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Summary

Solving inverse problems through a smooth
formulation of multiple-point geostatistics

In oil and gas sector accurate reservoir description play a crucial role in
problems associated with recovery of hydrocarbons, risk estimation and
predicting reservoir performance. Knowledge on reservoir properties can be
inferred from measurements typically made at the surface by solving corre-
sponding inverse problems. However, noise in data, non-linear relationships
and sparse observations impede creation of realistic reservoir models. In-
cluding complex a priori information on reservoir parameters facilitates the
process of obtaining acceptable solutions. Such a priori knowledge may be
inferred, for instance, from a conceptual geological model termed a training
image.

The main motivation for this study was the challenge posed by history
matching, an inverse problem aimed at estimating rock properties from pro-
duction data. We addressed two main difficulties of the history matching
problem: existence of multiple, most often geologically unfeasible, solutions
and high computational cost of the forward simulation. The developed
methodology resulted in a new method for solving inverse problems with
training-image based a priori information, when the computational time
matters.

vii



Specifically, we have proposed a smooth formulation of training-image based
priors, which was inspired by the Frequency Matching method developed by
our group earlier. The proposed smooth generalization, that integrates data
and multiple-point statistics in a probabilistic framework, allows us to find
solution by use of gradient-based optimization. As the result, solutions to
an inverse problem may be obtained efficiently by deterministic search. We
have applied the proposed methodology to the problem of history matching.

Both the smooth formulation and the Frequency Matching method find the
solution by maximizing its posterior probability. This is achieved by in-
troducing a closed form expression for the a priori probability density. We
have defined an expression for the training-image based prior by applying
the theory of multinomial distributions. Its combination with the likelihood
function results in the closed form expression for defining relative posterior
probabilities of the solutions.

Finally, we applied the developed smooth formulation to the problem of
seismic inversion. The proposed methodology allows us to invert seismic
reflection data for rock properties, namely for porosity, by integrating rock
physics model into inversion procedure. Errors associated with conversion
from depth to time are handled with a novel mapping approach.

This thesis reviews the latest developments in the field of geoscientific in-
verse problems with a focus on the history matching problem. The work
contains detailed explanation of our strategies including both theoretical
motivation and practical aspects of implementation. Finally, it is comple-
mented by six research papers submitted, reviewed and/or published in the
period 2010 - 2013.
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CHAPTER 1
Introduction

1.1 Probabilistic reservoir modeling

Tools for creating reliable reservoir models are of a key interest for oil in-
dustry: prediction and optimization of hydrocarbon recovery, planning ad-
ditional wells, estimation of risks — all these tasks rely on reservoir de-
scription. Reservoir characterization is a complex process of using multi-
ple sources of data, expertise and numerical methods in order to describe
subsurface structures, location of fluids and properties of rocks. Reservoir
characterization can be treated as a task of data mining, where data vary
in space and time, or it can be analyzed through non-quantitative expert
knowledge. Typical data used in reservoir characterization include seismic
surveys, well logs, production data and geological maps.

Understanding that the data are contaminated with noise and that the
description of physical processes is not perfect leads to the necessity of
probabilistic modeling. In this approach the available information about
the subsurface is accounted for in accordance with its uncertainty and then
integrated into the posterior probability distribution of the model param-
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1. Introduction

eters. Probabilistic modeling and uncertainty quantification are becoming
paramount in reservoir characterization and form the philosophy of this
study as well.

Challenges of integrated reservoir modeling include insufficient information
content of the measurements, their complex non-linear relationship with
reservoir properties, and different sensitivities. Complex prior information
integrated into the posterior probability density function can drastically de-
crease uncertainties on the reservoir parameters. Modern methods rely, for
instance, on the concept of the training image — a conceptual representa-
tion of expected geology in the formation. Geological expertise, a source
of non-quantitative information, is also required to be integrated into the
probabilistic framework.

This work was motivated by the history matching problem — the task of
integrating production data for recovering reservoir properties. In this the-
sis we demonstrate how the production data can be efficiently constrained
by complex a priori information within an efficient probabilistic framework.

1.2 The history matching problem

An important part of reservoir characterization consists in obtaining reser-
voir models, simulated response from which match the observed production
data, i.e. solving the history matching problem.

Modeling of the well response is a challenge on its own, since very accurate
knowledge of physical processes happening in the reservoir is needed, and
the associated computational load to model these effects is huge. Response
from the wells depends in a complex way on a great number of physical
parameters of the system: pressure, temperature, well control, geological
features, rock properties, distribution of fluids, fluid chemistry and PVT
properties, etc. Typically, when the history matching problem is solved,
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1.3. History matching as an underdetermined, non-linear inverse problem

many of these parameters are assumed to be known, for instance, from seis-
mic surveys, laboratory experiments. In reality, all of them are subject to
uncertainty, and lack of knowledge of some of them may strongly influence
our predictions.

Geological features and rock properties, some of the most uncertain pa-
rameters, play a key role in reservoir flow behavior. While seismic data
are widely used for resolving large scale geological structures, impermeable
barriers, oil-water contacts and even porosity, production data are useful for
inferring knowledge on connectivity within the formation and, consequently,
on permeability.

Naive treatment of the history matching problem as a model calibration task
is not only tedious (citing a manager from a famous oil company: "History
matching of the reservoir took three weeks by trained personnel."), but also
economically risky since no uncertainties are taken into account. Looking
at the history matching problem as an inverse problem instead, provides us
with tools for consistent data integration and uncertainty estimation.

1.3 History matching as an underdetermined,
non-linear inverse problem

Let m denote the reservoir model parameters and dobs the observed data.
In inverse problem theory, the forward problem consists in finding data
response d given model parameters m and a possibly non-linear mapping
operator g(m):

d = g(m) (1.1)

In the history matching problem, the non-linear operator g(m) represents
the system of differential equations whose solution is implemented as a reser-
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1. Introduction

voir simulator (Sec. 1.3.1)

The inverse problem is then defined as a task of finding m given the ob-
served data dobs. According to inverse problem theory (Tarantola, 2005),
the solution of an inverse problem is defined by its a posteriori probability
density function �(m). Given some prior assumptions on the model param-
eters as the probability density ⇢(m), the a posteriori probability can be
expressed as:

�(m) = kL(m)⇢(m) (1.2)

The likelihood function L(m) defines how well a proposed model reproduces
the observed data.
The likelihood function can typically be expressed through a data misfit
function S(m) as L(m) = k exp(�S(m))(Mosegaard and Tarantola, 1995),
where k is a normalization constant.
For instance, assuming Gaussian uncertainties in the data, one writes down
the likelihood function as:

L(m) = k exp(�||dobs � g(m)||2
C

D

) (1.3)

where CD is the data covariance matrix.
The a priori information ⇢(m), by definition, represents our probabilistic
beliefs on model parameters before any data were considered. Often Gaus-
sianity is assumed when assigning prior probabilities. Reservoir properties,
unfortunately, do not follow Gaussian distributions, therefore modeling of
⇢(m) is an interesting and important part of the history matching problem.
A large part of this thesis is devoted to assessing and integration of non-
Gaussian a priori information.

