). They define average effective 
properties on a large scale, based on small-scale properties and their distributions. Similar 
problems arise in other processes mentioned above, since they often occur in 
heterogeneous porous media of the not-totally known structure. 

This PhD project is aiming at development of a semi-analytical upscaling method. Many 
petroleum reservoirs may be approximated by layered models where the variation of 
reservoir properties orthogonal to the reservoir’s areal extent is larger than that in the 
direction of the areal extent. The inter-layer communication may be large or small. In some 
previous works, the waterflooding schemes in layered reservoirs were simplified, for 
example, by assuming piston-like displacement fronts (Dykstra and Parsons (1950) and 
Dietz (1953)), interchangeable layers (Hearn (1971), Kurbanov (1961), Kurbanov and 
Atanov (1972)), while Bedrikovetsky (1993) makes the most complete account of all the 
cases. These assumptions are too strong and sometimes result in unrealistic solutions, such 
as step-wise saturation profile and inaccurate prediction of oil recovery, compared to full-
scale numerical simulations.  

The previous works give motivation for this PhD project to find a more general way for 
upscaling two-phase immiscible flows in layered porous media, involving the gravity effect. 
Inter-layer communication is quantified by a parameter of anisotropy ratio, similarly to 
Yortsos (1991), (1992), Zapata and Lake (1981), Yokoyama and Lake (1981). Asymptotic 
analysis is applied to 2D flow equations based on large value of anisotropy ratio, which 
means large inter-layer communication. Unlike Martin (1968) and Yortsos (1991), we only 
consider the zero order term in the asymptotic expansion of pressure. Furthermore, in a 
well-defined layered 2D model of reservoir, the system can be expressed by multiple 1D 
equations. This is the most important part of the PhD project. 

Cases in absence of gravity are studied first (Chapter 3). The way of derivation in cases in 
presence of gravity is a little different from that for cases without consideration of gravity. 
This is written in Chapter 5. 2D water saturation profile, vertically averaged saturation 
profile, recovery curves are given in these two chapters. Chapter 4 presents a detailed 
discussion on water bank and transition zone on the water saturation distribution profile of 
individual layers, which is because that  water tends to flow from the higher to the lower 
horizontal mobility variation under the existence of inter-layer crossflow.  

Complete 2D simulation for waterflooding needs to be carried on as a comparison to the 
pseudo 1D method. The commercial computer finite element solver COMSOL is used to do 
the 2D simulation. The PDE Module of COMSOL is selected instead of the Earth Science 
Module, since it is more flexible and can handle anisotropic permeability field. The 
implementation of 2D waterflooding simulation is introduced in Chapter 3.   

6
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Although this vertical 1D upscaling method is derived originally from a 2D model of 
reservoir, it can solve specific 3D problems by application of streamline simulation 
(Chapter 6).  

 

 

1.4 Publications 

 

1. Xuan Zhang, Alexander Shapiro, Erling H. Stenby: Upscaling of Two-Phase Immiscible 
Flows in Communicating Stratified Reservoirs, Transport in Porous Media (2011)  

2. Xuan Zhang, Alexander Shapiro, Erling H. Stenby: Gravity Effect on Two-Phase 
Immiscible Flows in Communicating Layered Reservoirs, Transport in Porous Media 
(accepted) 

3. Hao Yuan, Xuan Zhang, Alexander A. Shapiro, Erling H. Stenby: Crossflow and water 
banks in viscous dominant regimes of waterflooding, Journal of Petroleum Science and 
Technology (accepted) 

 

1.5 Conference Proceedings 

 

1. Xuan Zhang, Alexander Shapiro, Erling H. Stenby: COMSOL Implementation for 
Upscaling of Two-Phase Immiscible Flows in Communicating Layered Reservoir. In: 
COMSOL Conference 2010 Paris (2010)

 
2. Xuan Zhang, Alexander Shapiro, Erling H. Stenby: Upscaling of Two-Phase Immiscible 
Flows in Communicating Stratified Reservoirs. In: 12th European Conference on the 
Mathematics of Oil Recovery, September 2010, Oxford, UK
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Chapter 2 Overview of Previous Works 

 

There are many upscaling methods, focusing on different scales of reservoir model, 
analytical/numerical methods and even the way for gridding. This chapter focuses on 
reviewing upscaling methods for a layered reservoir model.  

 

 

2.1 Necessity for Upscaling  

 

As written in section 1.2, upscaling techniques are needed to account for heterogeneity of 
the reservoirs and reduction of the computational time by solving flow equations (Eqs. 
(1.9)-(1.10)) on the coarse grids.  

In single-phase flow, the important parameters to upscale are the natural properties of 
reservoir: permeability and porosity. When multiphase flow occurs, relative permeability 
plays an important role. In such cases, the upscaling techniques aim to obtain pseudo 
relative permeabilities and furthermore pseudo fractional flow functions (Guedes and 
Schiozer (1999)). The upscaled properties and pseudo functions define average effective 
properties on a large scale, based on small-scale properties and their distributions. They 
should replicate the fine scale characterization, to large degree, in terms of key flow 
behavior, for example overall flow rate, water cut, recovery (Chen et al. (2003)).  

 

 

2.2 Pseudo Functions 

 

Pseudo functions can be applied in the framework of the solution scheme of the Buckley-
Leverett theory (Eq.(1.12)). There are many methods for generation of the pseudo functions. 
Barker and Thibeau (1996) present a critical review of the use of pseudo relative 
permeabilities for upscaling. Discussion on advantages and drawbacks of the methods and 
suggestions for improvement are given.   

9
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Kyte and Berry (1975) propose the most common method to calculate dynamic 
pseudocurves. Average pressure is applied to coarse grids. Although this method is widely 
used, it does not produce good results for strongly heterogeneous porous media. It also may 
result in negative or infinite values of relative permeabilities. Stone (1991) describes the 
first method using total mobility to avoid calculation of average pressure in the method 
given by Kyte and Berry (1975) and similar methods. This method is built for a black-oil 
model in the absence of gravity and capillary forces. It can be applied to a non-
communicating layered reservoir model. Jacks et al. (1972) present dynamic 
pseudofunctions to model a 3D reservoir with a 2D reservoir simulator, taking into account 
oil zone, transition zone and water zone. Coats et al. (1971) derive pseudo functions basing 
on the assumption of vertical equilibrium. Capillary forces and gravity are accounted for in 
this work. They are assumed to be equalized in the vertical direction, corresponding to 
capillary-gravity dominating regime. Hearn (1971); Kurbanov (1961); Kurbanov and 
Atanov (1972), following the work by Hiatt (1958) provide a method for rearranging layers 
in order to get pseudo relative permeability curves. Gravity and capillary forces are not 
considered in this method. 

 

 

2.3 Reservoir Models 

 

Geological modeling is highly important for reservoir simulation. The main difficulty is to 
take proper account of the various large- to small-scale heterogeneities, because each type 
of the heterogeneity influences fluid flows and hence recovery efficiency. Weber and 
Genuns (1990) present a framework for treating reservoir heterogeneities and constructing 
reservoir simulation models. This work is based on Weber (1986), which describes various 
degrees of heterogeneity at various scales and classifies them into seven types, from large-
scale faults to microscopic features. Weber and Genuns (1990) generalize the large-scale 
features into three basic reservoir types: layer-cake model, jigsaw-puzzle model and 
labyrinth model.  

According to Weber and Genuns (1990), the stone properties of the layer-cake reservoir 
models do not have major discontinuity or changes in horizontal extent. The thickness of 
layers should be more or less constant or with gradual changes. Boundaries between layers 
should coincide with major changes in rock properties or baffles to flow. Jigsaw-puzzle 
reservoir models are composed of a series of rock bodies that fit together without major 
gaps between them. Large jumps in rock properties can occur between the rock units. The 
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labyrinth reservoir models are characterized by complex arrangement of pods and lenses of 
porous media. The continuity of rock is often direction-dependent. It is usually hard to 
model labyrinth reservoirs in a realistic way, but statistical modeling can be applied.  

 

 

2.4 Upscaling Methods for Layered Model of Reservoir 

 

In order to simplify the computational tasks and provide manageable methods for upscaling, 
certain simplifying assumptions about the structure of the porous medium should be made. 
Due to the stratified characteristics of the earth shell, property variation for many oil 
reservoirs or other natural porous medium is usually larger in vertical direction than that in 
horizontal direction. Thus it is reasonable to adapt a layer-cake, stratified structure for these 
reservoirs. In order to design analytical or semi-analytical upscaling methods, the reservoir 
layers are often assumed to be homogeneous. The Buckley-Leverett flow equations for 
waterflooding (Eqs.(1.9)-(1.10)) can be applied to each layer with constant parameters. 
This is, definitely, an oversimplification made for computational purposes. 

Two extreme cases result from the stratified reservoir model. The first case is that the 
barriers between layers are impermeable and the inter-layer crossflow is negligible. 
Alternatively, this is the case when the permeability across the layers is much lower than 
that along the layers. The second extreme case corresponds to perfect communication 
between the layers, where the exchange between them is instantaneous (the case of vertical 
equilibrium). This case is usually connected to the viscous dominant regime of 
displacement, where viscous forces prevail over capillary and gravity forces. 

The Dykstra-Parsons method (Dykstra and Parsons (1950)) is one of the widely applied 
upscaling methods for the first case, non-communicating layers. Other main assumptions of 
the method are: piston-like displacement of oil by water, all layers are individually 
homogeneous, constant total injection rate, and injector-producer pressure drop for all 
layers is the same. Velocities of displacement front in each layer are given by this method. 
Stiles (1949) applies a similar method to calculate water cut and oil recovery accounting for 
variation of permeability. However, this method only works where the end point mobility 
ratio of the displacing and displaced phase is equal to unity. The main drawback of the 
Dykstra-Parsons method is the assumption about piston-like displacement in each layer.  

Modifications and extensions have been introduced to the original Dykstra-Parsons method. 
Reznik11 et al. (1984) extend the original Dykstra-Parsons discrete solution to continuous, 
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real time basis. The assumption about piston-like displacement is retained in this work. 
Stevens (1985) completes a semi-analytical investigation of the effect of trailing zone on 
the results based on the original Dykstra-Parsons method. Mahfoudhl and Enlck (1990) 
model polymer flooding in stratified porous media in the way of Dykstra-Parsons 
displacement mechanism, considering also free gas saturation.  

The Buckley-Leverett theory is coupled with the Dykstra-Parsons theory by Kufus and 
Lynch (1959). This method is only valid for unit viscosity ratio of the two phases. Snyder 
and Ramey (1967) apply the Buckley-Leverett theory to waterflooding in non-
communicating layer-cake reservoir models. This leads to better prediction for the flow 
performance after breakthrough than in the original Dykstra-Parsons method.  

The Hearn-Kurbanov method (for brevity often termed the Hearn method) has been 
developed for the second extreme case of layered reservoir models, the communicating 
layers (Hearn (1971); Kurbanov (1961); Kurbanov and Atanov (1972)). As in the original 
Dykstra-Parsons technique, the Hearn-Kurbanov method is designed for manual 
calculations and sacrifices accuracy in favor of simplicity. It involves additional 
assumptions, like piston-like displacement in each layer and interchangeable layers. Not all 
the assumptions are verified by direct computations (see the analysis below). The Hearn-
Kurbanov method is based on the work by Hiatt (1958), who applied the material-balance 
method to a multilayer system and then integrated the continuity flow equation to get the 
coverage of displacing fluid. An essential analog of Hiatt’s method is the theory developed 
by Warren and Cosgrove (1963). Permeability is assumed to be of log-normal distribution 
along the dimensionless height of the reservoir and porosity is assumed to be of normal 
distribution. The average saturation and average fractional flow function are obtained by 
some simple integration of porosity and permeability along cross-sections.  

Katz (1962) generalizes these two extreme cases, of the non-communicating and fully 
communicating layers, by application of harmonic and arithmetic mean value of 
permeability respectively, with the height of a layer as weighting factor. He considers these 
two cases as the two limits of flow behavior under the same properties of the medium and 
the flow itself. Obviously, he also assumes that the order of layers does not affect the 
saturation distribution or the final oil recovery curve.  

El-Klhatib (1985) rearranges the layers in a reservoir model in the similar way as Hearn 
and investigates how the end point mobility ratio of the two phases affects water cut and 
recovery efficiency. This work describes the effect from the crossflow on performance of a 
multiphase flow in perfectly communicating layered porous systems under favorable and 
unfavorable end point mobility ratios. El-Klhatib (1999) focusses on the log-normal 
distribution of permeabilities. Pseudo relative permeabilities are derived. They are only 
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functions of saturation and heterogeneity. Phenomena at high end point mobility ratios (oil 
to water) are treated in a different way, since they may produce multiple values of 
saturation by the method of El-Klhatib. 

Yortsos (1991) develops a quantitative justification for the methods developed for non-
communicating and fully communicating layered porous systems, which is in agreement 
with the works of Zapata and Lake (1981) and Lake (1989). In the paper of Yortsos, strict 
expansion of the two-dimensional displacement problem under assumption of the vertical 
equilibrium results in an integral-differential equation for saturation. Along the same lines 
there is the work by Lake and Hirasaki (1981) on tracer dispersion in stratified systems, as 
well the various viscous fingering models, such as Koval (1963), Todd and Longstaff 
(1972) and Fayers (1984). While they have only an empirical basis, the numerical evidence 
is in many cases supportive of their applicability. 
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Chapter 3 Two-Phase Immiscible Flows with Negligible Gravity and 
Capillary Forces 

 

This chapter presents the study of two-phase immiscible incompressible flows in layered 
reservoir model under absence of gravity. The Hearn method is discussed in details. Its 
problems are pointed out.  

Asymptotic analysis based on the assumption of perfect inter-layer communication is 
applied to general 2D flow equations so that vertical pressure gradient is approximated to 
be zero. For a layered 2D model of reservoir, for example a vertical cross-section of a 
reservoir, the asymptotic 2D equation is reduced to a set of 1D homogeneous hyperbolic 
equations. Results of average saturation profiles and oil recoveries generated by our method 
and that by commercial finite element solver COMSOL are compared. These results are 
published in Zhang et al. (2011).  

This chapter also introduces the implementation of a complete 2D waterflooding simulation 
on COMSOL. Some of the content is published in Zhang et al. (2010). 

 

 

3.1 Introduction 

 

In this chapter, a method for reduction of the 2D displacement process to a 1D problem in a 
layer-cake porous medium is proposed in details. The theoretical development is close to 
that of Yortsos (1991), but differs from it in a number of important details. Unlike in the 
work by Yortsos, who leaves the time to be a dimensional variable, we carry out the 
complete asymptotic analysis similar to Martin (1968) and, further, to Kanevskaya (1988) 
and Bedrikovetsky (1993). We consider the case of viscous dominant displacement.  

Similarly to the previous works, it turns out that the main parameter responsible for the 
inter-layer communication is the anisotropy ratio, which is dependent on the geometry of 
the 2D reservoir model and permeability field. A small value of anisotropy ratio 
corresponds to poorly communicating layers, which can be solved by Dykstra-Parsons 
method, while a large value of anisotropy ratio is shown to correspond to fast exchange and 
negligible pressure gradient across the layers, which is the main assumption of the so-called 
vertical equilibrium. With the only assumption about negligible vertical pressure gradient it 
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becomes possible to derive explicit analytical expressions of total velocities along layers  
and orthogonal to layers. This serves as the basis for the 1D model. 

We consider waterflooding of petroleum reservoir as our basic (default) example, keeping 
in mind, however, that the considered methods, with certain modifications, may be applied 
to other processes. 

The results of our 1D method are well comparable with the results of the full 2D 
simulations in a multilayer reservoir. This indicates a possibility of replacing the long and 
elaborate multidimensional simulations by our fast 1D simulation, at least for the viscous 
dominant displacement regime. Another application of our approach is production of the 
pseudo fractional flow functions on the basis of known permeability distributions. The 
solution of the problem with constant boundary conditions is self-similar, and the pseudo 
fractional flow function may be calculated as a function of average saturation along the 
solution. Thus, we suggest a more precise and substantiated alternative to the Hearn method. 

The chapter is organized as follows. Sections 3.2 shows theory of this 1D method. A 
detailed model formulation is written in Section 3.2.1, including all assumptions applied in 
this thesis. Section 3.2.2 discusses the Hearn method, showing its inaccuracy by specific 
cases. Mathematic explanation of the problems in the Hearn method is given. Section 3.2.3 
presents the detailed transformation of the description for a 2D waterflooding problem from 
dimensional form to dimensionless form. Section 3.2.4 brings the application of asymptotic 
analysis to the dimensionless system. A closed equation for water saturation is obtained 
with known injection velocity. So far, the problem is still in the space of two dimensions. In 
Section 3.2.5, this 2D problem is reduced to multiple 1D homogeneous hyperbolic 
equations in a layered model of reservoir. The number of the 1D equations is equal to the 
total number of layers in the reservoir model. Section 3.3 is devoted to a detailed 
comparison of the computational results with 2D simulations in different layer geometries. 
Flow performance in non-communicating layered is also provided as comparison. 
Conclusions are drawn in Section 3.4. 

 

3.2 Theory 

We carry out asymptotic analysis of two-phase two-dimensional flows in the regime of 
viscous dominant following Martin (1968), Kanevskaya (1988) and Bedrikovetsky (1993).  
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3.2.1 Model Description 

In this chapter, we consider a vertical cross-section plane of the reservoir model defined in 
section 1.2.1. Length is denoted as L  and height as H . Coordinate x is directed 
horizontally along length L and y vertically upwards along height H. Water is injected at 

0=x  (inlet) along x direction. Production well is located at Lx = (outlet). Further 
assumptions for this 2D model are:  

1. It is a rectangular geometry, which means its height H  is constant along its length L . 
2. Injection velocity is constant. 
3. Injection is uniform across the height H . 
4. Production pressure is constant. 
5. Top ( y H= ) and bottom ( 0y = ) are impermeable.  

 

The studies presented in Chapter 3, 4, 5 and 6 are all based on the waterflooding model 
described here.  

 

3.2.2 Dimensionless Description of 2D Waterflooding without Gravity 

Consider a two-dimensional case of Eqs. (1.9) – (1.10) 
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∂
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∂
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∂
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∂
∂
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p

xt

s
wywx

w λλφ
                              

(3.1)
                  

0x y

p p

x x y y
λ λ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ =

⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠                                      
(3.2)

                  

 

Let us rewrite the system equations in dimensionless form by introducing dimensionless 
variables according to the rules 

 

( ) ( )
0 0 0

0 0 0 0

, , , , ,

, , ,
w

x x X y y Y x x w X y y w Y

t t T x LX y HY p p P

k k K k k K k k

φ φ μ μ

λ μ λ μ

= Φ = = = = = Μ

= = = Λ = Λ               
(3.3)
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All the capital letters represent dimensionless variables. The subscript 0 presents scale for 
specific parameters. It should be remarked that 0p  is a characteristic pressure difference, 
but not a characteristic pressure. X  and Y  are normalized length and height, so they vary 
from zero to unity. 0φ  and 0k  are selected as the vertical averaged value of φ  and k  
respectively.  