However, before diving into the world of probability distributions, we first
provide the mathematical framework for the processes happening in an oil
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1.3. History matching as an underdetermined, non-linear inverse problem

reservoir, define equations of the forward model, and discuss issues associ-
ated with them.

1.3.1 Forward model

Oil reservoirs are typically modeled as a discretized porous medium with
flow processes defined by mass conservation and Darcy laws.
In the general case, for multiphase multicomponent flow, the following sys-
tem of equations is constructed (Aziz et al., 2005):

@

@t

 
�
X

i

Si⇢iyc,i

!
+ r ·

X

i

(⇢iyc,iui) +

X

i

q̃c,i = 0 (1.4a)

ui = �k
kri
µi

(rpi � ⇢igrD) (1.4b)

Equation 1.4a is a conservation equation for component c. Equation 1.4b
defines the Darcy velocity for phase i. Here � is porosity, Si is saturation
of phase i, ⇢i is density of phase i, yc,i is the mass fraction of component c
in phase i; k is the absolute permeability, kri, µi and pi are relative perme-
ability, viscosity and pressure of phase i, D is the vertical depth (positive
downwards) and g is the gravitational acceleration; q̃c,i stands for the well
term.

The unknowns in these equations are yc,i, Si, pi. Production response d
(Eq. 1.1 ) can be calculated from these values, using, for instance, Peace-
man’s model (Peaceman, 1977).

In general, this system is computationally very demanding, and fast compo-
sitional solvers are in need. However, very often the number of components
is assumed equal to the number of phases, and then the system of equations
1.4 turns into the black-oil model, the most popular model in reservoir sim-
ulation, as well as in reservoir characterization. In addition, depending on
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1. Introduction

particular reservoir conditions, gravitational and compressibility effects can
be neglected.

Commercial reservoir simulators, for instance Eclipse (Schlumberger Geo-
Quest, 2009), conventionally solve the system of flow equations (1.4) by im-
plicit discretization, however the faster but less stable IMPES approach (im-
plicit pressure, explicit saturation) is also an option. Still the time needed
to simulate the forward response is high. Average models used in industry
may consist of hundreds of thousands grid blocks and may require many
hours of computation.

A good alternative to conventional simulators are streamline-based simula-
tors (see, for example, StreamSim). In streamline simulators the pressure
equation is solved on a conventional grid, however, values of saturations are
propagated along the streamlines (lines tangent to the velocity field). This
technique allows pressure to be updated much less frequently, which saves
computational resources. Streamline simulators approximate flow very ac-
curately when the fluid behavior is mainly defined by the heterogeneity of
the subsurface, but not by diffusion processes as in unconventional reser-
voirs.

Reservoir model parameters needed to predict reservoir behavior depend on
the complexity of the problem at hand. However, the minimum set includes
porosity, permeability, relative permeability curves, fluid composition, ini-
tial depths of oil-water and oil-gas fluid contacts. Parameters updated in
history matching are typically restricted to permeability and porosity, while
other are assumed to be known. However, recent studies (Chen and Oliver,
2010b) have shown that including more variables such as oil-water contact
and parameters of relative permeability may improve reconstruction of the
primary rock properties.

Reservoir parameters possess different sensitivities to the different types of
data. Such, water cut is sensitive to the properties along the streamlines
and pressure data are good for recovering properties within vicinity of the
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1.4. Challenges of the history matching problem

wells. All these observations stimulated research in localization techniques
(Arroyo-Negrete et al., 2008; Emerick and Reynolds, 2011).

1.4 Challenges of the history matching problem

Having this theoretical base let us look at the particular challenges associ-
ated with the history matching problem.
First of all, the history matching problem is an underdetermined inverse
problem: the number of observations is much smaller than the number of
model parameters, due to the limited number of wells.

The second problem is related to the low information content in the pro-
duction data, or, in other words, to the small number of independent data.
Synthetic studies (Oliver et al., 2001; Van Doren et al., 1426) show that, de-
spite integrating thousands of observations, only small percent of the model
parameters can be identified by the data.

These difficulties combined with non-linearity make production data con-
straints weak for recovering realistic reservoir properties. As a result, multi-
ple, often geologically unfeasible solutions to the history matching problem
exist. Clearly, solutions inconsistent with geology cannot be used for pre-
diction or optimization of the reservoir behavior. Large uncertainty of the
solutions makes it impossible to draw probabilistic conclusions about the
reservoir properties.

All these issues require special treatment of the history matching problem,
such as including additional, constraining data. For example, geological
expertise, seismic or well log data are all capable of facilitating the process
of solving the history matching problem. Therefore research is concentrated
on using additional constraints, and the problem is naturally growing into
a problem of integrated reservoir modeling. Challenges associated with
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1. Introduction

conditioning reservoir parameters to different types of data are huge. Here
are a few of them:

• different data scales

• high computational load

• uncertainty quantification

1.4.1 The call for complex a priori information

The necessity of geological constraints when solving inverse problems in geo-
science is widely accepted. Recent advances in multiple-point geostatistics
have made it a widely-used tool in geoscience problems, where reproduction
of subsurface structure is required. Traditionally, multiple-point statistics
is captured from training images that represent geological expectations of
the subsurface (Guardiano and Srivastava, 1993). A review of the main
techniques will be given in Chapter 2.

The use of a complex a priori information has two advantages: it assures
more realistic solutions, and it facilitates the process of solving the inverse
problem since it drastically constrains the solution space.

1.5 Methods for solving geoscientific inverse
problems with focus on the history matching
problem

The methods discussed below come from inverse problem theory, stochastic
simulation techniques, data mining, optimization theory, pattern recogni-
tion, and machine learning. Very often they combine several techniques in
one. The tremendous creativity is to a large extent spawned by the chal-
lenges of the history matching problem discussed above.
We start with the most sound tool for solving inverse problems: Monte-
Carlo simulation.
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1.5. Methods for solving geoscientific inverse problems with focus on the
history matching problem

1.5.1 Monte Carlo simulation

Monte Carlo techniques are known to be the safest tool when an a posteriori
pdf with complex a priori information is to be characterized (Mosegaard,
1998). Mosegaard and Tarantola (1995) suggested a modification of the
Metropolis-Hastings algorithm (Metropolis et al., 1953) that allowed sam-
pling of the posterior, without knowing an explicit expression of the prior
distribution. In principle, it allows incorporation of a priori information
of any complexity given an algorithm that samples the prior. When the
extended Monte-Carlo sampling is performed, one suggests a perturbation
of the current model mk to a new model m0

k, according to the prior. The
step is accepted with a particular probability:

Pacc =

(
1 if L(m0

k) > L(mk)

L(m0
k/L(mk) otherwise

(1.5)

in which case mk+1 = m0
k. In case of rejection, the model remains un-

changed: mk+1 = mk. This technique allows sampling the a posteriori pdf,
such that the density of sampled models is proportional to the a posteriori
pdf. This is referred to as importance sampling. Many examples of applica-
tions of Monte-Carlo methods to geoscientific inverse problems can be found
in the literature (Hansen et al., 2012, 2008; Cordua et al., 2012b).
The extended Metropolis is easy to implement, but it requires a large num-
ber of forward simulations, both in the burn-in phase and in the sampling
phase. In case of flow forward simulations (Sec. 1.3.1) sampling techniques
are usualy prohibitive.