H

dy
H

∫= 0
0

φ
φ

                                                       
(3.4)

                  

),(0
0 yxj

H

dyk
k

H

j

j == ∫
                                       

(3.5)
                  

 

The main time scale t0 is the characteristic for the displacement propagation along the 
reservoir, which means the scales of time, porosity, pressure, length and mobility to obey 
the relation 

 

2
0 0 0 0

02
0 0 0

x w

w x

k p L
t

t L k p

φ μ φ
μ

= → =
                                        

(3.6)
                  

 

By substitution of the dimensionless variables (Eqs.(3.3)-(3.6)) into Eqs.(3.1)-(3.2), we 
obtain the dimensionless expression for waterflooding system in terms of water saturation 

ws  and dimensionless pressure P .  

 

0w
wX a wY

s P P
E

T X X Y Y

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞Φ − Λ − Λ =
⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠                          

(3.7)
                  

 

0X a Y

P P
E

X X Y Y

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞Λ + Λ =
⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠                                   

(3.8)
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Where aE   is defined as the anisotropy ratio of the reservoir. 

2
0

2
0

y
a

x

k L
E

k H
≡

                                                    
(3.9)

                  

Dimensionless mobility, for example, wXΛ and oXΛ  are correspondingly written as  

 

wX X wK krΛ =                                                   (3.10)                  

/oX X o oK krΛ = Μ                                            (3.11)                  

 

According to the definition of viscosity scale (Eq.(3.3)), oΜ is actually the ratio of oil 
viscosity to water viscosity.  

Another way to express the same system is by introducing dimensionless total velocities 
defined as:  

 

X X

P
U

X

∂= −Λ
∂                                                    

(3.12)
                  

Y a Y

P
U E

Y

∂= − Λ
∂

                                                (3.13)                  

 

By this definition (Eqs.(3.3),(3.12)), dimensionless total velocity XU  and dimensional total 

velocity xU  should hold the relation:  

 

0 0

w
X x

x

L
U U

p k

μ=                                                   (3.14)                  
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Furthermore, dimensionless injection velocity injV  is proportional to dimensional injection 

velocity injv  in the similar way as shown in Eq.(3.14).  

 

 
0 0

w
inj inj

x

L
V v

p k

μ=                                                   (3.15)                  

 

In the case of negligible gravity and capillary force, water velocity should be the product of 
total velocity and water fractional flow F (Eq.(1.8)), which is a monotonic function of 
water saturation.   

 

( ),wj jU FU j X Y= =                                                (3.16)                  

 

So alternatively, the dimensionless water flooding system can also be written as 

 

( ) ( ) 0w
X Y

s
FU FU

T X Y

∂ ∂ ∂Φ + + =
∂ ∂ ∂                                     

(3.17)
                  

0X YU U

X Y

∂ ∂+ =
∂ ∂

                                                 (3.18)                  

 

The 2D waterflooding system described by Eqs.(3.12), (3.13), (3.17), (3.18) aims to solve 
for water saturation ws , dimensionless pressure P and dimensionless velocities YX UU , . 
These four equations will be implemented in COMSOL to simulate the process of 2D 
waterflooding. Eqs. (3.17)-(3.18), are set as main equations for this system, while Eqs. 
(3.12), (3.13) are treated as intermediate functions dependent on water saturation ws and 
dimensionless pressure P . 

Boundary conditions for the system expressed by Eqs.(3.12), (3.13), (3.17), (3.18) are:  
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1. Normal flux at top ( 1Y = ) and bottom ( 0Y = ) is zero due to the assumption of 
impermeable boundary at top and bottom of the reservoir. That leads to 

( ) ( ) 0
,1,,0,

==
TXYTXY UFUF

 
for Eq. (3.17) and ( ) ( ) 0,1,,0, == TXUTXU YY  for Eq.(3.18). 

2. Water saturation ws  and dimensionless injection velocity are known at inlet 0X = : 

(0, , ) 1w ors Y T s= − , where ors is residual oil saturation.
(0, , )X injY T

FU V=  for Eq. (3.17) and 

(0, , )X injU Y T V=  for Eq.(3.18).  

3. Production pressure is known at outlet 1X = : (1, , ) proP Y T P= . 

Initial conditions are: ( , ,0) , ( , ,0)w wi inis X Y s P X Y P= = . wis  is irreducible (or connate) 

water saturation, iniP is the initial dimensionless pressure inside the reservoir.  

 

 

3.2.3 Discussion on the Hearn Method: Results and Problems 

The Hearn method evaluates pseudo relative permeability curves for a layered reservoir 
model. It can be applied to 2D simulation of fluid displacement where vertical sweep is 
primarily affected by permeability variation. This method assumes perfect inter-layer 
communication, interchangeable layers, uniform end point relative permeability and piston-
like displacement front. It is an approaximation of Buckley-Leverett theory. It is more 
applicable to waterflooding than to gas injection where the density difference can be large.  

A layered reservoir model (Fig 3.1) is applied in this method. Each layer is assumed to be 
homogeneous and isotropic. The main idea is to rearrange the layers in the order of 
decreasing values of m m mk sφ Δ , where mormwim sss ,,1 −−=Δ . mk , mφ , ,wi ms , ,or ms  represent 

absolute permeability, porosity, irreducible water saturation, residual oil saturation in layer 
m . 

To apply the method, the average water saturation and relative permeabilities at the outflow 
end are computed after breakthrough of each layer. Then the pseudo relative permeability 
curves and the pseudo fractional flow function are produced. For a system with N  discrete 
layers (Fig 3.1), the Hearn method should give, in principle, a piecewise linear fractional 
flow curve to produce N  displacement fronts. A system with continuously distributed 
permeability produces a smooth concave pseudo fractional flow function as, for example, 
shown by El-Khatib (1999) for a special case of the log-normal distributed permeabilities. 
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Fig 3.1 Stratified reservoir model.       denotes crossflow between layers. The top and 
bottom of reservoir are assumed to be impermeable, which means no inflow or outflow 
there.   

 

 

The Hearn method is not precise. As an example, consider a 2D displacement problem in a 
two-layer reservoir, with a very good communication between layers (anisotropy ratio 
equal to 1000). The parameters of this problem (of the layers and fluids) are listed in Tables 
3.1 and 3.2. All calculations are based on the dimensionless parameters that lead to 

1.33M = in Table 3.2, where M  is the end point mobility ratio (oil to water) and defined 
as  

 

owi o owi o

wor w wor

kr kr
M

kr kr

μ
μ

Μ= =
                                             

(3.19)
                  

 

The rule of derivations for dimensionless parameters from dimensional parameters is 
written in Eqs.(3.3)- (3.6) and (3.9).  

1 1 1 1 1, , , ,wi orh k s sφ

2 2 2 2 2, , , ,wi orh k s sφ

…

, , , ,N N N wiN orNh k s sφ

x

z

y  
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L (characteristic length, m ) 1000 

H  (characteristic height, m ) 100 

0p (characteristic pressure difference, Pa ) 61 10×  

0φ (characteristic porosity) 0.2 

0xk (characteristic permeability, 2m ) 13101 −×  

0 yk (characteristic permeability, 2m ) 12101 −×  

wμ (characteristic viscosity, 2m

sN ⋅
) 

31 10−×  

0t (characteristic time, s ) 9

00

0
2

102×=
pk

L

x

wμφ
 

injv (injection velocity, /m s ) 
71 10−×
 

 

 

Table 3.1  Dimensional parameters of the two-dimensional model of reservoir. 

 

 

 

Dimensionless parameters Layer 1 Layer 2 

Fraction of thickness α  0.33 0.67 

Irreducible water saturation wis  0.05 0.2 

Residual oil saturation ors  0.25 0.2 

Relative water permeability at residual oil 0.8 (0.4) 0.8 (0.4) 
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saturation workr  

Relative oil permeability at irreducible water 
saturation owikr  

0.8 0.8 

Permeability in x-direction XK  0.6 1.2 

Dimensionless porosity Φ  1 

Dimensionless dynamic viscosity of oil oΜ  3 (1.5)  

Dimensionless injection rate 
injV  1 

 

 

Table 3.2 Dimensionless parameters for the two-layer model. The values in brackets 
correspond to the mobility ratio (oil to water) 1.33M = , other values correspond to

0.33M = .  

 

 

The 2D problem is solved by application of COMSOL. The characteristic saturation 
distribution in the two layers, in the course of displacement, is presented in Fig 3.2, which 
shows that for well communicating layers there are no sharp fronts in each layer, but one 
smooth front across all layers. The saturation profiles assumed by the Hearn method and 
obtained in 2D simulation are shown in Fig 3.3a. The saturation profile for the 2D 
simulation is calculated by averaging of the saturation across the reservoir. It is clearly seen 
that the profiles are different: while the Hearn profile has two distinctive displacement 
fronts, the profile from the 2D simulation is smooth. The oil recovery from the 2D 
simulation is also different from the oil recovery predicted by the Hearn method (Fig 3.3c). 
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Fig 3.2 Water saturation profile of 2D waterflooding simulation by COMSOL, at time=0.25 
PVI (Pore Volume Injected). This model consists of two well communicating layers, with 

aE  equal to 1000. The surface of this figure represents the value of water saturation. 
Horizontal axis is the dimensionless length of reservoir and vertical axis is the 
dimensionless height. 1.33M =  
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(a)  

 

 

(b)  
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(c)  

 

Fig 3.3 Comparisons of Hearn method and 2D simulation by COMSOL with 1000aE = ,

1.33M =  (Fig 3.2). (a) Average water saturation profile, (b) Pseudo-fractional flow 
function, (c) Oil recovery. Solid lines represent the result obtained by the Hearn method. 
Dashed lines represent the result by COMSOL 2D simulation. 

 

One of the assumptions of the Hearn method is that the layers may be exchanged without 
affecting the averaged flow pattern. This assumption is not precise, either. The 2D 
simulation shows that different orders of layers result in different saturation profiles (Fig 
3.4). Dimensionless parameters are from Table 3.3.  
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Dimensionless parameters Values 

Fraction of thickness α  0.2;0.3;0.5 

Irreducible water saturation wis  0.1;0.2;0.15 

Residual oil saturation ors  0.15;0.1;0.2 

Relative water permeability at residual oil 
saturation workr  

0.8 

Relative oil permeability at irreducible water 
saturation owikr  

0.8 

Permeability in x-direction XK  0.59;1.47;0.885 

Dimensionless porosity Φ  1 

Dimensionless dynamic viscosity of oil oΜ  3 

Dimensionless injection rate 
injV  1 

 

 

Table 3.3 Dimensionless parameters for the three-layer system. 0.33M = . 
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Fig 3.4 Average water saturation profiles simulated by COMSOL of 3-layer 
communicating system, 1000aE = . The layers are arranged in the different orders. 

 

 

Sometimes the Hearn method may produce results contradicting physical intuition and 
common sense. To the best of our knowledge, this has not been discussed in the literature. 
Let us consider characteristic examples. 

Assume for simplicity that all porosities and residual saturations of the layers are the same. 
In this case, according to the Hearn procedure, the layers should be arranged in decreasing 
order of their permeabilities mk  (for definiteness, the higher permeable layers at the bottom, 
so that water moves faster there, as in Fig 3.5). The permeability dependence ( )k y  in the 
system of rearranged layers is a monotonously decreasing function from the bottom of a 
reservoir to the top H . The procedure of rearranging the layers may introduce an 
additional source of imprecision into the Hearn approximation, as will be shown below in 
the numerical calculations for the three-layer case. 
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Fig 3.5 Illustration of the rearrangement of layers in the Hearn method. 

 

Let us denote by ( , )h x t  the vertical distance to the position of the advanced front (see Fig. 
3.5). The average water saturation *

ws  of the vertical cross-section in position x  is calculated 
as  

* (1 )w or wi

h H h
s s s

H H

−= − +                           (3.20) 

 

In view of the linear dependence between * ( , )ws x t  and ( , )h x t , it is convenient to express 

the relative permeabilities not in terms of *
ws , but in terms of h . Since in the Hearn method 

the horizontal pressure gradient is assumed to be the same in all layers, we obtain the 
following expressions for average water and oil relative permeabilities * *,w okr kr  
(Bedrikovetsky (1993)):   

 

* 0
*

( )
( )

h

wor
w

k z dzkr
kr h

k H
= ∫  

 

*
*

( )
( )

H

owi h
o

k z dzkr
kr h

k H
= ∫  

where *k is average absolute permeability across the layers of reservoir, defined as 

 

1w ors s= −

w wis s=
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* 0
( )

H
k z dz

k
H

= ∫  

 

Here ,wor owikr kr  are the relative permeability of water at residual oil saturations and the 
relative permeability of oil at irreducible water saturation. By the Hearn method they are 
assumed to be the same for all reservoir layers. Correspondingly, the fractional flow 
function may be represented as: 

 

*
*

* * *

( ) / ( )( )
( ) / ( ) / (1 ) ( )

w w

w w o o

kr h a h
F h

kr h kr h M a h Mk

μ
μ μ

= =
+ − +

 

 

0
( )

( )

h
k z dz

a h
H

= ∫  

 

The idea of the Hearn method is to replace the solution of the two-dimensional 
displacement problem by solution of the one-dimensional Buckley-Leverett problem with 
the pseudo fractional flow function * * * *( ) ( ( ))w wF s F h s=  (where the dependence *( )wh s  is 
determined from Eq.(3.20)). As known from the general theory of the quasi-linear 
hyperbolic equations (Gelfand (1959)), the displacement may be “smooth” or may contain 
discontinuities of the saturations depending on the shape of function * *( )wF s . If this 

dependence (or, equivalently, dependence * ( )F h ) is convex, the displacement is “smooth”, 
otherwise it contains displacement fronts.  

This rule must be correlated with a type of heterogeneity which must be described. If a 
(model) reservoir consists of N discrete layers, it is to be expected that the Hearn 
approximate solution will have N discrete fronts. This corresponds to a dependence 

* *( )wF s  having N convexities (or N straight-linear cuts) (Fig 3.6a). For a smooth 
distribution of permeabilities (for example log-normal), a smooth increase of the water 
saturation on the production site may be expected. A gradual increase of *

ws  may only be 
modeled with a concave dependence * *( )wF s  excluding the appearance of the displacement 
fronts (Fig 3.6b). 
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Fig 3.6 Solutions of the Buckley-Leverett problems with pseudo fractional flow functions 
for (a) A layer-cake reservoir, (b) A reservoir with a smooth permeability distribution. 

 

Let us check whether * *( )wF s  has the necessary type of concavity or convexity. Since 

interdependence of *
ws  and h  is linear, it is enough to differentiate * ( )F h . The second 

derivative of this function has the form of 

 

( ) ( ) ( ) ( )
( ) ( )

22 * * 2
*

3*

( ) 1 ( ) 2
( ) ''( )

1

M k k h M M k k h a h k h
F h

M a h Mk

′ ′⎡ ⎤+ − −
⎣ ⎦=

⎡ ⎤− +
⎣ ⎦  

 

Let us consider the N-layer case where permeability is piecewise constant, i.e. 0)( =′ hk . 
For such a case the previous expression is simplified to 
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( ) ( )
( ) ( )

* 2
*

3*

2 1
( ) ''( )

1

M M k k h
F h

M a h Mk

−
= −

⎡ ⎤− +
⎣ ⎦  

 

*F  is convex, as required, only for the favorable mobility ratio, 1M > , since the 

denominator ( ) ( ) 33* *1 M a Mk a M k a⎡ ⎤⎡ ⎤− + = + −
⎣ ⎦ ⎣ ⎦

is always larger than zero. If, on the 

contrary, 1M < , then *F  becomes locally concave, which produces additional non-
physical rarefaction waves in addition to the expected fronts. It might be argued that the 
case 1M <  may result in instability and viscous fingering, which smoothens the saturation 
profiles. However, such phenomena are not taken into account by the initial Hearn model of 
displacement. 

Analysis is much more difficult for the case of continuous variation of ( )k h . Assume, for 

example, that for some conditions *( )F h  is convex as required. Consider the variation of 
permeability ( ) ( ) sin( )k h k h Dhδ→ + , where δ  is small enough in order not to destroy the 
increase of permeability with depth, but D  is large. This transformation may locally change 
the sign of *( ) ''F  and produce multiple fronts and rarefaction waves where they are not 
expected. 

In the original Hearn paper (Hearn (1971)) the pseudo relative permeabilities were 
calculated at a number of points and interpolated in between them. Clearly, the result 
depends on the way of interpolation. It is obvious that the result converges as the number of 
“sample layers” increases. However, this does not remove the concavity problem. Under 
unfavorable mobility ratios, it may happen that some layers are not represented by the 
correspondent displacement fronts in the solution of the upscaled Buckley-Leverett 
problem. 

In order to illustrate it, let us consider an example of a two-layer reservoir (analysis for the 
case of multiple layers is possible, but much more cumbersome). The reservoir layers have 
permeabilities 1 2 1 2, ( )k k k k> , and thicknesses 1 2,h h , correspondingly. Assume for 
simplicity that the endpoint relative permeabilities and residual saturations are equal for 
both layers. An adequate upscaled solution should contain two displacement fronts 
representing the two layers. On the plane ( , ( ))h F h  the first front corresponds to the jump 
from 1 1( , ( ))h F h  to (0,0), the second from 1 2( ,1)h h+  to 1 1( , ( ))h F h , where F  is the upscaled 

fractional flow function. The inclinations of the corresponding jumps are 1 1 1( ) /D F h h=  
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and 2 1 2(1 ( )) /D F h h= − , correspondingly. If 1 2D D> , both jumps appear in the solution. 

Otherwise, if 1 2D D< , the solution of the upscaled problem is piston-like, and on the plane 

( , ( ))h F h  the only jump is depicted by the straight line connecting 1 2( ,1)h h+  and (0,0). 
Straightforward computations involving the above formulae for pseudo-relative 
permeabilities show that 

 

1 1
1

1 1 2 2

( ) k hF h
k h Mk h

=
+

 

Thus, condition 1 2D D>  is equivalent to 

 

1 2k Mk>  

 

This is not always the case. Moreover, unlike the examples above, this inequality may be 
violated under favorable mobility ratios, 1M > . Thus, consistency of the Hearn procedure 
should be verified in each particular case, and the conclusion may be nontrivial. 

This analysis shows that the original Hearn scheme has obvious deficiencies and may result 
in a non-physical behavior of the predictions of displacement. In our opinion, the reason is 
that the Hearn method insufficiently takes into account the interaction between the layers. 
A more consistent approach basing on asymptotic analysis is discussed in the following 
sections of the thesis. 

 

 

3.2.4 Asymptotic Analysis 

There may be two asymptotic cases for the system described by Eqs. (3.7)-(3.8): 1) aE  is a 

small parameter and 2) aE is a large parameter. The first case corresponds to poor inter-
layer communication. In this case the flow becomes quasi one-dimensional, and the flows 
of different values of Y  (different “layers”) become independent of each other. Thus, we 
recover the system corresponding to the Dykstra-Parsons method (Dykstra and Parsons 
(1950)).  
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The second case, describes very good communication between the layers. In Eq.(3.8), the 

term Y
P

Y Y
∂ ∂⎛ ⎞Λ
⎜ ⎟∂ ∂⎝ ⎠

 becomes small in this case compared to X
P

X X
∂ ∂⎛ ⎞Λ

⎜ ⎟∂ ∂⎝ ⎠

. When aE  

becomes asymptotically large, it can be reduced to 

 

0 orY Y
P P C

Y Y Y
∂ ∂ ∂⎛ ⎞Λ ≈ Λ ≈

⎜ ⎟∂ ∂ ∂⎝ ⎠

 

 

where the integration constant C is a function of ,X T only.  

As talked above, boundary condition for YU  at top and bottom of the dimensionless square 
geometry is that 0P Y∂ ∂ = , so C is zero. Asymptotically, we have  

 

0P
Y

∂ =
∂                                                      

(3.21) 

 

Thus, the pressure is invariable in the Y-direction. This is the main assumption of the 
Hearn-Kurbanov method (Hearn (1971); Kurbanov (1961); Kurbanov and Atanov (1972)), 
corresponding to absolute communication of the layers. This plays as the basis of the 
assumption of vertical equilibrium (Zapata and Lake (1981); Coats. et. al (1971); Yortsos 
(1991), (1992)).  

In the original Hearn method, it was implicitly assumed that XU  depends only on T  and, 
maybe, Y , so that the conservation law holds for each “layer” (each value of Y ). This 
assumption is, however, too strong and results in the imprecision of the method and some 
problems described above. Unlike the case of non-communicating layers, the masses of 
water and oil are not conserved in each layer, but in the reservoir as a whole. A more 
rigorous approach to this problem is further described. 
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3.2.5 General Integral Relations 

The goal of this section is to derive general relations which are independent of the 
expansion. They should hold whatever model/approximation is selected. 

Consider Eq. (3.18) and integrate it over Y  from 0 to 1:  

 

1 1

0 0
0Y

X
UU dY dY

X Y
∂∂ + =

∂ ∂∫ ∫                                     (3.22) 

 

The first integral in Eq. (3.22) can be viewed as the averaged dimensionless total velocity 
or the total dimensionless flux passing the cross-section line ( , 0) ( ,1)X X→ . When there 
is no other source except injector and producer in the domain of reservoir (as assumed in 
this thesis), this is equal to the dimensionless injection velocity.        

 

1

0 X injU dY V=∫                                                    (3.23)                  

 

We should be aware that the validity of Eq. (3.23) is also due to the regular geometry of the 
2D reservoir model that height H is constant along length L  (Section 3.2.1). Otherwise 

1

0 XU dY∫  
is only equal to averaged dimensionless total velocity and all following equations 

involving the term injV  should be replaced by averaged dimensionless total velocity. The 

exceptions from Eq. (3.23) is presented in streamline simulation (Chapter 6).   

In view of impermeability of top and bottom, the second integral in Eq.(3.22) is reduced to 

 

(1) (0) 0Y YU U− =
                                                

(3.24) 

 

Thus, / 0injV X∂ ∂ =  and the overall injection velocity is only time-dependent.   
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Now, let us do the same integration to Eq. (3.17). The last term will be dropped out, for the 
same reason as in Eq.(3.24). We obtain 

 

1 1

0 0
0w Xs dY U FdY

T X
∂ ∂Φ + =

∂ ∂∫ ∫

 
 

The first integral results in the average water saturation *
ws , because according to our rule of 

scaling the dimensionless porosity (Eqs. (3.3)-(3.4)) we have 
1

0
dYΦ∫ equal to 1.  

 

1
1* 0

1 0

0

w
w w

s dY
s s dY

dY

Φ
= = Φ

Φ
∫

∫

∫

                          (3.25) 

 

The second integral is the average flow of water. Thus, the average fractional flow of water 
*F  is 

 

1*

0

1
X

inj

F U FdY
V

= ∫
                                            

(3.26)
 

 

 

3.2.6 Derivation of the Approximation 

It was proven in Section 3.2.4 (Eq. (3.21)) that P is independent of Y within the order of 
1 / aE . Thus, the pressure gradient along the reservoir P X∂ ∂  is the same for all the values 
of Y (all the layers).  

Substituting the Darcy equation Eq. (3.12) into Eq. (3.23) and accounting for independence 
of P X∂ ∂  on Y, we obtain  
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1

0

inj

X

VP
X dY

∂ = −
∂ Λ∫  

 

Further substitution of this relation into Eq. (3.12) gives the explicit expression for 
dimensionless total velocity XU  in terms of injV .  

 

1

0

X
X inj

X

U V
dY

Λ=
Λ∫                                                 

(3.27) 

 

This equation indicates that the velocity at each height Y (each layer) is proportional to the 
mobility at this height; the term in the denominator is the average mobility along the whole 
height. Eq. (3.27) is substituted into the continuity equation (Eq.(3.18)), which makes it 
possible to express YU  explicitly: 

 

0
1 1

0 0

Y

XY X
inj Y inj

X X

dYU V U V
Y X XdY dY

⎡ ⎤′Λ∂ ∂ Λ ∂
⎢ ⎥= − → = −
⎢ ⎥∂ ∂ ∂Λ Λ
⎣ ⎦

∫

∫ ∫             

(3.28) 

  

Substitution of Eqs. (3.27)-(3.28) into the equation for saturation (Eq.(3.7)) results in 

 

0
1 1

0 0

0

Y

Xw X
inj inj

X X

dYs FV V F
T X Y XdY dY

⎧ ⎫⎧ ⎫ ⎡ ⎤′Λ∂ ∂ Λ ∂ ∂⎪ ⎪ ⎪ ⎪
⎢ ⎥Φ + − =⎨ ⎬ ⎨ ⎬
⎢ ⎥∂ ∂ ∂ ∂Λ Λ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎣ ⎦⎩ ⎭

∫

∫ ∫

    (3.29) 

 

This is a closed equation for saturation ( , , )ws X Y T , since injection velocity injV  is known 

from the boundary conditions. Both pressure and velocity are excluded. It should be 
stressed that the only assumption made for derivation of this equation is the assumption 
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about the pressure independence on the vertical coordinate. Other assumptions of the Hearn 
method (like exchangeability of the layers or a piston-like character of displacement) are 
not applied. 

The interpretation of Eq. (3.29) is as follows: variation of ws  at height Y  is due to 
horizontal transfer (in X -direction) plus vertical exchange. The flux of water along X -

direction is expressed as 
1

0
/inj X XV F dYΛ Λ∫ . Apart from the fractional flow function F , it 

includes the “vertical distribution function” 
1

0
/X X dYΛ Λ∫  expressing redistribution of flows 

at different height due to pressure interaction. The specific form of the vertical exchange 

term 0
1

0

Y

X
inj

X

dY
V F

Y X dY

⎧ ⎫⎡ ⎤′Λ∂ ∂⎪ ⎪
⎢ ⎥− ⎨ ⎬
⎢ ⎥∂ ∂ Λ⎪ ⎪
⎣ ⎦⎩ ⎭

∫

∫

 provides the continuity expressed by Eq.(3.8). 

The integral-differential equation (Eq.(3.29)) is difficult to solve in a general form. In the 
next subsection we show that for a layer-cake stratified reservoir there is a discrete 
treatment for it, reducing it to a system of quasi-linear hyperbolic equations (modified 
Buckley-Leverett equations for each layer). 

 

 

3.2.7 A Layer-Cake Reservoir 

Consider a layer-cake model of reservoir consisting of N  layers of the height mh  

( 1,..., )m N= , so that /m mh Hα =  is the height fraction of the m th layer in the total height 
of reservoir (Fig 3.1). We assume that all the properties of flow and reservoir do not vary 
across each layer. Thus, the derivative with respect to Y can be approximated by the 
difference between two layers, for example, between layer m and layer ( 1)m − , divided by 
the height fraction, for example mα . Integrals over Y  are replaced by sums. In this way the 
integral-differential equation (Eq.(3.29)) is reduced to a system of 1D quasi-linear 
hyperbolic equations. The number of the equations is equal to the number of layers in the 
reservoir model, N . The expressions for dimensionless total velocities (Eq. (3.27)-(3.28)) 
are changed to: 
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,
,

,
1

X m
X m injN

X n n
n

U V
α

=

Λ
=

Λ∑

 

,
1

,

,
1

m

X n n
n

Y m inj N

X n n
n

U V
X

α

α
=

=

⎡ ⎤Λ
⎢ ⎥∂= − ⎢ ⎥

∂ ⎢ ⎥Λ
⎢ ⎥
⎣ ⎦

∑

∑

                                     

(3.30)

 

 

The ways for calculating average water saturation (Eq.(3.25)) and average fractional flow 
of water (Eq. (3.26)) are replaced by 

 

*
,

1

N

w n w n n
n

s sα
=

= Φ∑

                                                 
(3.31)  

                 

*
,

1

1 N

n n X n
ninj

F F U
V

α
=

= ∑

                                          
(3.32) 

 

Eq. (3.29) is replaced by a set 1D quasi-linear hyperbolic equations with regard to water 
saturations in all layers, ,1 ,,...,w w Ns s : 

 

1

, ,
, , 1 1

1

, ,
1 1 1

0

m m

n X n n X n
injw m m X m n n

m inj m mN N N
m

n Xn n X n n X n
n n n

Vs F
V G G

T X X X

α α

αα α α

−

= =
−

= = =

⎧ ⎫⎧ ⎫ ⎛ ⎞ ⎛ ⎞Λ Λ
⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪∂ Λ∂ ∂ ∂⎪ ⎪ ⎪ ⎪

⎜ ⎟ ⎜ ⎟Φ + + − − − =⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪Λ Λ Λ
⎜ ⎟ ⎜ ⎟

⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ ∑

∑ ∑ ∑

    

(3.33) 
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The values of 1mG −  and mG  are the fractions of water in the expressions for water flows 

between the layers m and 1m− . A question arises, whether they should be chosen equal to 

mF , 1mF − , or something else (let us say, 1( ) / 2m mF F −+ ). We select these values according 
to the explicit discretization scheme with the possible reversion of the flux. When 
expression for  ,Y mU  (Eq. (3.30)) is positive, the corresponding term in the flow equation 

term describes the outflow from layer m to layer 1m+ . In this case it is logical to set 

m mG F= . However, if ,Y mU  is negative, this term describes the inflow from layer 1m+  to 

layer m. Then it should be set 1m mG F += . The value of 1mG −  is determined in a similar way.  

An initial condition and a boundary condition are needed for solving each hyperbolic 
equation generalized by Eq.(3.33). The initial condition is: mwimw sXs ,, )0,( = , where mwis ,  is 

initial (most commonly, irreducible) water saturation in layer m. At the inlet ( 0=X ), we 
set mormw sTs ,, 1),0( −= , where mors ,  is the residual oil saturation in layer m .  

Dimensionless time in porous volumes injected (p.v.i.) is defined as  

 

0
0

1

T
Tinjinjected

pvi injN
pore

m m
m

V dTV
T V dT

V α
=

′
′= = =

Φ

∫
∫

∑

                                     

(3.34) 

 

The system of equations (Eq.(3.33)) has a standard hyperbolic form of 

 

, ,1 ,
,1 ,

( ,..., )
( ,..., ) 0w m m w w N

m w w N
pvi

s B s s
A s s

T X
∂ ∂

+ =
∂ ∂

 

 

If the boundary and the initial conditions of the system are constant, it allows for a self-
similar solution depending on the self-similar variable / pviX Tξ =  (Gelfand (1959)). 

Correspondingly, both average saturation *
ws  (Eq. (3.31)) and average fractional flow *F

(Eq.(3.32)) become functions of ξ . If  *
ws  depends on ξ  monotonously (which is usually 
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the case), a single-valued pseudo fractional flow function * *( )wF s  may be defined along the 
path. Alternatively, it may be found by numerical computation of the average saturations 
and fractional flow functions at the outlet (or any other cross-section). This is the essence of 
the suggested method for upscaling and obtaining the pseudo fractional flow curve. A 
similar method may be applied for derivation of the pseudo relative permeabilities. 

Direct calculation of this system seems to be prohibitively complicated, hindering 
application of the common analytical solution methods like the method of characteristics. 
Additionally, it is non-trivial to formulate the conditions on the shocks (displacement 
fronts), since the system is not represented in the divergent form (Gelfand (1959)). 
However, the system allows for a straightforward numerical solution. 

 

 

3.3 Numerical Study 

 

In this section, 2-layer and 10-layer reservoir models of discrete permeability field and 10-
layer model of continuous (log-normal) permeability are studied to test the 1D method 
introduced in the previous section. For each case, two end point mobility ratios (oil to 
water) are implemented, that are 0.33M =  and 1.33M = , where M  is defined in 
Eq.(3.19). These two values correspond to unfavorable (or unstable) waterflooding and 
favorable (or stable) waterflooding respectively. Average water saturation *

ws  is given by 

Eq.(3.31) , while average fractional flow function *F  is given by Eq. (3.32) and oil 
recovery is given by Eq.(1.3). 

All results are compared with the complete 2D simulation of waterflooding, which is 
carried out by application of the commercial finite element solver COMSOL, by solving the 
system of Eq.(3.12), (3.13), (3.17), (3.18). Implementation of the 2D simulation in 
COMSOL is presented in subsection 3.3.2.  

Dimensional parameters of the 2D reservoir model, which is taken as a vertical cross-
section plane in this thesis, are listed in Table 3.1. They result in 1000aE =  and 1injV = . 

Most 2D simulations run in COMSOL are based on this value of aE , unless otherwise 
specified.  
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3.3.1 Practical Aspects of Numerical Computations 

An explicit finite difference method is applied to solve systems Eq.(3.33). The distance step 
is chosen to be 01.0=XΔ  and the time step to be 0025.0=TΔ . The method is implemented 
in the Intel Fortran program. Convergence is checked by varying the distance and the time 
steps. 

 

 

3.3.2 COMSOL Implementation  

 

3.3.2.1 Introduction 

COMSOL Multiphysics is a powerful interactive software for modeling and solving many 
kinds of scientific and engineering problems based on partial differential equations (PDEs). 
It contains predefined modules, like chemical engineering modules, acoustics modules. It is 
also possible to build specific models in the PDE module of COMSOL. Finite element 
method is applied in COMSOL to solve all the problems.  

The application of COMSOL for simulation of multiphase flow in porous media has been 
done in previous works. Diaz-Viera et al. (2008) implement a black-oil model for multiple 
components. The model is based on the oil phase pressure and total velocity formulation 
with the capillary pressure taken into account. Lopez-Falcon et al (2008) model the growth 
and decay of microorganisms and nutrients through porous media. This is also a multiphase, 
multicomponents system. Bjørnarå and Aker (2008) investigate various types of equation 
system formulations for modeling two-phase flow in porous media using the finite element 
method, including five different formulations for 2D simulations and one for 1D. Huang 
(2010) model two-phase flow through strongly heterogeneous porous media. This work 
simulates oil-water system in discrete fractured porous media and discrete vuggy porous 
media. Halder and Datta (2009) present a thorough study on boundary conditions of heat 
transfer and mass transfer in porous media.  

COMSOL is also used in other petroleum-related subjects. Suarez-Rivera (2006) 
implement a petroleum-geomechanics problem in COMSOL, stability of wells under 
hydraulic stress. Ekström and Linden (2005) simulate oil discharge and transport in natural 
river. This work gives the oil concentration curve, which is dependent on time and space, 
taking into account the absorption of oil by river bed.  
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Our problem is close to Bjørnarå and Aker (2008) and Diaz-Viera et al. (2008), but our 
reservoir model is two dimensional, while theirs are only one dimensional. Huang (2010) 
apply a 2D model, though it assumes the model of porous media is highly discontinuous. 
Most of previous studies assume the phases of flow are immiscible. It is therefore 
reasonable to believe that COMSOL can solve problems of 2D immiscible two-phase flow.  

 

 

3.3.2.2 Implementation of Equations 

In our study, COMSOL multiphysics PDE mode for time dependent analysis in the 
coefficient form is used for Eq. (3.17) with ws  as independent variable and PDE time 
dependent mode in general form is used for Eq. (3.18) with P  as independent variable. The 
reason that we say ws  and P  are independent variables for the system is that dimensionless 

velocities YX UU ,  are functions of ws  and gradient of P  (Eqs. (3.17)-(3.18)). The reason 

for implementing intermediate variables YX UU ,  instead of explicit equations for P and ws  
(Eq. (3.7)-(3.8)) is that it is easier and more logical to set up boundary conditions. 
Geometry should be chosen as 2D. 

All dimensionless parameters, like anisotropy ratio aE , dimensionless permeabilities, 

dimensionless oil viscosity oΜ , height fraction of each layer mα  and dimensionless total 

injection rate injV  are defined in “Constants”. 

The values of , , , , , ,or wi wor owi X Ys s kr kr K KΦ  are defined in “Scalar expression”, because 

they may vary in different layers. The expressions for velocities YX UU ,  (Eqs.(3.12)-(3.13)), 
which are intermediate variables in this work, are also implemented in “Scalar expression”.  

They system of equations (Eqs.(3.12), (3.13), (3.17), (3.18)) is a pure convective transport 
system for water saturation ws  (but not for dimensionless pressure P ). It is a discontinuous 
problem and can be very difficult, sometimes even impossible, to solve by the finite 
element method. A possible remedy for this is to use stabilization techniques, for instance 
artificial diffusion (Bjørnarå and Aker (2008)). In our problem, we set the diffusion 
coefficient c (COMSOL parameter) to be 21 10−× , which is a very small value compared to 
other parameters in the system, in the equation setting for Eq. (3.17). No artificial diffusion 
is added to Eq. (3.18). When the system is built on real parameters, artificial diffusion 
should be set in accordance with other parameters. That means artificial diffusion should 
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not prevail the main transport mechanism in the system. Diaz-Viera et al. (2008) is one of 
the examples.  

Initial and boundary conditions are set in the same way as mentioned in Section 3.2.3. Two 
details should be stressed. Firstly, production pressure proP  should be equal to initial 

pressure iniP  to ensure the continuity of pressure. Secondly, the condition of convective 
outflow is applied to saturation equation (Eq. (3.17)), which means (artificial) diffusion is 
set to be zero at outlet (Bjørnarå and Aker (2008)).  

 

 

3.3.2.3 Mesh and Solver 

Quadrate mesh of maximum size 0.02 is applied in our work. Thus around 50 50 2500× =  
elements are taken in calculation. Time-dependent Direct UMFPACK solver is used. Time 
step is determined by the solver automatically. Convergence is checked by varying the 
element size. 

 

3.3.2.4 Data Processing 

After the calculation is finished in COMSOL, we export the structure and data to 
MATLAB and calculate average saturation of water and average fractional flow of water in 
MATLAB by using the COMSOL-MATLAB interface command “postinerp”.  

Oil recovery is obtained by integrating ( ) (1 )w wi wis s s− −  over the whole flow, that is 

[ ] [ ]0,1 0,1× , by using the COMSOL postprocessing function “subdomain integration”.  

 

 

3.3.3 A Two-Layer Reservoir 

For analysis of the peculiarities of displacement in a stratified reservoir we have performed 
a series of computations for waterflooding in a two-dimensional two-layer reservoir. 
Dimensionless parameters are listed in Table 3.2. The 2D saturation distribution is shown 
in Fig 3.2 and 3.7. They are generated by COMSOL.  
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3.3.3.1 Comparison with 2D Simulations 

 

 

 

 

 

Fig 3.7 Water saturation profile for 2D waterflooding simulation, at time=0.25 p.v.i. The 
horizontal axis is the dimensionless distance along the reservoir, and the vertical axis is the 
dimensionless height (across the reservoir). 0.33M = .  
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(a)  

 

(b)  
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(c)  

 

 

Fig 3.8 Comparison of the results obtained by our method and by the 2D simulation for a 
reservoir consisting of two communicating layers. Solid lines represent the results of our 
method; dashed lines the results of the 2D simulation with 1000aE = . Black and red lines 

represent the results for an unfavorable ( 0.33M = ) and a favorable ( 1.33M = ) mobility 
ratio, respectively. (a) Average water saturation profiles, (b) pseudo fractional flow 
functions, (c) oil recovery curves.  