1.5.2 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation tech-
nique, first introduced by Evensen (1994) for oceanography community.
EnKF and its variants is one of the most popular methods for solving the
history matching problem in research and industrial applications (Bianco
et al., 2007; Haugen et al., 2008; Emerick and Reynolds, 2013; Lorentzen
et al., 2013). This technique allows assimilation of multiple types of data,
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1. Introduction

to update a large number of parameters and to estimate uncertainty. It is
easy to implement, since it is a derivative-free method, and reservoir simu-
lator is treated as a black-box. Thorough review may be found in works of
Aanonsen et al. (2009) and Oliver and Chen (2011)

The idea of EnKF consists in updating a set of models in a sequential man-
ner, when new observation points are available. Model covariance is derived
from ensemble members. For realistic representation of the uncertainty, a
large number of ensemble members is needed, and it increases the compu-
tational load. The other well-known issue of EnKF is that covariance esti-
mation based on the ensemble members tends to be corrupted by spurious
correlations which results in collapse of the ensemble variability. Different
covariance localization techniques can be found in Chen and Oliver (2010a),
Emerick and Reynolds (2011), and Arroyo-Negrete et al. (2008).

EnKF performs best when the model parameters follow a Gaussian distribu-
tion and are related linearly to the data. For reservoir characterization these
are strong assumptions, and therefore solutions of EnKF lack geological re-
alism. Much work is being done to integrate non-Gaussian prior information
into the EnKF framework. For instance, Sarma and Chen (2009) applied
kernel methods to formulation of EnKF, which allowed preserving multiple-
point statistics in final solutions. Recently Lorentzen et al. (2012) suggested
using level-set functions to transform facies models first, and then applying
EnKF to them. This resulted in very convincing non-smooth model updates.

1.5.3 Machine Learning methods

Efficiency of machine learning paradigm inspired researchers to use them in
reservoir characterization. Machine learning methods are often defined as
data-driven, since the relationship between parameters is inferred from the
observed data. Demyanov et al. (2008) applied support vector regression
(extension of the support vector machines) for reproducing geologically re-
alistic porosity and permeability fields. The data that were used for training
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consisted of hard data and seismic observations. The technique was able to
recover geological structures despite the presence of a strong noise in the
data. The authors extended the technique from using single kernel towards
multiple kernels (Demyanov et al., 2012)

Sarma et al. (2008) applied Kernel PCA for differentiable parameteriza-
tion of multiple-point statistics. The formulation allows combining it with
gradient-based optimization for solving history matching, for instance. We,
actually, pursue the same goal in Chapter 3. The authors suggested using
Karhunen-Loéve expansion that allows deriving the necessary parameter-
ization from the covariance matrix of the random process that generates
realizations. The covariance matrix was obtained empirically from training
image realizations. If the realizations were Gaussian, linear PCA would be
enough for the parametirization. However, in order to reproduce the spa-
tial features inherited into the training image, the Kernel PCA was needed.
Kernel PCA allows mapping the original model parameters into some pos-
sibly extremely high-dimensional space where linear PCA can be applied
to capture non-linearity of the parameters. As a result, new realizations
can be generated in the feature space. Then, after solving the pre-image
problem, the parameters are mapped back to the original space. When this
formulation is combined with the data misfit term, the authors can solve
the history matching problem.

1.5.4 Gradient-based methods

Gradient-based optimization is especially preferable for computationally
heavy problems, such as the history matching problem. When gradient-
based optimization is used, history matching is typically formulated as a
minimization problem:

O(m) =

1

2

||dobs � g(m)||2C
D

+ ||m � mprior||2C
M

(1.6)

This formulation assumes Gaussianity of the model parameters. In Chap-
ter 3 we show how we can use gradient-based optimization together with
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multiple-point statistics, substituting the traditional term ||m�mprior||2C
M

with a non-Gaussian prior misfit.

The gradient-based methods use data sensitivities to guide the solution
towards a decrease of the objective function in each iteration. In this
work we consider only methods for unconstrained optimization. When con-
straints are applied, an additional computational load is needed to respect
boundaries of the feasible region. Therefore, traditionally, some logarithmic
scaling is applied to the parameters (Tarantola, 2005; Gao and Reynolds,
2006). Appendix A reviews the main methods of unconstrained optimiza-
tion such as steepest-descent, Newton method, Levenberg-Marquardt, and
quasi-Newton methods. For details refer to Nocedal and Wright (2006).

In general, the model parameters are updated with the following iterative
scheme:

mk+1 = mk � ↵kpk (1.7)

Here ↵k is the step length and pk is a search direction, that, depending on
the method, integrates the function gradient (first derivatives) and possibly
also the function’s Hessian (second derivatives), or its approximation.

Despite the chosen technique, the knowledge of rO(mk) at each iteration
k is required:

rO(mk) = �GT
k C�1

D (dobs � g(m
k

)) + C�1
M (m

k

� mprior) (1.8)

where Gk is the sensitivity of the data with respect to the model parameters
(Jacobian).

Optimization techniques differ from each other mainly by how the search
direction is computed. The Levenberg-Marquardt method is typically called
the most efficient method for finding least-squares solutions. Nevertheless it
requires explicit computation of Gk. In contrast, the quasi-Newton method
needs only the matrix-vector product �GT

k C�1
D (dobs � g(m

k

)), which can
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be computed efficiently using, for instance, adjoints (Oliver et al., 2008).

In principle, Gk can be estimated by a finite-differences approach, however
it involves a large number of forward computations. In the history matching
problem Gk is frequently calculated using the adjoint equations (see Oliver
and Chen (2011) for review) or derived using streamlines (Vasco et al., 1999;
Datta-Gupta et al., 2001)

Another technique that found its application is simultaneous perturbation
stochastic approximation (SPSA) of the derivatives (Spall, 1992). It can be
used at early iterations to rapidly decrease the objective function.

1.5.5 Tailoring algorithms to the problem at hand

Great work was performed by Gao and Reynolds (2006) to adjust the
gradient-based quasi-newton LBFGS method towards the needs of the his-
tory matching problem. They proposed two techniques that prevented the
algorithm from suggesting abnormally high or low values of the rock proper-
ties. The first consists in damping the production data at early iterations,
by artificially increasing the data covariance matrix. The other is based
on applying constraining logarithmic scaling to the parameters. The ad-
vantage of this scaling is the possibility to stay within the framework of
unconstrained optimization, while the outcome parameters are fixed within
a certain range.

Another technique to improve performance of the gradient methods is to
provide a good starting guess by conditioning to the facies information in
wells (Zhang et al., 2003) or, for instance, employing results of seismic
inversion.
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1.6 Our directions and contributions

First of all, we solve inverse problems in a probabilistic framework following
the Bayesian philosophy. It means that we strive to find a solution in the
form of a probability distribution that reflect combinations of the likelihood
function and a priori information.

Inverse problems in geoscience are often severely underdetermined and re-
quire use of complex a priori information on subsurface properties. Such
information may be inferred, for instance, from training images by means
of multiple-point statistics techniques. In Chapter 2 we discuss methods for
integrating training-image based prior information into inverse problems.
Appendix D reveals a recently suggested Frequency Matching method, that
integrates and quantifies a priori information by means of multiple-point
statistics. It is followed by a paper where the Frequency Matching method
is integrated with the history matching problem (Appendix E ).