 

From Fig 3.8, it is seen that our 1D simulation gives close results to those of the 2D 
simulation, or, anyway, much closer than the results obtained with the original Hearn-
Kurbanov method (cf. Fig 3.2). The pseudo fractional flow curves are slightly different, but 
the positions of the displacement fronts (the inclinations of the tangent lines form initial 
saturation points) and the behavior of the curves at high saturations are similar (Fig 3.8b). 
Therefore, similar saturation profiles can be expected, which is also confirmed by the 
calculations (Fig 3.8a). The difference between the saturation profiles obtained by one- and 
two-dimensional computations is within the degree of approximation, and the displacement 
fronts (and therefore the breakthrough times) are predicted with good accuracy. It should be 
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noted, however, that there is some qualitative difference between the saturation profiles for 
the case 33.1=M . 

In order to test the applicability of our model to a less viscous dominant regime than that 
given by 1000aE = , we have carried out the simulations at lower values of aE , equal to 50, 

3 and 1. Other parameters are from Table 3.2. As seen from Fig. 3.9c, for values of aE  
larger than 50 our method produces oil recovery curves, which are similar to those of the 
2D simulation. At lower values of aE  (3 or below) the saturation profiles contain a more 
expressed second displacement front (Fig 3.9a), becoming closer to the case of the non-
communicating layers (Fig 3.10a). However, the arrival of the major displacement front 
and, therefore, the breakthrough time is still calculated with reasonable accuracy, and the 
oil recovery curves do not differ significantly, especially, at a late stage. 

 

 

(a)  
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(b)  

(c)  

 

Fig 3.9 Comparisons of our method and 2D simulation of different levels of 
communication between layers, where 1.33M = . The level of communication between 
layers is described by the anisotropy ratio aE . The larger value of aE , the better 
communication between layers. (a) Average water saturation profile, (b) Pseudo-fractional 
flow function, (c) Oil recovery.  
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3.3.3.2 Communicating versus Non-Communicating Layers 

 

On the basis of 1D simulations, we have compared the displacement results for the 
communicating layers with those of the non-communicating layers )0( →aE . The 
corresponding profiles of flow behaviors are shown in Fig 3.10. Parameters are from Table 
3.2.  

For the case of non-communicating layers, there are two independent displacement water 
fronts (dashed lines in Fig 3.10a). The pseudo fractional flow function has a complex shape, 
a combination of two s-shaped curves (“one for each layer”) (dashed lines in Fig 3.10b). 
Meanwhile, in the case of communicating layers, individual fronts are “smoothed” by 
crossflow, so that there is only one front in the saturation profile (solid lines in Fig 3.10a). 
The pseudo fractional flow functions (solid lines in Fig 3.10b) have a characteristic s-shape, 
similar to the shape of the fractional flow function in the classical Buckley-Leverett theory 
for a homogeneous porous medium. Hence, like in the classical theory, the solution of the 
self-similar displacement problem will contain the only displacement front (Bedrikovetsky 
(1993)). 

 

 

(a)  
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(b)  

(c)  

 

Fig 3.10 Comparisons of communicating and non-communicating stratified reservoirs. This 
model consists of two layers. Solid lines are the results of communicating case; dashed 
lines are the results of non-communicating case, where there is no crossflow and total 
velocity XU  is independent on X position and YU  is zero everywhere. Black lines are the 

results of unfavorable mobility ratio ( 33.0=M ), red lines are the results of favorable 
mobility ratios ( 33.1=M ). (a) Average water saturation profiles, (b) Pseudo-fractional 
flow, (c) Oil recovery.   
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At a favorable mobility ratio, that is 1M > , communication between the layers increases 
oil recovery and delays breakthrough (red solid line in Fig 3.10c, compared to non-
communicating layers, red dashed line in Fig 3.10c). At an unfavorable mobility ratio, 

1M < , communication between the layers decreases the oil recovery (black solid line in 
Fig 3.10c, compared to non-communicating layers, black dashed line in Fig 3.10c), and 
breakthrough happens earlier.  

 

 

3.3.4 Three-Layer Reservoir: Effect of Layer Exchange 

 

We also implement our upscaling method into some three-layer communicating stratified 
reservoirs. The property of each specific layer remains the same, but the layers are arranged 
in different orders. The parameters of this problem are listed in Table 3.3. We only test the 
case of unfavorable mobility ratio, ( )0.33 1M = < . Results are shown in Fig. 3.11.  

When the layers are arranged in different orders, the saturation profiles can be quite 
different (Fig 3.11a), as well as the pseudo fractional flow functions (Fig 3.11b) can be. For 
recoveries of different layer orders, time of the breakthrough and oil recovery may also be 
different (Fig 3.11c). Our method, as well as 2D simulations, produces also the different 
results for the different layer arrangements. We can reproduce the saturation profiles for 
arrangement 2-1-3 qualitatively similarly (with the two displacement fronts) and with a 
good quantitative accuracy. The saturation profiles for arrangement of the layers in order of 
1-2-3 are not that close qualitatively, but are still close quantitatively. 

This simulation shows that, when crossflow exists, layers structured in different orders 
usually lead to different flow patterns, even though the property of each layer remains the 
same. One of the assumptions of the Hearn procedure is not fully applicable.  
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(a)  

  

 

(b)   
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(c)  

 

Fig 3.11 Comparisons of our method and 2D simulation, 3-communicating-layer system. 
Black lines are the results of the case that layers are structured in the order 1,2,3; red lines 
are the results of the case that layers are of the order of 2,1,3. Solid lines are the results of 
our method; dashed lines are the results by COMSOL with 1000=aE . (a) Average water 
saturation profile, (b) Pseudo-fractional flow function, (c) Oil recovery.  

 

 

3.3.5 Ten-Layer Reservoir 

We have considered a reservoir consisting of ten layers. The parameters of the layers are 
given in Table 3.4. Results are shown in Fig. 3.12. It is seen that the saturation profiles 
computed by our model and obtained as a result by the 2D simulation are close. The same 
is valid for the fractional flow functions and the oil recovery curves. In the case of 1M <  
the displacement profile is smooth and, thus, the arrival of the water to the production site 
is gradual. The displacement in the case of 1M > is more stepwise. This might be expected, 
since the case 1M > corresponds to a more stable displacement.  
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Dimensionless parameters Value 

Fraction of thickness α  0.1; 0.2; 0.05; 0.05; 0.1; 0.1; 0.1; 
0.1; 0.1; 0.1 

Irreducible water saturation wis  0.15; 0.05; 0.05; 0.1; 0.1; 0.1; 
0.2; 0.2; 0.2; 0.15 

Residual oil saturation ors  0.05;0.06;0.07;0.1;0.12;0.13;0.22
0.25;0.3;0.15 

Relative water permeability at residual oil 
saturation workr  

0.6;0.95;0.8;0.7;0.7;0.7;0.9;0.95;
0.69;0.9 

(0.3;0.47;0.4;0.35;0.35;0.35;0.45;
0.47;0.34;0.45) 

Relative oil permeability at irreducible 
water saturation owikr  

0.6;0.95;0.8;0.7;0.7;0.7;0.9;0.95;
0.69;0.9 

Permeability in x-direction XK  0.93;1.12;0.465;0.465;0.744;1.39
0.279;1.023;1.674;1.209 

Dimensionless porosity Φ  1 

Dimensionless dynamic viscosity of oil oΜ  3(1.5) 

Dimensionless injection rate injV  1 

 

 

Table 3.4 Dimensionless parameters for the ten-layer model. The values in brackets 
correspond to the mobility ratio (oil to water) 1.33M = , the other values correspond to 

0.33M = .  
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(a)   
 
 

(b)  
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(c)  

 

Fig 3.12 Comparison of the results obtained by our method and by the 2D simulation, for a 
reservoir consisting of ten communicating layers. Solid lines show the results obtained by 
our method; dashed lines the results of the 2D simulation. Black lines correspond to an 
unfavorable mobility ratio, red lines to a favorable mobility ratio. (a) Average water 
saturation profiles, (b) pseudofractional flow functions, (c) oil recovery curves.  

 

 

3.3.6 Log-Normal Distributed Permeability 

 

In this section, we consider a special case of continuous distribution of permeability, log-
normal distribution. We assume that the permeability increases along the height of the 
reservoir.  

The log-normal probability distribution density ϕ  of permeability k  is given by  
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( ) ( )2

2

ln1ln exp
22
k

k
β

ϕ
σπσ

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦                                            
(3.35) 

 

Where β  is the mean value of lnk , σ  is the variance of the distribution density ϕ , 
according to the definition of normal distribution.  

The relation between k  and the dimensionless height of the reservoir Y  is 

 

( ) ( ) ( )
ln

ln ln
k

Y k k d kϕ
+∞

′ ′= ∫                                  (3.36) 

 

For normal distribution, Eq.(3.35), the integration (Eq.(3.36)) with respect to ln k  from 
3β σ−  to 3β σ+  goes up to 0.97. Hence, it is sufficient to set the calculation range of 

ln k  to be [ ]3 , 3β σ β σ− + , and, therefore, the calculation range of k  to be 

( ) ( )exp 3 , exp 3β σ β σ− +⎡ ⎤
⎣ ⎦

. In our calculation, this permeability range is divided into ten 

equal intervals. The value of each interpolation point is substituted into Eq. (3.36) to give a 
height ( )Y k . The distance between two adjacent values of ( )Y k  is treated as a fraction of 

thickness mα . Thus, we can solve Eq.(3.33). The parameters of this case are listed in Table 
3.5. Results are given in Fig 3.13. Again our method gives results similar to those of the 2D 
simulation.  
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Dimensionless parameters Value 

β  ln5 

σ  0.5 

Irreducible water saturation wis  0.1 

Residual oil saturation ors  0.1 

Relative water permeability at residual oil 
saturation workr  

0.8 (0.4) 

Relative oil permeability at irreducible water 
saturation owikr  

0.8 

Dimensionless porosity Φ  1 

Dimensionless dynamic viscosity of oil oΜ  3(1.5) 

Dimensionless injection rate injV  1 

 

 

Table 3.5 Dimensionless parameters for the log-normal distributed permeability model. 
The values in brackets correspond to the mobility ratio 1.33M = , the other values 
correspond to 0.33M = . 
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(a)  

 

 

(b)  
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(c)  

 

Fig 3.13 Comparison of the results obtained by our method and by the 2D simulation for 
the reservoir with log-normal permeability distribution. Solid lines represent results by our 
method; dashed lines represent the results by the 2D simulation. Black lines correspond to 
an unfavorable mobility ratio, red lines to a favorable mobility ratio.  (a) Average water 
saturation profiles, (b) pseudofractional flow functions, (c) oil recovery curves. 

 

 

3.4  Summary 

 

We have developed a fast method for 1D simulation of waterflooding in a layer-cake 
reservoir. It may be used for upscaling of waterflooding in a stratified reservoir of a viscous 
dominant regime. For the waterflooding problems in well defined multilayer reservoirs, as 
well as reservoirs with log-normal distributed permeabilities, the results obtained by our 
method are all very close to the results obtained from the complete 2D displacement 
simulation. For the anisotropy ratios being 50 and higher, our method gives oil recovery 
curves very close to those obtained in complete 2D simulations. Even when anisotropy 
ratios are around 1, the oil recovery curve produced by our method is still similar to the 
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results of the 2D simulations. The saturation profile calculated by our method is slightly 
different from the 2D simulation result. However, the difference is within the degree of 
approximation and the positions of the displacement fronts are almost the same.  

The method developed for upscaling is advantageous over the classical Hearn method, 
since it refrains from some of the assumptions of the Hearn method and takes into account 
mass exchange between the layers. Our approach produces more realistic smooth saturation 
profiles, and is better at predicting positions of displacement fronts and oil recovery curves. 
Simulations show that different arrangements of the layers lead to different displacement 
patterns. Since our method does not rely on assumptions of exchangeability of the layers, it 
is superior to Hearn’s procedure.  

For mobility ratios (oil to water) 1M > , more oil is produced by waterflooding from a 
communicating stratified reservoir than from a non-communicating stratified reservoir. For 
mobility ratios (oil to water) 1M < , the effect is opposite. This observed effect of 
crossflow on oil recovery is in agreement with the work of El-Khatib (1983).  

 

63

87



 

64 
 

 

  

64

88



 

65 
 

Chapter 4 Water Banks in Viscous Dominant Regimes of Displ-
acement 

 

 

4.1 Introduction 

 

This chapter follows the publication Yuan et.al (2011). This is a further study on 
waterfoodling in layered reservoir with perfect inter-layer communication. The study aims 
at revealing and understanding the inter-layer mass communication.  

In Chapter 3, we see clear difference between the averaged saturation profiles, pseudo 
fractional flow functions, oil recovery curves between the non-communicating reservoir 
model and the fully-communicating reservoir model (Fig 3.10). This is due to inter-layer 
cross flow. Figs 3.8a, 3.12a, 3.13a show that under different values of end point mobility 
ratio (oil to water) M , crossflow may make the distribution of fluids more even or more 
“dispersive”.  This leads to different oil recovery curves (Figs 3.8c, 3.12c, 3.13c). El-Khatib 
(1983) shows that M  plays an important role on oil recovery when inter-layer cross flow 
exists. But no explanation is given.  

In this chapter, 2D water saturation distribution and water saturation at the interface 
between layers are investigated, instead of the vertical average water saturation. Water 
banks and transition zones are observed. The effect of end point mobility ratio M
(Eq.(3.19)) on the formation of water banks and transition zone is examined. The existence 
of water banks and transition zones is explained.  

This chapter is organized in this way: section 4.2 includes the study on a three-layer fully 
communicating reservoir model, showing water bank and transition zones between layers 
on the 2D water saturation profile; section 4.3 presents explanation for the existence of 
water bank and transition zones; section 4.4 draws the conclusion. 
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4.2 Cases Study 

 

A three-layer reservoir model is applied in this chapter. COMSOL is used to carry on the 
2D simulation of fully communicating layered reservoir models. Non-communicating 
layered models, as comparisons, are simulated by direct calculation of mass balance 
equation for each layer. Dimensional properties are listed in Table 3.1. Some dimensionless 
parameters are written in Table 4.1. We use different values of oΜ , owikr  and workr  to get 
different value of end point mobility ratio M  (oil to water) and then examine the effect of 
M  on the formation of water banks and transition zones.  

 

 

Dimensionless parameters Value 

Fraction of thickness α  0.333,0.333,0.333 

Irreducible water saturation wis  0.1 

Residual oil saturation ors  0.3 

Dimensionless permeability in x-direction XK  0.5,1.0,1.5 

Dimensionless porosity Φ  1 

Dimensionless injection velocity injV  1 

Anisotropy ratio aE  1000 

 

 

Table 4.1 Dimensionless parameters of the three-layer reservoir. 
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4.2.1 2M =  

 

We firstly choose 9.0,3.0,5.1 ===Μ owiworo krkr  and have 2M = . At T=0.2 pvi, the 
saturation profiles in the X Y−  plane are shown in Fig 4.1 (a) and (b) respectively for the 
non-communicating and the communicating cases.  

In the non-communicating case, a sharp saturation front can be observed in each layer. In 
the latter case, the displacement profile is even and smooth. The smoothness of the 
saturation profile in the latter case can be attributed to the almost instantaneous crossflow 
from more permeable layers to less permeable layers around the displacement fronts.  

 

 

a)  
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b)  

 

 

Fig 4.1 2D saturation profiles in X Y− plane, T=0.2 pvi, 2M =  (a) non-communicating 
layer-cake reservoir (by direct calculation of mass balance equation for each layer), (b) 
perfectly communicating layer-cake reservoir (by COMSOL).  

 

 

4.2.2 1M =  

Calculations are then carried out with 8.0,4.0,2 ===Μ owiworo krkr  so that M=1.0. At 
T=0.2 pvi, the saturation profiles in the X Y− plane are shown in Fig 4.2 (a) and (b) 
respectively for the non-communicating and the communicating cases. A difference 
between the two cases is similar to the case of M=2. In the communicating case, the 
displacement profile is less uniform than that with M=2. There is a clear transition zone 
stretching from the more permeable layer to the less permeable layer. Such a transition can 
be also explained by the crossflow between layers. 
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a)  

b)  

 

Fig 4.2 2D saturation profiles in X Y− plane, T=0.2 pvi, M=1.0 (a) non-communicating 
layer-cake reservoir (by direct calculation of mass balance equation for each layer), (b) 
communicating layer-cake reservoir (by COMSOL).  
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4.2.3 0.25M =  

 

Calculations are then carried out with even smaller mobility ratios, M=0.25 with 

owiworo krkr ,,Μ  selected to be 2, 0.8 and 0.4 respectively. At T=0.2 pvi, the saturation 
profiles at different depths and in the X Y− plane are shown in Fig 4.3a and b. The 
displacement fronts are more non-uniform than those with 1M ≥ . As pointed out in the 
figure, a large water bank and a wide transition zone can be observed. The existence of 
such water banks behind displacement fronts and the transition zone before them may not 
be observed in the averaged saturation profiles (Zhang et al. (2011)).   

In the cases with 1M ≥  the saturation distribution does not provide much information 
about the crossflow between layers since the displacement fronts are relatively even. On the 
other hand, the displacement profile with M=0.25 is highly non-uniform and exhibits a 
large water bank and a wide transition zone. They are clear evidences of crossflow between 
layers. They may provide more insights on the focused inter-layer mass communication. 
Thus, more detailed results with M=0.25 are shown below. 

Saturation profiles at different time with M=0.25 are revealed for the communicating case. 
Fig 4.4a shows the profiles at the interface between the middle and bottom layers while Fig 
4.4b reveals the profiles at the bottom of the reservoir. It can be seen that the water bank 
evolves and moves towards the producer with time. The end of the water bank closer to the 
inlet moves along with the displacement front in the bottom layer, as pointed out in Fig 4.4. 
It indicates that the formation of the water bank is clearly connected with the crossflow 
between neighboring layers.  
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b)  

 

Fig 4.3 (a) Saturation profiles at different vertical positions, (b) 2D saturation profiles in X-
Y plane (by COMSOL). T=0.2 pvi, M=0.25. 
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Fig 4.4 (a) Saturation profiles at the interface between layer 1 and layer 2, (b)Saturation 
profiles at the bottom of the reservoir. M=0.25.  

 

 

 

 

 

72

96



Chapter 4 Water Banks in Viscous Dominant Regimes of Displacement 

73 
 

4.3 Explanation for Existence of the Water Bank 

 

The effects of crossflow between layers can be explained in the following sense: Via the 
interpretation of Eq. (3.28) it is known that the driving force for crossflow is the difference 
of the horizontal variations of accumulated mobility in different layers. In other words, 
water tends to flow from the higher to the lower horizontal mobility variation. Such 
mechanisms may result in uniformity and smoothness of saturation profiles, water banks 
and transition zones. 

The crossflow of water may be illustrated in the following example: (i) At the beginning of 
water injection, the water saturation behind the displacement fronts drops faster 
horizontally in the less permeable layer than that in the more permeable layer . Hence water 
tends to flow from the less permeable layers to the more permeable ones, as seen in Fig 4.5.  
(ii) Ahead of the slower displacement front, the horizontal mobility variation is close to 
zero ( w wis s≈ ). In the neighboring regions of the more permeable layer, where the 
displacement front has already passed, the horizontal mobility variation is considerably 
larger than zero. Thus, water tends to flow from the more permeable layer to the less 
permeable one.  The water bank in Fig. 4.3 and its movement in Fig 4.4 are clear evidences 
supporting the above mechanisms. 

 

 

 

 

Fig 4.5 Iluustration of the crossflow between reservoir layers, arrows indicate water flow 
directions. 
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In order to understand the influence of the mobility ratio on the crossflow, the horizontal 
mobility variation is rewritten as a function of the mobility derivative with respect to 
saturation: 

 

( )
( )2

2         = 1
1

X X w

w

X wor w
w wi w or

or wi

d s
X ds X

K kr ss s M s s
Xs s

∂Λ Λ ∂=
∂ ∂

∂− − − −⎡ ⎤
⎣ ⎦ ∂− −

 

 

It can be seen from this equation that  is more sensitive to  with smaller values of 

M. Hence, larger water-oil mobility ratio enhances the crossflow between layers. The clear 
water bank and the large transition zone in Fig 4.3 and Fig 4.4 may also be attributed to the 
enhanced crossflow due to the small oil-water mobility ratio. 

 

 

4.4 Summary 

Due to the crossflow between layers the displacement profiles of waterflooding are more 
even and smoother in a communicating layer-cake reservoir than those in a non-
communicating layer-cake reservoir. In a communicating layer-cake reservoir, larger 
(larger than 1) values of the end-point mobility ratio (oil to water) lead to more even 
displacement profiles. With small values of the mobility ratio ( 1M < ), water banks behind 
displacement fronts and transition zones before them may be observed. Analysis of the 
mathematical model and the modeling results indicates that water tends to flow from the 
less permeable to the more permeable layers behind displacement fronts, while water tends 
to flow from the more permeable to the less permeable layers ahead of the slower 
displacement fronts, forming water banks and transition zones.  
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Chapter 5 Inclusion of Gravity 

 

The study in this chapter takes gravity effect into consideration in addition to the previous 
study in Chapter 3 and 4. The effect of capillary forces is not considered. The study is 
based on the stratified viscous dominant regime, corresponding to the large value of 
anisotropy parameter. Water is injected parallel to reservoir. Two more dimensionless 
parameters are needed for description of this regime: the gravity-viscous ratio and the fluids 
density ratio. As gravity effect becomes large, the two phases of flow may be completely 
separated by gravity. Our method needs to be modified in order to handle this case.  

 

 

5.1 Introduction 

 

Gravity effects can significantly affect reservoir performance. Gravity has been beneficial 
in the accumulation of hydrocarbon in reservoirs, but it may be positive or negative for 
hydrocarbon recovery. The study about gravity effect on flow behavior in porous media 
generally contains two parts: free-fall gravity drainage and gravity segregation in the 
process of displacement. Cardwell and Parsons (1948) follow the work by Muskat and his 
associates (Muskat and Taylor (1946); Boyer et.al (1947)) and present a theory for 
estimating the rate of free-fall gravity drainage of a liquid out of a sand column. Dykstra 
(1978) expand the work by Cardwell and Parsons and derive the equation for recovery. 
Seven comparisons of recovery are made by the method of Cardwell and Parsons with 
recoveries determined experimentally.  

Gravity segregation in multiphase displacement process is of great significance for 
petroleum industry. Gravity segregation can occur through two different mechanisms. First, 
all phases of flow in the reservoir, possible oil, gas and water, move through the same pores. 

For the second mechanism, all phases are completely separated that some pores carry only 
downward flows while others carry only upward flows. These two mechanisms result in 
substantially different phase velocities (Hales and Cook (2010)). Spivak (1974), related 
with the first mechanism, test waterflooding and gas flooding in a homogeneous anisotropy 
three dimensional reservoir model with gravity effect. Qualitative conclusion of the effect 
from density difference, permeability, production rate on gravity segregation is drawn.
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Lamine et al. (2011) presents a locally conservative cell-based multidimensional upwind 
scheme for hyperbolic flow system with gravity effect in porous media on structured and 
unstructured grids. 

Elliot and Kovscek (2001) and Javad et al. (2011) are numerical and experimental 
simulation of steam assisted gravity drainage (SAGD) process respectively. This process is 
driven by the second mechanism of gravity segregation. Rittirong and Kelkar (2010) 
present an analytical upgridding method to preserve dynamic flow behavior in the 
displacement process where the two phases of flow are completely separated by gravity.  

Dietz (1953), Bear (1972) and Yortsos (1991, 1992) include analysis on both mechanisms.   
Yortsos (1992) present details of analysis on the second mechanism of gravity dominant 
displacement and extend the method derived in Yortsos (1991) to the geometry with dip. 
All his derivations are based on the assumption of vertical equilibrium. Experiments by 
Hales and Cook (2010) cover the two mechanisms.  

Our work in this chapter is similar with Yortsos (1991), with some changes regarding the 
computations of the inter-layer flow. It is shown in numerical simulations that our method 
gives results close to full 2D simulation for even relatively moderate anisotropy ratios.     

The chapter is organized as follows. Section 5.2 describes the theory of the method, 
including reformation of dimensional flow equation into dimensionless form in Section 
5.2.1, asymptotic analysis on current problem in Sections 5.2.2, derivations about reservoir 
of layer-cake structure in Section 5.2.3. Section 5.3 is devoted to a detailed comparison of 
the computational results with 2D simulations in different layered geometries and under 
different flow regimes. Section 5.3.1 introduces the numerical scheme. Cases of only 
existence of gravity and both existences of gravity and inter-layer crossflow are studied in 
Section 5.3.2, 5.3.3 and 5.3.4. Different combinations of gravity-viscous ratio and 
anisotropy ratio are tested in Section 5.3.5. Conclusions are drawn in Section 5.4. 

 

 

5.2 Theory 

 

The study carried out in this chapter is based on the reservoir model and assumptions 
described in Section 1.2.1 and Section 3.2.1. The only difference is that we do not assume 
negligible gravity in this chapter.  
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5.2.1 Dimensionless Description of 2D Waterflooding in Presence of Gravity 

Mass balance and continuity equations are written in Eqs. (1.3)-(1.5). Darcy velocity in 
horizontal direction is expressed in Eq. (1.6) for water phase and Eq. (1.7) for oil phase. 
Since gravity is involved, the expression for vertical Darcy velocity should also include the 
gravity term: 
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where wρ , oρ are density of water and oil respectively; g is gravity acceleration.  

Substitution of expressions of velocities into flow equations leads to a system of equations 
for water saturation ws  and pressure p  .  
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Total mobilities xλ , yλ  are defined in Eq. (1.11).  

By using Eqs. (3.3)-(3.6), we are able to express Eq. (5.1)-(5.2) in dimensionless form.  
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The dimensionless parameter aE  is defined in Eq. (3.9). Two more parameters are needed 
to characterize gravity effect.  
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is the ratio of the gravity and viscous forces; and 

 

o

w

Eρ
ρ
ρ

=
                                                     

(5.4)
 

 

is the density ratio of oil and water. 

The system can also be expressed in terms of dimensionless total velocities XU , YU , as 

Eqs. (3.17)-(3.18). Under the presence of gravity, XU  is defined in the same way as Eq. 

(3.13), but YU  should be defined differently.  

 

( )Y Y g wY oY
PU E E
Y ρ

∂= −Λ − Λ + Λ
∂                                    

(5.5)
 

Dimensionless water velocity can be expressed as:  

 

wX XU FU=
                                                        

(5.6) 
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( )1wY Y g oYU U F E E Fρ= − − Λ                                       (5.7) 

 

It should be noted that, unlike in the case of absence of gravity, wYU  is not proportional to 

YU . The additional term expresses the effect of the buoyancy force: It is proportional to 

1 Eρ−  and, therefore, to the density difference w oρ ρ− . 

The system now becomes 

 

( ) ( )1 0w
X a Y g o

s FU E U F E E F
T X Y ρ

∂ ∂ ∂
⎡ ⎤Φ + + − − Λ =
⎣ ⎦∂ ∂ ∂                        

(5.8)
                  

   

                       
0=

∂
∂+

∂
∂

Y
UE

X
U Y

a
X

                                            
(5.9)

 

 

The 2D waterflooding system described by Eq. (3.12), (5.5), (5.8), (5.9) aims to solve water 
saturation ws , dimensionless pressure P and dimensionless velocities YX UU , . These four 
equations will be implemented in COMSOL to simulate the 2D process of waterflooding. 
Boundary and initial conditions are similar as that for the system of Eq. (3.12), (3.13), 
(3.17), (3.18).  

5.2.2 Asymptotic Analysis 

In this chapter, we carry out the asymptotic analysis in a different way from Chapter 3.  

From continuity equation Eq.(5.9), YU  can be expressed in terms of XU : 

 

a

Y X

a
Y E

WYd
X

U
E

U =′
∂

∂−= ∫0

1

                                        
(5.10) 
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Here expression 
∫

′
∂

∂−
Y X Yd

X
U

0
 is denoted as W . From Eq. (5.5) and (5.10) YP ∂∂  can be 

expressed in terms of W .  

 

(1 )g
Y a

P W E F E F
Y E ρ

∂
⎡ ⎤= − − + −
⎣ ⎦∂ Λ                                 

(5.11) 

 

Dimensionless pressure P  is thus the integral of YP ∂∂  over Y  plus a integration constant
 ( ),C X T :  

 

( ) ( )
0 0

1, 1
Y Y

g
a Y

WP C X T dY E F E F dY
E ρ′ ′⎡ ⎤= − − + −

⎣ ⎦Λ∫ ∫
                

(5.12) 

 

Referring to Darcy’s law Eq. (3.12), the full expression of  XU  can now be written in terms 
of partial derivative with respect to X  of all three terms on the right side of Eq.(5.12):  

 

( )
0 0

1 1
Y Y

X X g
a Y

C WU dY E F E F dY
X E X X ρ

⎛ ⎞⎛ ⎞∂ ∂ ∂′ ′⎡ ⎤= −Λ − − + −⎜ ⎟⎜ ⎟ ⎣ ⎦∂ ∂ Λ ∂
⎝ ⎠⎝ ⎠

∫ ∫  

 

For large values of aE , the term proportional to 1 / aE  may be neglected compared to other 

terms, and expression for XU  may be reduced to 

 

                        
(1 )X X g X

CU E E B
X ρ

∂= −Λ + − Λ
∂                                     

(5.13)
 

 

Here we denote  
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0

Y FB dY
X

∂ ′=
∂∫                                                

(5.14) 

 

Although we neglect the terms proportional to aE1  in the expression of  XU , we cannot 

neglect the value of  YU , which is also proportional to aE1  according to Eq. (5.10). Indeed, 

the mass balance equation (Eq. (5.8)) includes term FUE Ya , which is comparable to other 

terms in this equation. Thus, we cannot eliminate terms including YU  from the system.  

Now, XU  and YU  are both expressed in terms of C X∂ ∂  and ),,( TYXsw , since B  is 

actually a function of water saturation ws . XU  and YU  can also be expressed in terms of 
the dimensionless injection velocity. Referring to Eqs. (3.12), (3.23), since the value of 

C X∂ ∂  is independent of Y, it can be expressed explicitly in terms of injV :  

 

1

0
1

0

(1 )inj g X

X

V E E B dYC
X dY

ρ− + − Λ∂ =
∂ Λ

∫

∫

 

 

Now it is possible to rewrite XU  and YU  in terms of injV  by substituting the expression for 

C X∂ ∂  into Eq. (5.13) and (5.10):  

 

1

0
1 1

0 0

(1 )
Xinj

X X g

X X

B dYV
U E E B

dY dY
ρ

⎡ ⎤⎛ ⎞Λ
⎢ ⎥⎜ ⎟= Λ + − −
⎢ ⎥⎜ ⎟

⎜ ⎟Λ Λ
⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫ ∫                        
(5.15)

 

 

1

0
1 10

0 0

1 (1 )
Y Xinj

Y X g
a X X

B dYV
U E E B dY

E X dY dY
ρ

⎧ ⎫⎡ ⎤⎛ ⎞Λ∂ ⎪ ⎪⎢ ⎥⎜ ⎟ ′= − Λ + − −⎨ ⎬
⎢ ⎥⎜ ⎟∂ ⎜ ⎟Λ Λ⎪ ⎪
⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

∫
∫

∫ ∫           
(5.16) 
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Substitution of Eqs. (5.15) and (5.16) into Eq. (5.8) gives
  

 

 

1

0
1 1 10

0 0 0

1

0
10

0

(1 )

(1 )

Y XX inj X injw
g X

X X X

Y X
g X

X

B dYFV Vs F dY E E F B
T X Y X XdY dY dY

B dY
E E F B dY

Y X dY

ρ

ρ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ΛΛ Λ∂ ∂ ∂ ∂ ∂
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟′Φ + − + − Λ −
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟Λ Λ Λ
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞Λ∂ ∂⎪ ⎢ ⎥⎜ ⎟ ′+ − Λ −⎨
⎢ ⎥⎜ ⎟∂ ∂ ⎜ ⎟Λ⎪
⎢ ⎥⎝ ⎠⎣ ⎦⎩

∫
∫

∫ ∫ ∫

∫
∫

∫

( ) ( )1 0a g oE E E F
Yρ

⎪ −⎬
⎪
⎭

∂− Λ =
∂      

(5.17)

  

This is a closed equation for water saturation ),,( TYXsw , since injV  is known in our study . 

The value of B  is expressed by Eq. (5.14).  

Now let us analyze the terms associated with gravity (proportional to (1 )gE Eρ− ) in Eq. 

(5.17). In the definition of gE  (Eq. (5.3)), the characteristic pressure difference 0p is usually 

of the order of several atmospheres to several MPa, and the height of a reservoir is from 
several ten to several hundred meters. Thus, gE  is usually of the order of 0.1~1 or less. 

( )1 Eρ−
 
may be viewed as the ratio of density difference of the two phases (Eq.(5.4)). It is 

of the order of 0.1. So the product of gE  and ( )1 Eρ−
 
is of the order of 0.01~0.1 or even 

less. When it is very small, the terms only proportional to (1 )gE Eρ−  can be neglected 

compared to other terms. However, this is not applied to the term proportional to 

( )1a gE E Eρ− , which can be large due to large value of aE . Gravity thus produces 

buoyancy, which is due to density difference of the two phases of flow, for the lighter phase. 

In the case of small value of  ( )1gE Eρ− , Eq. (5.17) can be reduced to 
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( ) ( )1 10

0 0

1 0
YX inj X injw

a g o

X X

V Vs F F dY E E E F
T X Y X YdY dY

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞Λ Λ∂ ∂ ∂ ∂ ∂
⎢ ⎥⎜ ⎟ ⎜ ⎟ ′Φ + − − − Λ =
⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟Λ Λ
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∫ ∫

 

(5.18) 

 

Such a reduction, when possible, greatly simplifies analysis and solution of the equation.  

 

 

5.2.3 A Layer-Cake Reservoir 

 

In a layer-cake model of reservoir described in Section 3.2.7, we can discretize Eqs.(5.17)-
(5.18) into multiple 1D quasi-linear equations, by approximating the derivative with respect 
toY  to be the difference between two layers, for example, between layer m  and layer 

)1( −m , divided by the height fraction mα  and replacing integrals over Y  by sums. The 
number of the 1D equation is equal to the number of layers in the reservoir.  

Thus the full expressions for dimensionless total velocities (Eqs. (5.15)-(5.16)) are changed 
to  

 

1
, ,

, ,
1 1

(1 )

N

j j
inj j

X m X m g mN N

X j j X j j
j j

B
V

U E E Bρ

α

α α

=

= =

⎡ ⎤⎛ ⎞

⎢ ⎥⎜ ⎟

⎢ ⎥⎜ ⎟= Λ + − −
⎢ ⎥⎜ ⎟Λ Λ

⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦

∑

∑ ∑

 

 

, ,
, 1

, ,
1 1

, ,
1 1

1 (1 )

N

X j n X n nm m
X j inj g n

Y m j j X j jN N
j ja a

X n n X n n
n n

BV E
U E B

E X E Xρ

α
α α

α α
=

= =

= =

⎛ ⎞ ⎛ ⎞Λ Λ
⎜ ⎟ ⎜ ⎟Λ∂ ∂
⎜ ⎟ ⎜ ⎟= − + − − Λ

∂ ∂⎜ ⎟ ⎜ ⎟Λ Λ
⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑ ∑

∑ ∑  

(5.19) 

83

107



Chapter 5 Inclusion of Gravity 

84 
 

Here  

1

m

m j j
j

B F
X

α
=

∂=
∂∑ . 

 

The resulting system of one-dimensional equations produced from Eq. (5.17) with regard to 
water saturations ,w ms  in all layers is:  

,
,, 1

,

, ,
1 1

,
, 1

,

, ,
1 1

(1 )

(1 )

N

X n n n
X m injw m n

m m g X m m mN N

X n n X n n
n n

N

X n n n
X j inj n

m j g X j jN N

X n n X n n
n n

BVs
F E E F B

T X X

BV
G E E B

X

ρ

ρ

α

α α

α
α

α α

=

= =

=

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞Λ
⎢ ⎥⎜ ⎟ ⎜ ⎟Λ∂ ∂ ∂
⎢ ⎥⎜ ⎟ ⎜ ⎟Φ + + − Λ −

∂ ∂ ∂ ⎢ ⎥⎜ ⎟ ⎜ ⎟Λ Λ
⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎛ ⎞Λ
⎢ ⎜ ⎟Λ∂
⎢ ⎜ ⎟− − − Λ −

∂ ⎢ ⎜ ⎟Λ Λ
⎜ ⎟⎢
⎝ ⎠⎣

∑

∑ ∑

∑

∑ ∑

( )

1

,1
, 1

1 ,
1

, ,
1 1

, , 1 1

(1 ) /

1 0

m

j

N

X n n nm
X j inj n

m j g X j j mN N
j

X n n X n n
n n

o m m o m m
a g

m

BV
G E E B

X

F F
E E E

ρ

ρ

α
α α

α α

α

=

−
=

−
=

= =

− −

⎧ ⎤

⎪ ⎥
⎪

⎥⎨

⎥⎪

⎥⎪ ⎦⎩

⎫⎡ ⎤⎛ ⎞Λ ⎪⎢ ⎥⎜ ⎟Λ∂ ⎪
⎢ ⎥⎜ ⎟− − − Λ − ⎬∂ ⎢ ⎥⎜ ⎟ ⎪Λ Λ

⎜ ⎟⎢ ⎥⎪⎝ ⎠⎣ ⎦⎭

Λ − Λ
− − =

∑

∑

∑

∑ ∑

       (5.20) 

 

Similar as the discussion about Eq. (3.33) in Section 3.2.7, when ,Y mU  given by Eq. (5.19) 

is larger than zero, it describes the outflow from layer  m to layer 1m + . In this case it is 
logical to set m mG F= . However, if it is smaller than zero, this term describes the inflow 

from layer 1m +  to layer m. Then it should be set 1m mG F += . 1mG − is determined in a 
similar way.  