Admitting computational challenges, we agree that a complete inference
of the posterior may not be possible. Therefore we aim at finding an ef-
ficient way for solving the history matching problem, but staying within
the Bayesian framework. Our approach consists in finding an ensemble of
models that explain the data and honor the complex a priori information
using gradient-based optimization.

The methodology is based on a smooth formulation of the multiple point
statistics which is described in Chapter 3. The papers showing the devel-
opment of this technique can be found in Appendices F, G. Appendix H
contains a journal paper that discusses the method in greater details and
summarizes its theoretical contributions. The proposed smooth formulation
enables us to detect models belonging to different regions of high posterior
probability, which can be further explored by sampling techniques.

In this thesis we propose a closed form expression for the a priori probability
density function, that combined with the likelihood value, allows us to rank
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1.6. Our directions and contributions

solutions to the inverse problems in accordance with their relative poste-
rior probabilities. The approach uses theory of multinomial distributions
applied to the training image and its realizations. We provide motivation
for it in Chapter 4 and show a computational example in Appendix H.

The proposed method can be applied to any inverse problem with a pri-
ori information defined by training images. In Chapter 5 we demonstrate
inversion of 3D seismic reflection data combined with rock physics and mul-
tiple point geostatistics. Difficulties associated with conversion of reflection
coefficients from depth-to-time are resolved by a novel mapping technique.
Inversion of seismic data, that are very sensitive to the contrasts in phys-
ical properties of rocks, are able to provide a strong starting guess for the
history matching problem. In addition, the developed method serves as a
base for the joint inversion strategy.
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CHAPTER 2
Integration of complex a priori

information

2.1 Methods of multiple-point statistics

Algorithms of multiple-point statistics (MPS) aim at integrating complex
heterogeneity into models. Traditionally, they require a learning example,
called a training image by Guardiano and Srivastava (1993), that is assumed
to represent spatial phenomena. A training image may originate from out-
crop modeling, geological expertise, and/or previous experience. Training
images can represent both categorical (for example, rock types) and con-
tinuous properties (for example, porosity) of the system. In probabilistic
modeling, training images can be used as a source of prior information on
model parameters.

While the idea of capturing multiple-point statistics from training images
belongs to Guardiano and Srivastava (1993), the successful story of MPS
algorithms started with SNESIM, a pixel-based simulation technique devel-
oped by Strebelle (2002). Following some random path, the values of the

17



2. Integration of complex a priori information

nodes are simulated by drawing from a distribution that is conditioned to
the previously simulated nodes and hard data within a chosen neighbor-
hood (defined by a template). The authors suggested using a tree structure
to compute conditional probabilities efficiently. Nevertheless, SNESIM is
memory demanding, and not all template sizes and number of categories can
be afforded. Methods to improve its performance were developed (Straub-
haar et al., 2011; Huang et al., 2013) SNESIM is one of the popular methods
that is used today for simulating spatial properties.

An alternative approach for simulating spatial heterogeneity is to simulate
several pixels at once: so-called pattern-based techniques. For instance,
SIMPAT (Arpat and Caers, 2007) proceeds in a sequential manner, replac-
ing group of pixels (defined by a template) with a pattern that is the most
similar to the observed pixels. It implies scanning through the pattern
database obtained from the training image every time and makes it compu-
tationally heavy. SIMPAT uses a concept of similarity between the patterns
which is an important concept in our work as well (Chapter 3).

Another pattern-based method called FILTERSIM (Zhang et al., 2006) uses
linear filters to project patterns into a lower-dimensional space and derives
all similarities in a faster manner. This approach also allows simulating
realizations of continuous training images.

Further improvement of pattern-based simulation happened when DIST-
PAT (Honarkhah, 2010, 2011) was developed. This method uses mul-
tidimensional scaling (MDS) to investigate pattern variability in a low-
dimension space.

Direct sampling (Mariethoz et al., 2010a) is essentially a pixel-based method,
also using a concept of similarity between the patterns. It is efficient, since
no conditional probabilities are needed to be computed. Instead, the pixel
value is taken directly from a pattern that is the most similar to already
simulated nodes surrounding this pixel.
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2.1. Methods of multiple-point statistics

2.1.1 Optimization-based approaches

Another family of the methods solves some optimization problem, at each
iteration estimating how well the multiple-point statistics is honored by the
model. One recent example of such methods is the Frequency Matching
method (Lange et al., 2012a), see details in Sec.2.2.

The method developed in this thesis (Chapter 3) also, in general, allows to
simulate spatial features learned from the categorical training image. In this
iterative, smooth formulation of MPS pixels are perturbed all at once. The
result of such simulation will be an image, which pixel values are almost
discrete as required by the training image. In rigorous sense, this result can
not be called realization of the prior. Nevertheless, statistically speaking,
its properties are close to the pure discrete realizations. The details are
discussed in (Chapter 3).

2.1.2 Directions in the research

Development of the methods for MPS is an active topic in reservoir char-
acterization. One can formulate the following research problems associated
with the training images:

• source of realistic training images (Sech et al., 2009)

• use of non-stationary training images(De Vries et al., 2009)

• use of continuous training images (Zhang et al., 2006; Mariethoz et al.,
2010b)

• improving pattern reproduction (Cordua et al., 2012a)

• improving speed of simulation (Mariethoz et al., 2010b; Huang et al.,
2013)

• finding balance between variability of patterns and quality of their
reproduction (Tan et al., 2013)

19



2. Integration of complex a priori information

• accounting for uncertainty in training images (Jafarpour and Khod-
abakhshi, 2011)

2.2 The Frequency Matching method

The Frequency Matching method (Lange et al. (2012a), Appendix D) is
a novel method for solving the inverse problems using multiple-point geo-
statistics of the training image. The core of the Frequency Matching method
is to represent and compare images using the frequency distributions of their
patterns. Consider the training image and the 2x2 search template applied
to it (Fig. 3.2a ). The corresponding frequency distribution of the patterns
is shown in Fig. 2.1b.

(a) (b)

Figure 2.1: Example of a binary discrete image (a) and its frequency distri-
bution for a 2⇥2 template (b)

The FM method suggests a way to generate models statistically similar
to the training image by minimizing the distance between histograms of
the training image and the model. This is equivalent to the approach of
SNESIM, only here conditional probabilities are computed from the his-
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2.2. The Frequency Matching method

togram (see Lange et al. (2012a)).

When the histogram misfit is combined with the data misfit term, an opti-
mization problem is solved for finding the maximum a posteriori solution.
Lange et al. (2012b) find the maximum a posteriori solution of the inverse
problem by minimizing the following sum of misfits:

mMAP
= argmin

m

⇢
1

2

||dobs � g(m)||2C
D

+ ↵f(m,TI)

�
(2.1)

2.2.1 Solving inverse problems with the FM method

Lange et al. (2012a) used the FM method for reconstructing seismic veloc-
ities of rocks in a crosshole tomography setup. The solution fitted the data
and honored the multiple point statistics. In addition, due to the rich ray
coverage, the solution strongly resembled the true model.