Eq. (5.20) includes second order derivatives with respect to X . For example, the forth term 
on the left hand side can be expanded as  
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( ) ( ) ( )
2

,
, , 2

1 1

1 1
m m

X m m n n
g X m m m g n X m m n

n n

F F FE E F B E E F
X X X Xρ ρ α α

= =

∂Λ⎡ ⎤∂ ∂ ∂− Λ = − + Λ
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∑ ∑  

 

Gravity plays the role of “diffusion”, smearing the averaged displacement front. This effect 
will be seen on the average saturation profile in Section 5.3.  

Eq. (5.20) represents a system of parabolic equations. An initial condition and two 
boundary conditions at both ends of the interval of interest are needed for each of the 
equations. The initial condition is: mwimw sXs ,, )0,( = , where ,wi ms  is initial (most commonly, 

irreducible) water saturation in layer m . At the inlet ( 0=X ), we set mormw sTs ,, 1),0( −= , 

where mors ,  is the residual oil saturation in layer m . The outlet ( LX = ) is an open 

boundary, where after water breaks through water saturation mws , , velocities mwYmwX UU ,, ,

and velocity derivatives YUXU mwYmwX ∂∂∂∂ ,, ,  are unknown. We need to add an 

artificial boundary where mws ,  is known. We extend the interval of interest, for example to 

5 , and we should make sure that water does not break through at the new outlet during the 
whole process of waterflooding so that we can set mws ,  to be mwis ,  at the new outlet. 

For parabolic transport problems, another commonly used boundary condition at outlet is 
convective outflow. Diffusion is set to be zero at outlet in this case. Bjørnarå and Aker 
(2008) includes capillary pressure in the both 1D and 2D waterflooding problems and 
applies convective outflow boundary condition. However, in our work, we stick to the 
method of artificial boundary.  

Under small gravity numbers, when Eq. (5.17) may be reduced to Eq.(5.18), the 
corresponding system of one-dimensional equations becomes hyperbolic and is greatly 
simplified: 

( )

1
, ,

1
1 1

, ,
,, 1 1

,
1

, , 1 11 0

m m
X j inj X j inj

m j m jN N
j j

X n n X n n
X m injw m n n

m m N
m

X n n
n

o m m o m m
a g

m

V V
G G

X X
Vs

F
T X

F F
E E Eρ

α α
α α

αα

α

−

−
= =

= =

=

− −

⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟Λ Λ∂ ∂
⎜ ⎟ ⎜ ⎟−

∂ ∂⎛ ⎞ ⎜ ⎟ ⎜ ⎟Λ Λ
⎜ ⎟ ⎜ ⎟⎜ ⎟Λ∂ ∂ ⎝ ⎠ ⎝ ⎠

⎜ ⎟Φ + −
∂ ∂ ⎜ ⎟Λ

⎜ ⎟

⎝ ⎠

Λ − Λ
− − =

∑ ∑

∑ ∑

∑

   

(5.21) 
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The choice of mG  is done in the similar way as for Eq.(5.20). Positive value of ,Y mU  means 

outflow from layer m to layer 1m + . In this case, we should set m mG F= . Otherwise this 

term describes the inflow from layer 1m +  to layer m. Then we should be set 1m mG F += . 

1mG −  is determined in a similar way. 

An initial condition and a boundary condition are needed for solving each hyperbolic 
equation generalized by Eq. (5.21). The initial condition is: mwimw sXs ,, )0,( = , where mwis ,  is 

initial (most commonly, irreducible) water saturation in layer m . At the inlet ( 0=X ), we 
set mormw sTs ,, 1),0( −= , where mors ,  is the residual oil saturation in layer m .  

 

 

5.3 Numerical Study 

 

In sections 5.3.2-5.3.4, we only consider small value of gE  resulting negligibly small value 

of (1 )gE Eρ− , since the value of (1 )gE Eρ−  is mainly determined by the value of gE . The 

reduced form of equations (Eq.(5.21)) is therefore used in our 1D calculation. Section 5.3.5 
extends the calculations onto mediate gravity effect by using mediate value of gE  and large 

value of aE  respectively. The complete system (Eq. (5.20)) is used for cases with mediate 
value of gE . The results are compared with the complete 2D simulation of waterflooding, 

which is carried out by application of COMSOL solving the system of equations Eq. (3.12), 
(5.5),(5.8), (5.9). Average water saturation is given by Eq.(3.31). The dimensional 
parameters of our 2D model of reservoir are listed in Table 5.1.  

 

 

5.3.1 Practical Aspects of Numerical Computations 

 

An explicit finite difference method is applied to solve systems Eq. (5.20) and (5.21). The 
distance step is chosen to be 01.0=XΔ  and the time step to be 0025.0=TΔ . The method 
is implemented in the Intel Fortran program. Convergence is checked by varying the 
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distance and the time steps. Corey power law (Eqs. (1.1)-(1.2)) is used to calculate relative 
permeabilities.  

 

 

L  (characteristic length, m ) 200 

H  (characteristic height, m ) 50 

0p (characteristic pressure difference, Pa ) 6105×  

0φ (characteristic porosity) 0.2 

0xk (characteristic permeability, 2m ) 132 10−×  

0 yk (characteristic permeability, 2m ) 122 10−×  

wμ (characteristic viscosity, 2m
sN ⋅ ) 

31 10−×  

0t (characteristic time, s ) 2
60

0 0

8 10w

x

L
k p

μ φ = ×  

wρ (density of water, 3m
kg ) 

1000 

oρ (density of oil,  3m
kg ) 

800 

injv (injection velocity, /m s ) 
65 10−×  

 

 

Table 5.1 Dimensional parameters of the two-dimensional model of reservoir. 
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5.3.2 A Single-Layer Reservoir 

We first study the displacement in a single-layer homogeneous reservoir. Since gravity 
segregates flows in vertical direction, water saturation is different at different heights even 
in such a reservoir. Thus, in this study we can see the effect of gravity without the 
interlayer cross flow. Subdivision of the reservoir into small sub-layers is needed in order 
to catch the effect of gravity segregation. We divide the whole reservoir into 1, 2, 5, 10 
uniform sub-layers respectively. The corresponding dimensionless parameters of Table 5.1 
are shown in Table 5.2. The 2D saturation distribution generated by COMSOL is shown in 
Fig. 5.1. Results by our approach are compared with the results of two-dimensional 
simulations in Fig. 5.2. 

 

 

 

Dimensionless parameters Value 

Fraction of thickness α  1 

Irreducible water saturation wis  0.2 

Residual oil saturation ors  0.2 

Relative water permeability at residual oil 
saturation workr  0.8 

Relative oil permeability at irreducible water 
saturation owikr  0.8 

Dimensionless permeability in x-direction XK  1 

Dimensionless porosity Φ  1 

Dimensionless dynamic viscosity of oil oΜ  3 

Dimensionless injection velocity injV  1 

Anisotropy ratio aE  160 
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Gravity-viscous ratio gE  0.1 

Density ratio Eρ  0.8 

 

 

Table 5.2 Dimensionless parameters of the one-layer reservoir. 

 

 

 

 

 

Fig 5.1 Water saturation distribution for 2D waterflooding simulation at one-layer 
homogeneous reservoir, time=0.3 pvi. The horizontal axis is the dimensionless distance 
along the reservoir, and the vertical axis is the dimensionless height (across the reservoir). 
Ea =160, Eg=0.1, Eρ =0.8.  
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On the saturation profiles by 1 and 2 sub-layers algorithms (Fig 5.2a), there are fairly sharp 
displacement fronts (some smearing is due to numerical diffusion), which is very different 
from the averaged two-dimensional profiles. As the number of sub-layers increases to 5 and 
10, smooth variation of the saturation becomes more and more obvious and the recovery 
becomes also closer to the results of 2D simulation (Fig. 5.2b). For the 10 sub-layer case, 
the recovery difference with the 2D simulation is less than 3%. Computations with even 
larger number of sub-layers are shown in Fig. 5.2c-d. Subdivision into 40 sub-layers clearly 
produces the best results, but the computations also consume much more CPU time (1.48s) 
than the computations for 10 sub-layers (0.21s). There is no reason to increase the number 
of sub-layers after 1% error in accuracy of recovery.  

 

a)  

b)  
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c)  

 

 

d)  

 

Fig 5.2 Comparison of the results obtained by our method and that by the 2D simulation of 
a one-layer homogeneous reservoir. Ea =160, Eg=0.1, Eρ =0.8. (a), (c) Average water 

saturation profiles at time=0.3 pvi, (b), (d) oil recovery curves. “1 layer” means the result is 
based on the natural layer of the reservoir model, which is one layer.  
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1D simulations implemented in FORTRAN are much faster than the 2D computations by 
COMSOL. Injection of 0.3 porous volumes as computed for building Fig. 5.1 (direct 
UMFPACK solver in COMSOL) takes ca. 700 seconds, while the corresponding 
FORTRAN computations take only 1.48 seconds for the 40 sub-layer case. 

It is also important to test the mass error for our discretization scheme. The mass error is 
equivalent to the volume error in these computations, since the flow is incompressible. It is 
calculated as: (current volume + production volume – initial volume – injected volume) / 
(initial volume + injected volume). For all the results shown in Fig. 5.2, the mass error is 
less than 1%.  

 

 

5.3.3 A Two-Layer Reservoir 

 

In this section, we study the gravity effect under existence of the inter-layer crossflow. We 
use the same parameters in Table 5.1 for the two-layer communicating reservoir, so that 

, ,a gE E Eρ  are the same as in the previous case. Other dimensionless parameters are listed 

in Table 5.3. The 2D saturation distribution is shown in Fig. 5.3.  

We divide layer 1 (the small layer) into1, 3 and 6 uniform sub-layers and divide layer 2 (the 
large layer) into 1, 6 and 12 uniform sub-layers correspondingly. From Fig. 5.4, it is seen 
that our approximate approach produces the saturation profiles close to those of the 2D 
simulation when the number of total sub-layers exceeds 9, which corresponds to 3 sub-
layers for layer 1 and 6 sub-layers for layer 2. The height fraction of each sub-layer is 
around 0.1.  
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Dimensionless parameters Layer 1 Layer 2 

Fraction of thickness α  0.33 0.67 

Irreducible water saturation wis  0.2 

Residual oil saturation ors  0.2 

Relative water permeability at residual oil 
saturation workr  0.8 0.8 

Relative oil permeability at irreducible water 
saturation owikr  0.8 0.8 

Dimensionless permeability in X -direction XK  0.6 1.2 

Dimensionless porosity Φ  1 

Dimensionless dynamic viscosity of oil oΜ  3 

Dimensionless injection velocity injV  1 

Anisotropy ratio aE  160 

Gravity-viscous ratio gE  0.1 

Density ratio Eρ  0.8 

 

 

Table 5.3 Dimensionless parameters of the two-layer reservoir. 
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Fig 5.3 Water saturation distribution for 2D waterflooding simulation at a reservoir 
consisting of two fully communicating layers, time=0.3 pvi. The horizontal axis is the 
dimensionless distance along the reservoir, and the vertical axis is the dimensionless height 
(across the reservoir). Ea =160, Eg=0.1, Eρ =0.8 

 

 

a)  
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b)  

 

Fig 5.4 Comparison of the results obtained by our method and that by the 2D simulation of 
a two-communicating-layer reservoir. Ea =160, Eg=0.1, A=0.8 (a) Average water saturation 
profiles at time=0.3 pvi, (b) oil recovery curves. “2 layers” means the result is based on the 
natural layers of the reservoir model, which are two layers. 

 

Sections 5.3.2 and 5.3.3 show that the more sub-layers we use the better results we get. 
When the height fraction of each sub-layer does not exceed ca. 0.1 of the total height, our 
approach produces acceptable results.  

 

 

 

5.3.4 A Ten-Layer Reservoir 

As a better approximation to a more realistic case, we study the saturation distribution in a 
ten-layer reservoir with permeability increasing from the bottom to the top. We use the 
basic parameters from Table 5.1, and the dimensionless parameters are listed in Table 5.4.  

 

95

119



Chapter 5 Inclusion of Gravity 

96 
 

Dimensionless parameters Value 

Fraction of thickness α  0.1 

Irreducible water saturation wis  0.2 

Residual oil saturation ors  0.2 

Relative water permeability at residual oil 
saturation workr  

0.8 

Relative oil permeability at irreducible water 
saturation owikr  

0.8 

Dimensionless permeability in X -direction XK  0.5; 0.6; 0.7; 0.8; 0.9; 
1.1; 1.2; 1.3; 1.4; 1.5 

Dimensionless porosity Φ  1 

Dimensionless dynamic viscosity of oil oΜ  3 

Dimensionless injection rate injV  1 

Anisotropy ratio aE  160 

Gravity-viscous ratio gE  0.1 

Density ratio Eρ  0.8 

 

 

Table 5.4 Dimensionless parameters of the ten-layer reservoir. 

 

 

The reservoir is split into 10 and 20 sub-layers. Comparison of the results obtained by our 
1D method and the results from the complete 2D simulation is shown in Fig. 5.6. Splitting 
the reservoir into 20 sub-layers gives better approximation to the averaged saturation 
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profile and recovery prediction than in the case of 10 sub-layers. But the results obtained in 
the latter case are acceptable, with recovery difference less than 3%. 

 

 

 

 

 

Fig 5.5 Water saturation distribution for 2D waterflooding simulation at a reservoir 
consisting of ten fully communicating layers, time=0.3 pvi. The horizontal axis is the 
dimensionless distance along the reservoir, and the vertical axis is the dimensionless height 
(across the reservoir). Ea =160, Eg=0.1, Eρ =0.8 
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a)  

 

 

b)  

 

 

Fig 5.6 Comparison of the results obtained by our method and that by the 2D simulation of 
a ten-communicating-layer reservoir. Ea =160, Eg=0.1, Eρ =0.8 (a) Average water 

saturation profiles at time=0.3 pvi, (b) oil recovery curves. “10 layers” means the result is 
based on the natural layers of the reservoir model, which are ten layers.   
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5.3.5 Larger Gravity Effect 

 

In this section, we study cases with large gravity effect, by comparing the computations 

with small gE  but large ( )1a gE E Eρ−  by solving Eq. (5.21) and the computations with 

mediate gE  by solving the complete system (Eq.(5.20)). We also compare the effect on 

flow behavior produced by terms having only ( )1gE Eρ−  and term having ( )1a gE E Eρ− . 

All simulations are based on one-layer homogeneous reservoir model. Its dimensional 
parameters of properties are listed in Table 5.1. When gE  is small, the gravity effect is only 

related with the terms whose characteristic scale is ( )1a gE E Eρ− . This value is equal to 

3.2 in simulations represented in Fig 5.1 and 20 in simulations shown in Fig 5.7. The value 
of 0.1gE =  is the same in both cases.  

 

 

 

Fig 5.7 Water saturation distribution for 2D waterflooding simulation at one-layer 
homogeneous reservoir, time=0.2 pvi. The horizontal axis is the dimensionless distance 
along the reservoir, and the vertical axis is the dimensionless height (across the reservoir).  
Ea =1000, Eg=0.1, Eρ =0.8.  
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Comparing Figs 5.1 and 5.7, we see that when ( )1a gE E Eρ−
 
increases, smooth variation 

of saturation due to gravity effect becomes more obvious. In Fig 5.7, there is some 
numerical error on the displacement front, because when gravity effect increases, the 
displacement process becomes unstable. 

However, when ( )1a gE E Eρ−  is too large, water and oil become completely separated by 

gravity. At the height where hY ≤ , there is only water; where hY > , there is only oil. The 
macroscopic interface h is a function of X and T. The water saturation is expressed as 

 

( )
( )TXhY

TXhY
s

s
s

or

wi
w ,1

,0
1 >≥

≤≤

⎩

⎨

⎧

−
=  

 

Since in the limit of infinite buoyancy displacement is reduced to motion of the water-oil 
interface, for the conditions approaching this limit the two-dimensional simulations based 
on finite differences may experience problems. In particular, when the value of 

( )1a gE E Eρ−
 
is above 30, convergence in the COMSOL simulations described above 

cannot be obtained.  

Now let us consider the case where gE  is of the order of 1. In Fig 5.8, the product of 

( )1a gE E Eρ−
 
is the same as in Fig 5.1, but gE is ten times as larger, which corresponds to, 

for example, one fifth 0p  and two times H  from Table 5.1, and aE  is one tenth as the case 
shown in Fig 5.1. We notice that the difference between the Fig 5.1 and Fig. 5.7 is much 
larger than that between Fig 5.1 and Fig 5.8. Thus, the buoyancy term proportional to 

( )1a gE E Eρ−  has more influence on the flow than the remaining gravity terms.    
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Fig 5.8 Water saturation distribution for 2D waterflooding simulation at one-layer 
homogeneous reservoir, time=0.3 pvi. The horizontal axis is the dimensionless distance 
along the reservoir, and the vertical axis is the dimensionless height (across the reservoir). 
Ea =16, Eg=1, Eρ =0.8.  

 

The saturation profile presented in Fig 5.9 is based on 50=aE , which is the lowest value 
of anisotropy ratio for the validity of perfect inter-layer communication or equivalently 

vertical equilibrium (See Fig 3.9). ( )1gE Eρ−  is equal to 0.2, which is comparable to other 

terms. ( )1a gE E Eρ−
 
is equal to 10. 20 sub-layers are used for the 1D calculation. Results 

by our 1D method are compared with those by 2D simulation in Fig 5.10. The oil recovery 
curve fits well to the 2D simulation (Fig 5.10b). On average water saturation profile (Fig 
5.10a), full equation (Eq.(5.20)) generates more “smoothing” variation on displacement 
front than reduced equation (Eq.(5.21)).  
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Fig 5.9 Water saturation distribution for 2D waterflooding simulation at one-layer 
homogeneous reservoir, time=0.3 pvi. The horizontal axis is the dimensionless distance 
along the reservoir, and the vertical axis is the dimensionless height (across the reservoir). 
Ea =50, Eg=1, Eρ =0.8.  

 

 

a)  
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b)  

 

Fig 5.10 Comparison of the results obtained by our method and that by the 2D simulation 
of a one-layer homogeneous reservoir. Ea =50, Eg=1, Eρ =0.8 (a) Average water saturation 

profiles at time=0.25 pvi, (b) oil recovery curves. “reduced” means the solution is based on 
reduced form of the flow equation (Eq. (5.21)); “full” means the solution is based on full 
form of the flow equation (Eq.(5.20) ).  

 

 

5.4 Summary 

 

We have developed a fast semi-analytical 1D upscaling method for two-phase immiscible 
incompressible flows in a stratified reservoir of a viscous dominant regime with gravity 
effect. The method is applied to the cases of high anisotropy ratios (very good 
communication between layers), small to moderate gravity numbers. For the waterflooding 
problems in well-defined multilayer reservoirs, the results obtained by our method are close 
to the results obtained by the complete 2D displacement simulation. As gravity effect 
becomes large, the error of our method increases, but is still within an acceptable range. 
Partly it is explained by the fact that the gravity effect changes the type of an averaged 1D 
system for flow in the layers. This system is hyperbolic for negligibly small gravity 
numbers, but it becomes parabolic for moderate gravity numbers. In this sense, the average 
gravity acts similar to diffusion (or the Taylor dispersion). This creates problems and 
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instabilities in the simulations (also in the simulations based on the commercial software 
like COMSOL). Generally, the contribution of the whole term (1 )g aE E Eρ−  is higher than 

the contribution of the term (1 )gE Eρ− . 

Subdivision onto many sub-layers is needed to catch the effect of gravity segregation 
within each single layer. Our calculations indicate that when the height fraction of each 
sub-layer is around 0.1 of the total height, the results are comparable with the results of the 
complete 2D simulations.  
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Chapter 6 Streamline Simulation 

 

In Chapter 3 and Chapter 5, a method for reduction of two-dimensional displacement 
problem into multiple one-dimensional problems in a well-defined layer-cake reservoir 
model under the assumption of perfect vertical communication (or equivalently vertical 
equilibrium) is introduced. In this chapter it is shown that it is possible to extend this 
method onto three-dimensional reservoir models by application of streamline simulation.  

The streamline simulator used in this thesis is made by the Chemical Engineering 
Department, University of Southern California, USA. It is only used for generating 
streamline paths. The rest of the algorithm was specially produced for this thesis.  

 

 

6.1 Introduction 

 

The key idea of the streamline simulation method is to reform the governing system of 
equations for fluid motion on a full 3D space into a number of 1D problems, by 
transformation of the 3D problem from space domain to the domain of time-of-flight (TOF). 
The application of TOF eliminates the necessity of keeping track of the geometry. The 
space coordinate in conventional streamline simulation is the time-of-flight variable (Datta-
Gupta (2000)).  

The number of the 1D problems is equal to the number of streamlines. The 1D equations 
are to be solved along streamlines. Solution for the pressure field generates the paths of the 
streamlines. Flows are moved along the natural streamline grids rather than between 
discrete background grid blocks, as in conventional methods. The main advantage of the 
streamline technique is that very large time steps can be taken for updating pressure field, 
which means that the pressure field, equivalently the streamline paths, only needs to be 
updated a few times throughout a displacement process. In this sense, streamline simulation 
method is orders of magnitude faster than conventional methods (King and Datta-Gupta 
(1998)).  

The TOF concept has been used in the ground water study as a method for calculating the 
capture radii of wells (Shafer (1987)). King et al. (1993) and Datta-Gupta and King (1995) 
have used the TOF concept for modeling flow in oil reservoirs. The details of development 
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in the streamline approach can be found in Batycky (1997) and Thiele (1991). Datta-Gupta 
(2000) produced an excellent review on the application of streamline simulators. 

Streamline simulation is able to solve the problems of multiphase displacement, tracer flow 
(Batycky (1997)) and multicomponent flow (Mallison (2004); Nielsen (2010)).  

The accuracy of streamline simulation depends not only on the algorithm applied to 
equations along streamlines, but also the techniques for mapping variables, for example 
saturations, between regular and irregular grids on streamlines and between streamlines and 
background grid blocks. Mallison (2004) make a thorough comparison of various mapping 
methods and introduce Kriging interpolation into the mapping from streamlines to 
background grid blocks. This reduces the mass error and the numerical diffusion.  

One phenomenon that often acts across the streamlines is the effect from gravity, but the 
propagation of the fluids along the streamlines does not account for the gravity effect. 
Therefore, the conventional streamline simulators often underestimate the gravity effect. To 
properly account for the gravity crossflow, operator splitting is a commonly used approach.  
(Batycky (1997); Berenblyum (2004); Nielsen (2010); Jessen and Orr (2004)). 

In this chapter, the vertical upscaling method for two-phase immiscible flows (Chapter 3 
and Chapter 5) is applied to streamline simulation. In this way, we are able to solve a full 
3D problem by means of 1D equations under the assumption of perfect inter-layer 
communication. However, the application of streamlines in our study is different from the 
conventional ways. We produce streamlines basing on the vertically averaged properties of 
the 3D reservoir model and thus treat single streamline as a cross-section surface, which is 
a 2D geometry, of the 3D model. The previously developed upscaling method is then 
implemented to each cross-section surface. Emanuel and Milliken (1997) propose a similar 
implementation for a 2D layered streamtube model of reservoir. But the layers are assumed 
to be non-communicating and the displacement problem is solved by the Dykstra-Parsons 
method.  

It should be noted that the calculation carried along streamlines is based on the arc length of 
streamlines, but not TOF. Therefore gravity can be included without the application of the 
operator splitting approach. The cases where the gravity is included and where it is 
excluded are studied in this chapter.  

The chapter is organized as follows. Section 6.2 describes briefly the theory of streamline 
simulation. Section 6.3 describes the implementation of the vertical upscaling method to 
streamline simulation, including the change of flow equations because the volume of 
streamline is not uniform along the path of streamline. Section 6.4 shows comparison of the 
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computational results by the combined streamline method and 3D finite difference method.  
Conclusions are drawn in Section 6.5. 

 

 

6.2 Brief Introduction into the Streamline Simulation Method 

 

The streamline simulation method can solve multidimensional flow problems. First, the 
pressure field is found basing on the known/initial saturation field. Then the velocity field 
is calculated and the streamline paths are generated. The saturation field is advanced along 
streamlines. The values of the renewed saturation field need to be mapped from the 
streamlines to the real geometry in order to calculate the new pressure field, to update 
streamlines and so on.  

In this section, we show how the streamlines are located on the background grid blocks in 
the reservoir. We also introduce the concepts of the time-of-flight and the volume of a 
streamtube, as well as the mapping method for saturation between streamlines and 
background grid blocks.  

 

 

6.2.1 Streamline and Streamtube 

Streamlines are a family of curves that are instantaneously tangent to the velocity vector of 
the flow. They show the direction a fluid element will travel in at any point in time. It is a 
numerical description of the flow paths from a source (injector) to a sink (producer) in a 
reservoir model. In two dimensions the streamlines may be found from a stream function 
equation. The lines of constant stream function values form the streamlines and the 
boundaries of streamtubes (Emanuel and Milliken (1997)). 

 In streamline simulation, streamlines are located in the flow domain which is usually 
divided into a number of grid blocks for the purpose of calculation. In this thesis, we call 
them background grid blocks, which may be 1D, 2D or 3D geometry, to distinguish them 
from the grids on streamlines, which are one-dimensional. See Fig 6.1 for more details. The 
segments of streamlines are usually approximated as straight lines.  
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The principal developments of streamtube methods were first applied to model 
displacement process in porous media by Higgins and Leighton (1962).   

In our work, a 3D reservoir model is studied, so the streamtubes are produced in three 
dimensions. The flow domain is divided into a number of streamtubes (Datta-Gupta (2000)). 
The volumes of all the streamtubes sum up to be the volume of the whole flow domain. In 
the streamline simulation, streamlines are considered as central curves of the corresponding 
streamtubes (Batycky (1997)). So the number of streamlines in a specific flow domain is 
equal to the number of streamtubes. Fig 6.2 is the illustration of streamtubes and 
streamlines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.1 Illustration of background grid blocks in of the reservoir model and paths of 
streamlines. Blue squares, which are numbered by �-�, represent background grid blocks 
in the reservoir model. The black lines represent segments of the streamline. They form the 
path of streamlines. ξΔ  is arc length of the segments, while τΔ  is the TOF that the flow 
need to travel the distance of ξΔ . extranceξ  is the location of arc length on streamlines where 
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flow goes into the background grid. exitξ  is the location of arc length on streamlines where 
flow goes out of the background grid. 

 

 

 

 

 

 

                                         

 

 

 

Fig 6.2 Illustration of streamtube and streamline. The object formed by black lines is a 
streamtube, which is a) three dimensional or b) two-dimensional. The solid blue lines 
represent streamline, which is taken as the central axis of corresponding streamtube. 
Dashed blue lines form the cross-section surface of the reservoir. The red lines form the 
cross-section plane of the streamtube, which is perpendicular to the streamline.  

 

 

6.2.2 Time-of-Flight 

The time-of-flight (TOF) is the time required for total flow, water and oil in this chapter, to 
propagate from location 1ξ  to location 2ξ  along a streamline based on the velocity field 
along the streamline. Mathematically, TOF,τ , is defined as:  

 

∫=→
2

1
21 )(

)(ξ

ξξξ ξ
ξ
ξφτ d

U
r

                                                     

(6.1) 

a)  b) 
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where ξ  is arc length of streamline, ( )U ξ
r

 is the total velocity of all phases of the flow and 

)(ξφ  is porosity. Operator  means the length of a vector. ( )U ξ
r

 is a vector, whose 

dimension in Cartesian coordinates is equal to the dimension of the reservoir model. 
According to definition of a streamline, ( )U ξ

r

 is parallel to it. ( )U ξ
r

 and )(ξφ  may vary 
along the streamline.  

 

 

6.2.3 Volume of a Streamtube 

 

The geometry of streamtubes depends on the flow path. The area of the streamtube cross-
section ( )stA ξ  may vary along the central streamline.  

When the flowrate carried by streamtubes (or corresponding streamlines) needs to be 
quantified, the volume of streamtubes is needed. The volume of streamtube from a location 

1ξ  to location 2ξ  on the streamline is given by:  

 

2

1 2
1

( ) ( )st stV A d
ξ

ξ ξ ξ
φ ξ ξ ξ→ = ∫                                           

(6.2) 

 

where ξ  is arc length of the streamline, the area of cross-section of streamtube ( )stA ξ and 
porosity )(ξφ  may vary along the streamline. Superscript st  indicates streamtube.  

Let us distinguish between the two concepts: cross-section of the reservoir and cross-
section of a streamtube. Fig 6.2 tells the difference. All the cross-sections of a streamtube 
are perpendicular to the corresponding streamline. 

Calculation of streamtube volume has been greatly facilitated by the introduction of the 
TOF concept that has eliminated the need to keep track of the streamtube geometry (Datta-
Gupta (2000)). For incompressible immiscible flows, volume flow rate in each streamtube 
is constant, 
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( ) ( )st stq A Uξ ξ=                                               (6.3) 

 

so Eq.(6.2) can be rewritten as:  

 

2

1 2 1 2
1

( )
( )

st
st stqV d q

U
ξ

ξ ξ ξ ξξ
φ ξ ξ τ

ξ→ →= =∫                                       (6.4) 

 

 

6.2.4 Mapping Saturation from Streamlines to Background Grid Blocks 

 

The properties of background blocks must be calculated based on the multiple streamlines 
that pass through them. For example, in Fig 6.1, since two streamlines pass through grid 
block �, the properties of grid block � should be average values of the properties of these 
two streamlines. The average saturation for a background grid block θ , ,

gb
ws θ , is defined as 

the weighted average saturation of all streamlines passing through this grid block 

 

, , ,
1

sl
gbn

gb sl
w d w d

d
s sθ θω

=

=∑
                                                     

(6.5) 

 

where sl
dws ,  is the average water saturation of the segment on the thd  streamline in grid 

block θ , ,d θω  is the weighting factor for segment on the thd  streamline in grid block θ , 
sl
gbn  is the number of streamlines passing through grid block θ .  

Volume fraction of the streamtube represented by the thd  streamline with respect to all the
sl
gbn  streamlines that pass the grid block θ  is often used as the weight factor ,d θω .  
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(6.6) 

 

where ,
st

dV θ  is the streamtube volume of the segment on the thd  streamline in grid block θ . 

Volume of each streamtube ,
st

dV θ  is accounted from the entrance location on streamline 

entranceξ , where the streamline goes into the grid block θ , to the exit location on the 

streamline exitξ , where the streamline exits the grid block θ . See Fig 6.1, grid block �. It 

should be noted that entranceξ  and exitξ  may differ for different streamlines, for example, in 

Fig 6.1, the two streamlines passing through grid block � have different entranceξ  and exitξ . 

Referring to Eq.(6.4), ,
st

dV θ  in Eq. (6.6) is calculated as:  

 

, , entrance exit

st st
d d dV qθ ξ ξτ →=                                                    (6.7) 

 

Similar to the way for calculating ,
st

dV θ , sl
dws ,  is also only accounted for the part of 

streamline that lays inside the grid block θ , [ entranceξ , exitξ ].  

 

, ,
1 exit

entrance

sl sl
w d w d

exit entrance

s s d
ξ

ξ
ξ

ξ ξ
=

− ∫
                                     

(6.8) 

 

After mapping saturation from streamlines to background grid blocks, resulting in the 
saturation distribution in the Cartesian grids along a reservoir, we finish one global step of 
calculation.  
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6.2.5 Mapping Saturation from Background Grid Blocks to Streamlines 

When a new global step of calculation starts with updated streamline path, we need to map 
saturation from background grid blocks to the new streamlines. The common approach is to 
assume that the saturation is piecewise constant on the background grid blocks and to 
assign saturation value for each gird block to all streamline segments that lay inside it. For 
example, grid block θ  has water saturation ,

gb
ws θ . The number of streamlines passing 

through θ  is sl
gbn . For the segment between entranceξ  and exitξ  of the thd  streamline, water 

saturation sl
dws ,  is assigned to be that of the grid block θ .  

 

, , 1,2.....sl gb sl
w d w gbs s d nθ= =                                            (6.9) 

 

When we map saturation from background grid blocks to the new streamlines, we can also 
assume that saturation is piecewise linear on the grid blocks. That means, for example, that 
the derivative of saturation with respect to x  at background grid block θ  is calculated as:  

 

x
ss

x
s gb

w
gb
w

gb
w

Δ
−

=
∂

∂ θ+θ

θ

,1,  

 

The derivatives with respect to y  and z  are calculated similarly. Here values xΔ , yΔ , zΔ  
are the sizes of the grid block.  

After knowing the derivatives in all directions, we can calculate the value of water 
saturation at the points entranceξ  and exitξ  for each streamline in the grid block, instead of the 
average value for the whole segment. In this sense, the position of streamline defines the 
saturation value mapped to the streamline.  

Bratvedt, F. et al. (1996) provide a method to find the saturation values for new streamlines 
by using the old streamlines that are closest to them. This method gives more accurate 
saturation profiles than Eq.(6.9), but it also requires more computational time.   
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6.2.6 Mapping between Irregular Grids and Regular Grids 

 

As shown in Fig 6.1, the segments of a streamline usually are not of the same size. They 
form a domain of irregular grids. However, the calculation of saturation along the 
streamlines prefers regular spaced grids in order to obtain better stability. The need for 
mapping saturation from irregular grids to regular grids arises. That should be done after 
saturation values on the irregular grids are obtained from the background grid blocks 
(Eq.(6.9)). The calculation of segment value (Eq.(6.8)) is actually the mapping from regular 
girds to irregular grids. Fig 6.3 shows the scheme of irregular grids and regular grids for the 
same streamline. 

 

 

 

 

 

 

 

 

Fig 6.3 Scheme of irregular grids and regular grids for the same streamline. 

 

 

Both mapping methods should obey mass balance. Fig 6.4 generalizes the relation between 
irregular grids and regular grids. When we consider the large interval (the interval between 
the two large dots) as a regular grid, we treat the small intervals (the interval between short 
vertical lines) as irregular grids. When we consider the large interval as an irregular grid, 
we treat the small intervals as regular grids. 

 

 

Irregular grids 

Regular grids 

114

138



Chapter 6 Streamline Simulation 

115 
 

 

 

 

 

 

Fig 6.4 Illustration of irregular and regular grids on streamlines. ξΔ  is the length between 

two adjacent points, while irrreg
aws /

,  is the point value of water saturation. The superscript 

irrreg /  means regular/irregular grids. 

 

Water saturation can be assumed to be constant or linear on each interval ξΔ  (Fig 6.4). An 

average value of saturation on each interval ξΔ , for example irrreg
aws /

, , should be used to 

calculate the average saturation for the whole large segment, /irr reg
ws , which is the value on 

irregular/regular space grids. For the beginning and end of the large segment, we should 
only use the average value for leftξΔ  and rightξΔ . The averaged saturation for this large 

interval is calculated in the following way:  

 

/ / / /
, , 1 , 1 ,/

1

...

...

reg irr reg irr reg irr reg irr
left w left a w a b w b right w rightirr reg

w
left a b right

s s s s
s

ξ ξ ξ ξ
ξ ξ ξ ξ

− −

−

Δ ⋅ + Δ ⋅ + Δ ⋅ + Δ ⋅
=

Δ + Δ + Δ + Δ
 

 

When saturation is assumed to be piecewise constant on the space grids of ξΔ , irrreg
aws /

,  is 

equal to point value irrreg
aws /

, . The equation above is changed into 

 

/ / / /
, 1 , 1 , 1 ,/

1
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reg irr reg irr reg irr reg irr
left w a a w a b w b right w birr reg
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ξ ξ ξ ξ
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−
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                    (6.10) 
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Fig 6.5 Flow chart of the implementation of our vertical upscaling method in streamline 
simulation. 

No 

Yes 
END 

Map saturation from regular grids to irregular grids and from 
streamlines to background grid blocks on the 3D model.  

Average 3D model along vertical direction. Input 
averaged properties, averaged initial and boundary 
conditions to streamline simulator.  
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6.3 Implementation of Vertical Upscaling Method to Streamlines 

 

Fig 6.5 is the flow chart of the implementation of our vertical upscaling method in 
streamline simulation. It includes the implementation of 3D reservoir model as well as the 
1D calculations.  

 

 

6.3.1 Implementation of the 3D Model to Streamline Simulator 

 

We firstly reduce the 3D layered reservoir described in Fig 3.1 to a homogeneous 2D model 
by averaging its natural properties: absolute permeability field, porosity field, initial water 
saturation and residual oil saturation, along vertical direction. Then we input the vertically 
averaged model, which has only one layer characterized by averaged properties, to the 
streamline simulator and produce a set of streamlines that go from the injector to the 
producer parallel to the horizontal extent of the reservoir. Each streamline represents a 
vertical cross-section surface of the reservoir consisting of N layers. Lengths of the 
streamlines and the total flow velocity ( )U ξ  along the streamlines are known. The arc 
length of a streamline is equivalent to the x-axis of the 2D reservoir model described in 
Section 3.2.1. Thus it should replace the x-axis in the equations in Section 3.2.7.  

The assumption of perfect inter-layer crossflow allows the application of a single 
streamline, which is based on the vertically averaged properties of the 3D reservoir model, 
to all layers of the reservoir on the cross-section surface. This streamline can also be 
considered as an averaged streamline for all the layers.  

The streamline simulator generates lengths and Cartesian coordinates of the segments, like 
..., 21 ξξ ΔΔ  in Fig 6.1, as well as the TOF for total flow to pass each segment of the 

streamline, like ..., 21 ττ ΔΔ  in Fig 6.1 A ratio of the segment length to the TOF, like
..., 2211 τξτξ ΔΔΔΔ , is the total flow velocity in this segment ( )U ξ . Considering the 

property of averaged streamlines, ( )U ξ  is the averaged total velocity of all the layers 
represented by the same streamline. The streamline simulator may also compute the 
streamline field on the basis of the injection rate (volume per unit time) assigned from 
injector to each streamtube stq .  
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6.3.2 Implementation of Vertical Upscaling Method to 2D Cross-Section Surface Described 
by Streamlines 

 

Under the assumption of vertical equilibrium or, equivalently, perfect inter-layer 
communication, the vertical upscaling method introduced in Chapter 3 and Chapter 5 can 
be applied to the 2D models represented by streamlines. Different from Eq. (3.23), the 
averaged total velocity ( )U ξ  is not equal to injection velocity injv  because of the irregular 

geometry of the streamtube (Fig 6.2a). ( )U ξ  should replace all terms involving injv in 

dimensional expressions for waterflooding process.  