The Frequency Matching method was applied to the history matching prob-
lem for a small 3D synthetic model (Melnikova et al. (2012), Appendix E) .
In its original formulation, the FM optimization was implemented through
simulated annealing, which prevented the algorithm from being stuck in
local minima for the objective function. For the history matching problem,
this approach was too expensive, therefore we used a simple rule (a ’greedy
search’) where a proposed model was accepted only if the value of the ob-
jective function (Eq. 2.1 ) decreased. In order to improve the performance
of the method, fast proxy models based of the streamline simulations were
used. The results demonstrated successful reproduction of spatial features,
nevertheless the production data turned out to be weak constraints.
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CHAPTER 3
The smooth formulation

In this chapter we discuss a novel method for representing multiple point
statistics through a smooth formulation.

3.1 Motivation

The smooth formulation of the training-image based prior was motivated
by one of the history matching problem challenges: the high cost of the for-
ward simulation. The Frequency Matching method ( Lange et al. (2012a),
Chapter 2 ) suggests an optimization framework, where model parameters
are perturbed in such a way that fit to the data and consistency with the a
priori information are iteratively improving. The resulting solution explains
the data and honors multiple point statistics inferred from the training im-
age. The formulation of the FM method requires the model parameters to
take discrete values. It implies solving a combinatorial optimization prob-
lem (Eq. 2.1), which results in a large number of forward simulations needed
to achieve the match. As it was demonstrated in Melnikova et al. (2012)
(Appendix E ) , the number of forward simulations for a modest 2D history
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3. The smooth formulation

matching problem was of the order of tens of thousands.

The smooth formulation derived from the simple ambition of moving fast
towards a high posterior region. One way of doing that is to suggest a dif-
ferentiable parameterization of multiple-point statistics, that, at the end,
would allow a gradient-based search for the solution. Traditionally MPS
methods operate with categorical images, given the training image is cat-
egorical. The smooth formulation, in contrast, allows model parameters
to take continuous values, although prohibited by the prior, while moving
towards regions of high prior and posterior probabilities.

Consider Figure 3.1: When one is trapped in a maze, the ability to move
is limited by the walls of the maze. This is analogous to the way the
formulation of the FM method is limited by the discrete model space. One’s
dream would be to have the power of going through the maze walls to achieve
the goal. This is the intuitive idea behind the smooth formulation.

Figure 3.1: A parallel between a maze and a discrete model space. The red
line depicts a direct way to the goal through prohibited states.
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3.2. The smooth formulation at a glance

3.2 The smooth formulation at a glance

The smooth formulation allows us to gradually change a possibly continuous
starting model m into a model mHighPosterior of high posterior probability,
i.e. into one that honors both data and multiple-point statistics of the train-
ing image TI.

The following differentiable objective function is the mainstay of the method:

O(m) =

1

2

||dobs � g(m)||2C
D

+ fd
(m,TI) (3.1)

where the first term is the data misfit term, and fd
(m,TI) is the misfit

between the pattern histogram of TI and a generalized pattern histogram
for m, defined for non-categorial images. Superscript d is used to emphasize
that fd

(m,TI) is a differentiable function of the pixel values of m. This dis-
tinguishes this formulation from the original formulation of the Frequency
Matching method (Eq. 2.1)

Expression 3.1 can be minimized efficiently by gradient-based optimiza-
tion techniques, since the proposed expression fd

(m,TI) for integration of
multiple-point statistics is analytically differentiable.

The suggested formulation has several advantages:

• the solution is obtained fast due to the gradient-based search

• the solution honors the complex a priori information

• the optimization can be initiated from any convenient starting guess

25



3. The smooth formulation

The following explanation proceeds as follows. In Section 3.3 we show how
fd

(m,TI) is constructed. In Section 3.4 we discuss some important practi-
cal aspects of the implementation. In Section 3.5 we show how by minimiz-
ing fd

(m,TI) the training-image based prior can be honored. In Section
3.6 we formulate a workflow for solving inverse problems by means of the
smooth formulation. We apply the workflow to a synthetic history matching
problem.

3.3 Misfit with a priori information fd(m,TI)

The value of fd
(m,TI) should reflect how well the multiple-point statistics

of the discrete training image TI is represented in a possibly continuous im-
age m. Recall that the Frequency Matching method uses the chi-square dis-
tance between frequency distributions of the training image and the model
to evaluate the reproduction of MPS. Clearly, no frequency distribution for
a continuous image can be constructed.

Instead, we propose to operate through a pseudo-histogram concept, that,
similarly to the frequency distribution, estimates proportions of patterns,
but can be computed for any continuous image.

3.3.1 The pseudo-histogram

Our notation is presented in Table 3.1. Notice the notation image, which
implies that all symbols from Table 3.1 containing image as a superscript
are defined both for the model and the training images.

The pseudo-histogram Hd,image, where image 2 {m,TI}, similarly to the
frequency distribution, reflects pattern statistics. It has two additional prop-
erties:

• it is differentiable with respect to the model parameters m
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3.3. Misfit with a priori information fd
(m,TI)

Table 3.1: Notation

Notation Description

TI training image, categorical
m model (test image), can contain continuous values
image 2 {m,TI} image (training or test)
T scanning template
Hd,image pseudo-histogram of image

NTI,un number of unique patterns found in TI

N image number of patterns in image

patTI,un
j jth unique pattern in TI

patimage

i ith pattern of pixels from image.

• it can be computed for any continuous and discrete image

In order to construct the pseudo-histogram Hd,image the following steps are
to be performed:

First, we scan through the TI with the template T and save its unique (not
repeating) patterns as a database with NTI,un entries.

For image 2 {m,TI} the pseudo-histogram Hd,image is defined as a vector
of the length equal to the number of unique patterns in the TI. Unique pat-
terns of the training image define categories of the discrete patterns, whose
proportions need to be matched during the optimization.

Our approach is based on the following idea: a continuous pattern patimage

i

does not fit to a single discrete pattern category, instead it contributes to
all NTI,un categories.
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3. The smooth formulation

Consequently, the jth element Hd,image

j reflects the “contribution” of all
patterns found in image to patTI,un

j :

Hd,image

j =

N imageX

i=1

psim
ij (3.2)

where psim
ij defines the level of similarity between patimage

i and patTI,un
j .

We define psim
ij such that it equals 1 when patimage

i is pixel-wise equal to
patTI,un

j . We choose psim
ij to be based on the Euclidean distance between

pixel values of the corresponding patterns:

psim
ij =

1

(1 + A tkij)
s

(3.3)

where tij = ||patimage

i �patTI,un
j ||2 and A, k, s are user-defined parameters.

Notice the following property:

psim
ij =

(
1 tij = 0

2 (0, 1) tij 6= 0

(3.4)

The properties of the pattern similarity function (Eq. 3.3) are discussed in
Sec. 3.3.1.1

The pseudo-histogram computed for the discrete Image A (Fig 3.2a) is
shown in Fig. 3.2c by light-blue color, compare it with the frequency dis-
tribution (dark-blue). Figure 3.2b shows a continuous image, while in Fig.
3.2c one can see its pseudo-histogram depicted by the orange color. No-
tice the small counts everywhere: indeed, according to Eq. 3.4, this image
does not contain patterns sufficiently close to those observed in the training
image.
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3.3. Misfit with a priori information fd
(m,TI)

(a) Discrete Image A (b) Continuous image B

(c) Frequency distribution of Image A; Smooth

histogram of Image A; Smooth histogram of

Image B; 2x2 template applied

Figure 3.2: Frequency distribution and its approximation

3.3.1.1 Pattern similarity function

The choice of A, k, s in Eq. 3.3 is very important: on one side, they define
how well the pseudo-histogram approximates the true frequency distribu-
tion; on the other side, they are responsible for “smoothing" and, conse-
quently, for the convergence properties. Figure 3.3 reflects how different
values of k, s with fixed A = 100 influence the shape of the pattern sim-
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3. The smooth formulation

ilarity function defined by Eq.3.3 (distance is normalized). Our empirical
conclusion is that values A = 100, k = 2, s = 2 are optimal. Compare them
(Fig 3.3) to the extreme case A = 100, k = 1, s = 2 where the majority
of patterns have a close-to-zero contribution. These parameters are appli-
cable after tij has been normalized by the quantity representing maximum
possible Euclidean distance between the discrete patterns.

Figure 3.3: Patterns similarity function

3.3.2 Similarity function

Per definition, statistically similar images will have similar pseudo-histograms.
Therefore we introduce the similarity function:

fd
(m,TI) =

1

2

NTI,unX

i=1

(Hd,m
i � Hd,TI

i )

2

Hd,TI

i

(3.5)

Essentially, it is a weighted L2 norm, where the role of the weight parameter
is played by the smooth histogram of the training image. The suggested
measure favors patterns that are encountered less frequently in the training
image and facilitates proper reproduction of the training image features. If
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3.3. Misfit with a priori information fd
(m,TI)

the number of patterns in the training image NTI differs from the number
of patterns in the model Nm, we multiply Hd,TI

i by the following ratio:

r =

Nm

NTI

(3.6)

The choice of the similarity function is validated in Chapter 4, where the
expression of prior probability density function is explicitly derived.
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3. The smooth formulation

3.4 Implementation

3.4.1 Computing derivatives

Methods of gradient-based optimization typically require a procedure that
evaluates first-derivatives of the objective function. In this section we show
how to analytically compute the gradient of the expression fd

(m,TI) (which
is part of Eq. 3.1).

By definition:

rfd
(m,TI) =


@fd

@m1
, · · · ,

@fd

@mn

�T
(3.7)

From Eq. 3.5 it reads:

rfd
(m,TI) =

2

666666664

@Hd,m
1

@m1

@Hd,m
2

@m1
· · · @Hd,m

N

un

@m1

@Hd,m
1

@m2

@Hd,m
2

@m2
· · · @Hd,m

N

un

@m2

...
... . . . ...

@Hd,m
1

@m
n

@Hd,m
2

@m
n

· · · @Hd,m
N

un

@m
n

3

777777775

2

66666664

Hd,m
1 �Hd,TI

1

Hd,TI
1

Hd,m
2 �Hd,TI

2

Hd,TI
2...

Hd,m
N

un

�Hd,TI
N

un

Hd,TI
N

un

3

77777775

(3.8)

As it was defined in Sec. 3.3.1, Hd,m
j reflects contribution of all patterns

found in m, therefore from Eq. 3.2:

@Hj

@mz
=

NmX

i=1

@psimij

@mz
=

NmX

i=1

�Aks(1 + Atkij)
(�s�1)tk�1

ij

@tij
@mz

(3.9)

where z = 1, · · · , n.
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3.4. Implementation

Notice, that @t
ij

@m
z

= 0 if mz /2 patmi .
Otherwise, if patmi = [vi,1 · · · vi,N ]

T , and patTI,un
j = [uj,1 · · · uj,N ]

T , where
N is the number of pixels in the pattern, we get:

tij = ||patmi � patTI

j ||2 =

q
(vi,1 � uj,1)

2
+, · · · , +(vi,N � uj,N )

2 (3.10)

And, therefore:
@tij
@mz

=

vi,s � uj,s

||patmi � patTI

j ||2
(3.11)

where vi,s = mz.

3.4.2 Logarithmic scaling

The model parameters in reservoir characterization typically take positive
values (as, for instance, permeability), or are constrained to be in a certain
range (as, e.g., porosity). However, an iterative process in unconstrained
optimization may suggest a perturbation that will violate these boundaries.
One way to stay within the efficient framework of unconstrained optimiza-
tion is to rescale parameters. We suggest using the logarithmic scaling (Gao
and Reynolds, 2006):

xi = log

✓
mi � mlow

mup � mi

◆
(3.12)

where i = 1, ..., n, and n is the number of pixels in the test image m. mlow

and mup are the lower and upper scaling boundaries, respectively, of the
parameters. This log-transform does not allow extreme values of the model
parameters. We choose mlow < min(TI) and mup > max(TI).
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3. The smooth formulation

Notice, that for practical reasons we apply the same log-transformation to
the training image (denoted as TIlog). Then we minimize fd

(x,TIlog),
which is equivalent to minimizing the original fd

(m,TI).

3.4.3 Choosing optimization technique

Choice of optimization technique depends on the size of the problem, as well
on availability of sensitivities of the data with respect to the parameters.
The discussion on unconstrained optimization can be found in Appendix A.

For the history matching problem, quasi-Newton methods are recommended
Oliver and Chen (2011). Among many gradient methods (steepest-descent,
Newton, Levenberg-Marquardt) the family of quasi-Newton methods excel
in the balance between efficiency and simplicity of implementation. These
methods use information from the second derivatives, similar to the Newton
method, however, instead of computing the Hessian directly, use its smart
approximations. Quasi-Newton methods perform especially well on large
scale problems.

The Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) is one of the
most popular quasi-Newton techniques. The update is calculated as:

xk+1 = xk + ↵kpk (3.13)

where ↵k is the step length and pk is the search direction. The search
direction is defined as follows:

pk = �B�1
k rfk (3.14)

where Bk is the approximation of the Hessian at the k’th iteration. The
BFGS formula dictates the iterative update:

Bk+1 = Bk �
BksksTk Bk

sTk Bksk
+

ykyTk
yTk sk

(3.15)

where sk = xk+1 � xk = ↵kpk and yk = rfk+1 � rfk.
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3.4. Implementation

In this work we used its modified version called the limited memory BFGS,
which is especially suitable for the large scale problems.The limited mem-
ory BFGS method does not require storing fully dense approximations of
the Hessian, instead only few vectors are stored to implicitly represent the
approximation.
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3. The smooth formulation

3.5 Generating prior realizations

Figure 3.4 shows the workflow for generating prior realizations using the
proposed smooth formulation of multiple-point statistics. Examples of gen-
erating prior realizations can be found in Melnikova et al. (2013) (Appendix
H ) Notice, that while some pixels contain intermediate values, statistical
features of the training image as well as expected sharp contrasts of the
features are successfully reproduced.

3.6 Solving inverse problems

Solving the optimization problem 3.1 directly may result in an unbalanced
fit of the data and prior information. This may happen because, while the
data misfit term is derived directly from the definition of the likelihood, the
a priori information is taken into account approximately via the smooth
formulation.