We also need to take into account the area of cross-section of a streamtube, since it may be 
nonuniform along the streamline (Fig 6.2). According to Eq.(6.3), the area of cross-section 
of a streamtube is equal to volume rate divided by total flow velocity. For example, for the 
streamline d  
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d
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There exist N equations corresponding to the N layers of the reservoir model, similar with 
Eq.(3.33) but in dimensional form for the case of negligible gravity, saturation equation for 
layer m is:  
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It should be stressed that since we calculate saturation along the path of streamlines, 
mobilities in these equations should be taken along streamline 

slλ , so the absolute 

permeability along streamline slk  should be used instead of the horizontal permeabilities

xk  or zk . slk  usually changes along streamlines in anisotropic medium and it is difficult to 
calculate it. For simplicity, we assume that all layers of the reservoir are isotropic in the 
horizontal areal extent that x zk k=  . So we have slk  equal to xk  or  zk . 

Similar modification also applies for cases with non-negligible gravity effect (Chapter 5). 
The full form of equation (Eq.(5.20)) is expressed as:  
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The reduced equation (Eq. (5.21))  
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Another remark is that Eqs.(6.11)-(6.14) should be calculated on regular grids of a 
streamline.  

 

 

6.3.3 Mapping between the Streamlines and 3D Background Grid Blocks 

 

We assume that the saturation is piecewise constant on the streamlines and the background 
grid blocks, so that we can use Eq.(6.10) to map saturation between regular grids and 
irregular grids on streamline, Eq.(6.9) to map saturation from background grid blocks to 
streamlines and Eq.(6.5) to map saturation from streamlines to background grid blocks. 
This mapping method can be applied to all the layers for the same streamline. As written at 
the beginning of section 6.3.1, the vertically averaged model of reservoir, which is used in 
the streamline simulator, has only one layer with averaged properties of the real reservoir 
model. Therefore each grid block consists of N layers. The saturation values on all layers in 
the streamlines are mapped to corresponding layers in the grid blocks, vice versa. In this 
way, we manage to map saturations between streamlines and the real 3D reservoir model. 
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6.4 Case Study and Results 

 

In this section, we study the cases of 2-layer and 10-layer communicating reservoirs in 
absence and in presence of gravity. The sample reservoir models are a quarter of a five spot 
well pattern. This well pattern is illustrated in Fig. 6.6. The layers of the reservoir model are 
arranged in an increasing order from bottom to top of the reservoir and characterized by 
their absolute permeabilities listed below. Other parameters are listed in Table 6.1. We 
assume that porosity φ , irreducible water saturation wis , residual oil saturation ors , relative 

water permeability at residual oil saturation workr , relative oil permeability at irreducible 

water saturation owikr  do not change across the layers.  

All the cases are implemented in the streamline simulation combined with the vertical 
upscaling method and full 3D finite difference method. The finite difference solver 
UTCHEM is developed by University of Texas, Austin.  Results by these two methods are 
compared. Water saturation profiles are all produced for the moment of 0.2 pvi. Oil 
recovery is calculated up to 2 PVI.   

 

 

 

 

Fig 6.6 Five spot well pattern is shown as the gray area, where one injector is located in the 
center and four producers are located in each corner. The quarter of a five spot well pattern 
is the orange area. Adapted from Nielsen (2010).  

121

145



Chapter 6 Streamline Simulation 

122 
 

Dimensional parameters
 

Values 

Length
 
(m) 200 

Width (m)
 

200 

Height (m) 50 

Location of injector x,z,top*-bottom** (m) (0,0,0-50) 

Location of producer x,z,top-bottom (m) (200,200,0-50) 

Injection volume rate q (m3/day) 200 

Production pressure ppro  (KPa) 22500 

Size of grid block ( mmm ×× ) 101010 ××
 

Porosity φ  0.2 

Irreducible water saturation wis  0.2 

Residual oil saturation ors  0.2 

Relative water permeability at residual oil 
saturation workr  

0.8 

Relative oil permeability at irreducible water 
saturation owikr  

0.8 

Density of water wρ (kg/m3) 1000 

Density of oil oρ ( kg/m3) 800 

*: Top vertical coordinate of the wells 
**: Bottom vertical coordinate of the wells 
Wells extend from the top coordinate to bottom coordinate in the vertical direction 

 

Table 6.1 Parameters of the 3D reservoir 
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6.4.1 Numerical Computation 

 

An explicit finite difference method is applied to solve saturation equation along 
streamlines. Each streamline is discretized into 80 uniform grid steps. No modification 
about streamline paths needs to be made. The local time step, which is used for calculation 
along streamlines, is set to be 1 day. The global time step, which is related with pressure 
and streamlines update, is selected to be 800 days. In one global time step, streamlines do 
not change. This corresponds to 0.4 pvi in our work. The program is run for 5 times to 
simulation the injection process of 2 pvi. Thus a piecewise oil recovery curve is expected.  

However, we use 400 days (corresponds to 0.2 pvi) as global time step to generate water 
saturation profiles, since water already breaks through after it is injected for 800 days.  

The method is implemented in the Intel Fortran program. Convergence is checked by 
varying the distance and the time steps. 

Average water saturation *
ws  is given by Eq.(3.31) . 

 

 

6.4.2 Two-Layer Communicating Reservoir with Negligible Gravity Effect 

 

Permeability field and height of each layer are listed in Table 6.2. These parameters result 

in anisotropy ratio aE  about 
2 2

2

200 200 10 320
50
+ × = (Eq. (3.9)), which is large enough for 

the assumption of vertical equilibrium or equivalently perfect inter-layer communication. 
Eq.(6.11) is valid for this case. Saturation distribution on grid blocks of the 3D reservoir 
and oil recovery curve by our method and full finite difference are given in Fig 6.7. For 
water saturation distribution on each individual layer (Fig 6.7 a)-d)) and the vertically 
averaged saturation profile (Fig 6.7 e)-f)), streamline method gives very close results to 3D 
finite difference. Due to the very good inter-layer communication, waterflooding for the 
two layers generate only one displacement fronts instead of two individual fronts. The good 
fit of these two methods is also shown on oil recovery curve (Fig 6.8).  

The maximum pressure difference between injector and producer is around 4.7Mpa  in this 
case. It decreases as the displacement proceeds.  
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Dimensional parameters Layer 1 Layer 2 

Horizontal absolute permeability kx  
or kz (mili Darcy ) 

100 200 

Vertical absolute permeability ky 

(mili Darcy ) 
1000 2000 

Height h (m) 25 25 

 

 

Table 6.2 Permeability field and heights of a two-layer reservoir 

 

 

 

 

a)  b)  
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c)     d)  

 

 

 

e)  f)  

 

 

Fig 6.7 Water saturation distribution in a two-layer fully communicating reservoir without 
inclusion of gravity, at time=0.2 pvi. a)-e) by our method with streamline simulation; b)-f) 
by 3D finite difference method. a)-b) water saturation on the first (bottom) layer; c)-d) 
water saturation on the second (top) layer; e)-f) vertically averaged saturation.  
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Fig 6.8 Comparison of oil recovery curve by our method with streamline simulation and 3D 
finite difference method, in two-layer communicating reservoir model without inclusion of 
gravity.    

  

 

6.4.3 Ten-Layer Communicating Reservoir with Negligible Gravity Effect
 

 

Permeability field and height of each layer are listed in Table 6.3. These parameters result 

in anisotropy ratio aE about 
2 2

2

200 200 10 320
50
+ × =  (Eq. (3.9)), which is large enough for 

the validity of Eq.(6.11) in this case. Results are given in Figs 6.9-6.10. We only compare 
the vertically averaged water saturation profiles by our method (Fig 6.9a) and the finite 
difference simulation (Fig 6.9b). Oil recovery curves obtained by our vertical upscaling 
method combined with streamline simulation and by 3D finite difference method are drawn 
in Fig 6.10. Results by these two methods fit well with each other. The maximum pressure 
difference between injector and producer is around 3.7Mpa  in this case. It decreases as the 
displacement processes.  
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Dimensional parameters Values (from layer 1 to layer 10) 

Horizontal absolute permeability kx  
or kz (mili darcy ) 

100,120, 140, 160, 180, 200, 
220, 240, 260,280 

Vertical absolute permeability ky 

(mili darcy ) 
1000,1200, 1400, 1600, 1800, 
2000, 2200, 2400, 2600,2800 

Height h (m) 5 for all layers 

 

 

Table 6.3 Permeability field and heights of a ten-layer reservoir. 

 

 

a)  b)  

 

 

Fig 6.9 Vertically averaged water saturation distribution in a ten-layer fully communicating 
reservoir without inclusion of gravity at time=0.2 pvi. a) by our method with streamline 
simulation; b) by 3D finite difference method.  
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Fig 6.10 Comparison of oil recovery curve by our method with streamline simulation and 
3D finite difference method, in ten-layer communicating reservoir model without inclusion 
of gravity.    

 

 

6.4.4 Two-Layer Communicating Reservoir with the Gravity Effect 

 

We use the permeability and height parameters in Table 6.2 and include gravity in this case. 
These parameters result in density ratio Eρ equal to 0.8. gE  is in the order of 0.1, because 

in section 6.4.2 we get the pressure difference between injector and producer 0p around 

4.7Mpa . Thus (1 )gE Eρ−  is in the order of 0.01. According to the analysis in Chapter 5, 

the reduced equation for water saturation in presence of gravity (Eq.(6.14)) is used for this 
case. Small sub-layers are used in each big layer, in order to catch the gravity segregation. 
We split each geological layer into 5 uniform sub-layers. The height of each sub-layer is 5 
m. Results are given in Figs 6.11-6.12. The difference between result by our method and 
result by finite difference method is larger than in the cases without gravity inclusion. For 
oil recovery curve, the largest difference is around 4%, which is acceptable and can be 
reduced by application of more sub-layers. Large difference between the oil recovery 
curves made by these two methods happens after injection of 0.8 pvi.  
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a)  b)  

 

 

Fig 6.11 Vertically averaged water saturation distribution in a two-layer fully 
communicating reservoir with inclusion of gravity, at time=0.2 pvi. a) by our method with 
streamline simulation; b) by 3D finite difference method.  

 

 

 

 

Fig 6.12 Comparison of oil recovery curve by our method with streamline simulation and 
3D finite difference method, in two-layer communicating reservoir model with inclusion of 
gravity.   
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Compared with the case without gravity (Fig 6.8 ), oil recovery is around 10% higher in 
this case, because gravity pulls water down from the fast layer, which is at top, and makes 
displacement front more uniform (See Fig 11 a)-b) and Fig 7 e)-f)). That increases oil 
recovery.  

 

 

6.4.5 Ten-Layer Communicating Reservoir with the Gravity Effect 

 

We use the permeability and height parameters in Table 6.3 and include gravity in this case. 
These parameters result in density ratio Eρ  equal to 0.8. gE  is in the order of 0.1, because 

in section 6.4.3 we get the pressure difference between injector and producer 0p  around 
3.7Mpa . Thus (1 )gE Eρ−  is in the order of 0.01. According to the analysis in Chapter 5, 

the reduced equation for water saturation in presence of gravity (Eq.(6.14)) is used for this 
case. Results are given in Fig 6.13-6.14.  

 

 

a)   b)  

 

Fig 6.13 Vertically averaged water saturation distribution in a ten-layer fully 
communicating reservoir with inclusion of gravity, at time=0.2 pvi. a) by our method with 
streamline simulation; b) by 3D finite difference method.  
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Fig 6.14 Comparison of oil recovery curve by our method with streamline simulation and 
3D finite difference method, in ten-layer communicating reservoir model with inclusion of 
gravity.   

 

 

The difference between the results produced by our method and the finite difference 
method is larger than in the cases without gravity inclusion. For the oil recovery curve, the 
largest difference is around 5%, which is acceptable and can be reduced by application of 
more sub-layers. The largest difference between the oil recovery curves produced by these 
two methods appears after injection of 0.8 pvi. 

We also get around 10% higher oil recovery in this case compared to the case of the 
absence of gravity (shown in Fig 6.10).  

 

 

 

6.5 Summary 
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In this chapter, we combine the vertical upscaling method for the two-phase immiscible 
incompressible flows with the streamline simulation under the assumption that the reservoir 
is of a layered structure and in vertical equilibrium. In this way, we are able to solve a full 
3D problem by means of multiple 1D equations without transforming the problem into the 
TOF domain. In conventional streamline simulation methods, multiple pseudo 1D problems 
are written in the TOF domain, which is one-dimensional. Thus the technique of operator 
splitting is needed for taking gravity term into the final result. However, our 1D problems 
are written along the paths of streamlines, which are in the space domain. The coordinate 
along arc length of streamline ξ  replaces the coordinate x in two-dimensional space. 
Vertical coordinate in the description based on streamlines is equivalent to that in two-
dimensional space. So cases with gravity effect can be solved directly, without application 
of operator splitting. But sub-layers with smaller height are needed in order to catch gravity 
the segregation. The number of sub-layers affects the results.  

The cross-sections of the streamtubes may be non-uniform along the arc lengths of the 
streamlines, so all the 1D equations based on Buckley-Leverett theory should be modified 
by taking into account the areas of cross-section of the streamtubes.  

Our method creates very close results to the finite difference method for cases without 
inclusion of gravity effect (or negligible gravity effect). For the cases where gravity is not 
negligible, the error of our method increases, but the results are still acceptable since they 
have very similar breakthrough times and the saturation profiles compared to the finite 
difference method. It was also demonstrated that when fast layers, which have higher 
permeabilities, are on top of slow layers, which have lower permeabilities, gravity helps oil 
recovery, because it pulls water down and makes displacement fronts more uniform.  
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Chapter 7 Conclusion 

 

In this PhD project, we have developed a fast semi-analytical 1D simulation method for 
two-phase immiscible incompressible flow in a layer-cake reservoir. It may be used for 
upscaling of waterflooding in a stratified reservoir of a viscous dominant regime. We have 
studied the cases without and with gravity effect included. Capillary pressure is assumed to 
be negligible.  

The essence of the proposed method is to reduce the problem of 2D two-phase immiscible 
incompressible flow to the multiple 1D flow equations under the assumption of perfect 
inter-layer communication or, equivalently, vertical equilibrium. By combining with the 
streamline simulation, our 1D upscaling method may also be applied to the 3D problems. 
However, the 3D reservoir conditions must be qualified for the assumption of a viscous or 
gravity-viscous dominant regime with good vertical communication.  

For the cases where the gravity effect is negligible, the results obtained by our method are 
all very close to the results obtained from the complete 2D displacement simulation, in both 
well defined multilayer reservoir models, as well as the models with log-normal distributed 
permeabilities. The saturation profile calculated by our method is slightly different from the 
2D simulation results. However, the difference is within the degree of approximation and 
the positions of the displacement fronts are almost the same.  

The method developed for upscaling is advantageous over the classical Hearn method, 
since it refrains from some of the assumptions of the Hearn method and takes into account 
mass exchange between the layers. Our approach produces more realistic smooth saturation 
profiles, and is better at predicting positions of displacement fronts and oil recovery curves. 
Simulations show that different arrangements of the layers lead to different displacement 
patterns. Since our method does not rely on assumptions of exchangeability of the layers, it 
is superior to Hearn’s procedure.  

Inter-layer crossflow affects the overall displacement profiles. It makes displacement 
profiles more even and smoother in a communicating layer-cake reservoir than those in a 
non-communicating layer-cake reservoir. In a communicating layer-cake reservoir, larger 
(larger than 1) values of the end-point mobility ratio (oil to water) lead to more even 
displacement profiles. With small values of the mobility ratio ( 1M < ), water banks behind 
the displacement fronts and transition zones before them may be observed. Analysis of the 
mathematical model and the modeling results indicates that water tends to flow from the 
less permeable to the more permeable layers behind displacement fronts, while water tends 
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to flow from the more permeable to the less permeable layers ahead of the slower 
displacement fronts, forming water banks and transition zones.  

Inter-layer crossflow also affects oil recovery efficiency. For mobility ratios (oil to water) 
1M > , more oil is produced by waterflooding from a communicating stratified reservoir 

than from a non-communicating stratified reservoir. For mobility ratios (oil to water) 
1M < , the effect is opposite.  

For the cases where gravity effect is non-negligible, our 1D method is only applicable 
where this effect is small to moderate, or where the two phases of flow are not completely 
separated by gravity. These cases corresponds to small to moderate gravity numbers gE  

For the waterflooding problems in well-defined multilayer reservoirs, the results obtained 
by our method are close to the results obtained by the complete 2D displacement simulation. 
As gravity effect becomes large, the error of our method increases, but is still within an 
acceptable range. Partly this is explained by the fact that the gravity effect changes the type 
of an averaged 1D system for flow in the layers. This system is hyperbolic for negligibly 
small gravity numbers, but it becomes parabolic for moderate gravity numbers.  

Combination of the streamline simulation and our 1D upscaling method enables us to solve 
a full 3D problem, reducing it to multiple 1D equations. Unlike conventional streamline 
simulation method, we carry on calculation along the natural paths of the streamlines in the 
space domain, instead of transforming the problem into the domain of times-of-flight 
(TOF). The cases with gravity effect can be solved directly, without application of operator 
splitting. Sub-layers with smaller heights have to be introduced in order to model the 
gravity segregation more precisely. The number of sub-layers affects the results.  

Our method produces very close results to the full finite difference method for the cases 
without inclusion of the gravity effect (or negligible gravity effect). For the cases where 
gravity is not negligible, the error of our method increases, but the recovery is still 
calculated with a reasonable accuracy. When “fast” layers, which have higher 
permeabilities, are located on top of “slow” layers, gravity helps oil recovery, because it 
pulls water down and makes displacement more uniform. 
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Chapter 8 Suggestion for Future Work 

 

The 1D upscaling method presented in this thesis considers only viscous forces and gravity. 
Inclusion of the capillary pressure in the system would be an important subject for future 
work. It will make the problem more complicated, since it creates dispersion-like fluxes in 
all the directions. However, under the assumption of gravity-capillary equilibrium, the 
problem may probably be simplified. 

Our 1D method can only solve problems under small to moderate gravity effect. 
Improvements and modifications in order to solve the cases under large gravity effect might 
be another future extension of the method. The macro interface between two phases needs 
to be accounted in the system of equations. Injection rate will affect the flow behavior when 
gravity is included. As we know, when a fast layer (with high permeability) is located 
below a slow layer (with low permeability), gravity tends to make the displacement process 
unstable, resulting in early breakthrough and low oil recovery efficiency. High injection 
rate can partly overcome the bad effect from gravity. So a more detailed study of the effect 
of injection rate is also of interest.  

The most obvious continuation of the work is generalization onto the different practically 
important cases and processes. In the work of Yuan et al. (2011), the method was applied to 
study the effects of fine migration and re-deposition on recovery under injection of water of 
the different salinity. This work may further be developed. The improved method may be 
applied to gas injection or other methods of enhanced oil recovery. Another application is 
carbon dioxide sequestration for underground storage. 
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