In order to provide a fair balance between two terms, we pursue the idea
of scaling the terms, making them dimensionless. One of the easiest ways
to combine objective functions into a single function is to use the weighted
exponential sum (Marler and Arora, 2004). We put equal weights on two
misfit terms and the exponent equal to 2. In addition, we apply the loga-
rithmic scaling described in Sec. 3.4.2.
This leads to the final expression for the objective function:

O⇤
(x) =

 
1
2 ||dobs � g(m(x))||2C

d

� u⇤

u⇤

!2

+

✓
fd

(x,TIlog) � f⇤

f⇤

◆2

(3.16)

where u⇤ and f⇤ are the desired values of the misfits.
Figure 3.5 demonstrates the workflow of the proposed methodology.
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3.6. Solving inverse problems

The figures show the performance of the method: initial guesses of perme-
ability field (Fig. 3.6a ) are fed into the workflow (3.5) and constrained by
the multiple-point statistics and production data. The intermediate results
after 50 iterations are shown in Fig. (3.6b ), and the final solutions achieved
after 150 iterations are shown in Fig. (3.6c ).
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3. The smooth formulation

Initialize model m

Apply logarithmic
scaling m ! x,
TI ! TIlog

Evaluate prior term
fd

(x,TIlog)

fd
(x,TIlog) < f⇤?

Map the result back
x ! m

Compute
rfd

(x,TIlog), ↵,
B�1

Update x = x �
↵B�1rfd

(x,TIlog)

Stop

yes

no

Figure 3.4: Flowchart
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Initialize m, u⇤ and f⇤

Apply logarithmic
scaling m ! x,
TI ! TIlog

Evaluate data
misfit 1

2 ||dobs �
g(m(x))||2C

D

Evaluate prior term
fd

(x,TI
log

)

Evaluate O⇤
(x)

u⇤, f⇤ achieved?

Map the result back
x ! m

Compute rO⇤
(x),

↵, B�1

Update x = x �
↵B�1rO⇤

(x)

Stop

yes

no

Figure 3.5: Flowchart
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3. The smooth formulation

(a) (b) (c)

Figure 3.6: (a) Starting models, (b) Models after 50 iterations, (c) Models
after 150 iterations
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CHAPTER 4
Computing prior probabilities

Methods for solving inverse problems that aim at maximizing the a posteri-
ori probability through optimization (Lange et al., 2012b; Melnikova et al.,
2013) require a closed form expression for the a priori probability density
function to be known. Deriving such an expression for complex a priori in-
formation represented, for instance, by a training image, is not a trivial task.

Lange et al. (2012b) were first to suggest a closed form expression for the
a priori PDF from a training image, based on its histogram of patterns.
It was defined by means of the chi-square distance between pattern his-
tograms, however it was lacking a definition of the normalization constant.
Cordua et al. (2012b) suggested an alternative formulation of the a priori
PDF, using the Dirichlet distribution. Both approaches assume an unknown
theoretical distribution that generated the training image.

In Melnikova et al. (2013) we formulate an expression for the a priori prob-
ability density function assuming that the training image itself is capable of
providing the necessary information on prior probabilities. This approach
is more practical, since, indeed, the a priori knowledge is formed by the

41



4. Computing prior probabilities

observed training images. At first, however, let us compare the training im-
age with the training dataset that is used in the field of Natural Language
Processing (NLP) and show the common challenges.

4.1 Relation to Natural Language Processing

Researchers in Natural Language Processing also operate with prior prob-
abilities. In such application as speech recognition, specific combinations
of words, for instance sentences that ’make sense’, are assigned non-zero
prior probabilities. These probabilities are usually calculated from training
datasets. Since the amount of data is usually insufficient, these probabilities
can only be estimated approximately.

Consider a small example adopted from Marler and Arora (2004). Let us
consider a small training set consisting of only three sentences: “JOHN
READ MOBY DICK”, “MARY READ A DIFFERENT BOOK”, and “SHE
READ A BOOK BY CHER”.

Now, consider a test sentence “CHER READ A BOOK”. The probability
that the word “READ” follows the word “CHER” is defined as the number
of counts of “CHER READ” divided by the number of occurrences word
CHER followed by any word w (including end of string):

p(READ|CHER) =

c(CHER READ)P
w

c(CHER w)

=

0

1

(4.1)

From the given training set we conclude that the probability is zero. Assum-
ing the bigram language model, where the probability of a word depends on
the preceding word only (the Markov assumption), we obtain the following
expression for the probability of our test sentence:

p(CHER READ A BOOK) = p(CHER|<bos>)p(READ|CHER)

p(A|READ)p(BOOK|A)p(<eos>|BOOK) = 0

(4.2)
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4.1. Relation to Natural Language Processing

where <bos> and <eos> mean ’beginning of string’ and ’end of string’,
respectively.

Clearly, the probability of the test sentence is underestimated, since it is
a meaningful combination of words with some probability to occur. The
problem lies in the small size of the training data. Getting back to the
speech recognition, one can ask “what is the probability of a string s given
an acoustic signal A?”. Through the Bayesian rule, it can be found as:

p(s|A) =

p(A|s)p(s)

p(A)

(4.3)

If p(s), the prior probability of the sentence, was underestimated and was
assumed to be zero, then the speech recognition algorithm fails, regardless
the clarity of the acoustic signal. When we use a training image as a source
of a priori information, we find ourselves in the exactly the same situation.
Information obtained from the training image is not sufficient to assign cor-
rect prior probabilities.

The problem of insufficient training data can evidently be solved by consid-
ering bigger dataset. Another way to improve probability calculations is to
apply smoothing techniques (Chen and Goodman, 1999). In general, these
techniques aim at making distributions more uniform, increasing near-zero
probabilities and decreasing high probabilities.

Marler and Arora (2004) review smoothing techniques and conclude that
the Kneser-Ney smoothing is the most efficient approach. However, it is
beyond the scope of this thesis to explore techniques for optimal smoothing
of training-image-based priors. In our work we use a simpler technique
called absolute discounting, that performs sufficiently well.
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4. Computing prior probabilities

4.2 Computing prior probabilities of a discrete
image given a discrete training image

Our idea consists in representing an image as an outcome of a multino-
mial experiment (see also Cordua et al. (2012a)). Consider two categorical
images: training and test. Assume that a pattern in the test image is a
multiple-point event that leads to the success for exactly one of K cate-
gories, where each category has a fixed probability of success pi. By defini-
tion, each element Hi in the frequency distribution H indicates the number
of times the ith category has appeared in N trials (the number of patterns
observed in the test image). Then the vector H = (H1, ..., HK) follows the
multinomial distribution with parameters N and p, where p = (p1, ..., pK)

P (H) = P (H1, · · · , HK , N, p1, · · · pK) =

N !

H1! · · · HK !

pH1
1 · · · pHK

K (4.4)

We assume that the vector of probabilities p is inferred from the frequency
distribution of the training image HTI: normalizing its entries on the total
number of counts, we obtain the probabilities of success.

In general, the histogram of the training image is very sparse, therefore
many categories of patterns will be assigned zero probabilities. It means
that if a test image has a single pattern that is not encountered in the
training image, its prior probability, as follows from Eq. 4.4, will be zero.
It happens due to insufficient information in the finite training image; it is
very likely that many of the unobserved patterns in the training image have
some non-zero probabilities to be observed in a new situation.
Since there is no information about the probabilities of the patterns not
encountered in the training image, we assume them to be equal to a small
positive number ". To make the sum of pi equal to one, we subtract a small
number � from all non-zero bins of HTI:

pi =

(
HTI

i

��

NTI HTI

i > 0

" HTI

i = 0

(4.5)
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training image

where � = "(K � NTI,unique
)NTI/NTI,unique

After pi having been defined, P (H) can be computed through:

log(P (H)) = log(

N !

H1! · · · HK !

) +

KX

i=1

Hi log(pi) (4.6)

We apply Stirling’s approximation:

log(n!) = n log n � n + O(log n) (4.7)

Defining I = {i : Hi > 0} we have:

log(

N !

H1! · · · Hk!
) = log(N !) �

X

i2I

log(Hi!) ⇡ N log N � N�

X

i2I

(Hi log(Hi) � Hi) = N log N �
X

i2I

Hi log(Hi)

(4.8)

And finally,

log(P (H)) ⇡ N log N +

X

i2I

Hi log(

pi
Hi

) =

X

i2I

Hi log(

Npi
Hi

) (4.9)

Then
� log(P (H)) ⇡

X

i2I

Hi log(

Hi

Npi
) (4.10)

Substituting Hi with Npi+"i and applying a Taylor expansion of the second
order one arrives to the chi-square distance divided by two:

� log(P (H)) ⇡ 1

2

X

i2I

(Hi � Npi)2

Npi
(4.11)

Further, if we denote h = H/N , Eq. 4.9 is transformed:

log(P (H)) ⇡
X

i2I

Nhi log(

pi
hi

) = �
X

i2I

Nhi log(

hi

pi
) = �NDKL(h||p)

(4.12)
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where DKL(h||p) is the Kullback-Leibler divergence, a dissimilarity measure
between two probability distributions h and p. In other words, it defines the
information lost when the theory (training image) is used to approximate
the observations (test image).
Now, given a discrete image, one can compute its relative prior probability
using Eq.4.9. Alternative way of computing prior probabilities consists in
reformulating Eq.4.11 through the multivariate Gaussian (Appendix B).
However it is less precise and was not applied in this work.

4.2.1 Prior probabilities in the continuous case

Consider a situation when the pixel values are continuous, but close to
integer values, as inferred from the training image. One way to define its
(approximate) prior probability is to round off the value, thereby obtaining
a discrete image and use Eq. 4.9. However, this may influence the datafit,
and consequently the likelihood and the posterior.
From a practical point of view, pixel values that differ a little do not spoil
perception of spatial features and are sufficient for the end-user. For this
reason, such patterns can be considered as a success in the multinomial
experiment. Therefore, the above considerations are valid for near-integer
models generated by our smooth approach.

In addition, notice that Eq.4.11 justifies our choice of similarity function
(Eq. 3.5). Indeed, by minimizing expression 3.5 we minimize the value
defined by Eq.4.11 as well. Examples of computing relative a priori proba-
bilities can be found in Melnikova et al. (2013).
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CHAPTER 5
Inversion of seismic reflection

data using the smooth

formulation

This chapter describes the methodology for inverting seismic reflection data
for rock properties using the smooth formulation.

5.1 Introduction

Seismic reflection data are widely used in reservoir characterization for re-
solving geological structure and properties. Seismic reflection data are es-
pecially attractive for inversion, as they are highly sensitive to the contrasts
in the subsurface. Nevertheless there are several difficulties that prevent us
from obtaining a unique solution: presence of noise in data, uncertainties
associated with data processing, uncertain wavelet estimation, inaccurate
rock-physics model and uncertainty in conversion from depth to time (Bosch
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et al., 2010).

Commonly, seismic inversion aims at estimating elastic properties. Inver-
sion for rock properties is a more complicated task, since the relationship
between elastic parameters (impedances, velocities, elastic moduli) and rock
properties (porosity, permeability) is often non-linear and uncertain. Typi-
cally this task is performed sequentially: first the elastic parameters are in-
verted and then the rock properties are estimated at a postprocessing stage.

We propose a new technique for inversion of seismic reflection data, that
incorporates rock physics modeling and multiple-point geostatistics. The
inverse problem is formulated as an optimization problem, where the a pri-
ori information is taken into account using the smooth formulation decribed
in Chapter (3). The algorithm uses a gradient-based optimization in order
to find a solution that belongs to the high posterior region, i.e. one that
matches the data and multiple-point statistics of the training image repre-
senting spatial features in the subsurface.

We model the three dimensional seismic forward response by calculating
zero-offset seismograms at each location at the surface using 1D convolu-
tion. This approach allows us to compute 3D seismic data almost at no
cost. We use a simple rock physics model based on the Wyllie equation
(Wyllie et al., 1956) that connects porosity, which is the model parameter
we aim to invert for, with the acoustic impedance. In addition, we neglect
fluid substitution effects. The method can be easily extended to a more
complex rock physics model, for instance, to the one described in Avseth
et al. (2000), since the elastic properties are still differentiable with respect
to porosity.

This study is challenged by the difficulties of depth-to-time conversion. We
propose a differentiable way for converting reflections from depth to time,
that helps in reconstruction of geological features in correct locations.

An advantage of the proposed method is its efficiency when searching for
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a solution with high posterior probability – solutions that can be further
explored by sampling techniques. In addition, the method can be combined
with history matching problem into a joint inversion strategy.

5.2 Methodology

We formulate the inverse problem in a probabilistic framework (Tarantola,
2005) where the solution is characterized by its a posteriori probability
density function. Models of high posterior probability can then be obtained
by maximizing the values of posterior PDF or minimizing the corresponding
sum of misfits:

mHighPosterior
= argmin

m

⇢
1

2

||dseis
obs

� gseis
(m)||2C

D

+ fd
(m,TI)

�
(5.1)

Here fd
(m,TI) represents the misfit with multiple-point statistics of the

training image as defined in Chapter 3. In the context of the current study,
m denotes porosity.

5.2.1 Seismic forward model

An important task in the development of the method is to propose a seismic
operator gseis, such that its Jacobian Gseis with respect to porosity can be
computed analytically.

We consider a discretized subsurface model consisting of nx ⇥ ny ⇥ nz grid-
blocks of size �x ⇥ �y ⇥ �z meters. We model the seismic response in
the form of seismograms measured at each gridblock at the top layer of the
model, so nx⇥ny seismograms are computed. The forward response is then
defined as a vector consisting of concatenated seismograms. Each seismo-
gram is computed with the same number of sampling points ns, therefore
size of the data vector is nsnxny.
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The matrix of seismic response S consisting of nxny rows, where each row
represents a single seismogram, is computed using convolution of the reflec-
tivity series R with a wavelet, assumed to be known:

S = w ⇤ R = RW (5.2)

where w is the discretized wavelet, and W is the matrix operator performing
convolution with w. In this study we used the Ricker wavelet, see Appendix
C for details.

Reflection coefficients are modeled as a function of porosity differentiable
everywhere. In this study we propose a differentiable conversion from depth
to time, that helps in locating geological layers correctly. But first we in-
troduce the rock physics model that provides us with a link to porosity.

5.2.1.1 Rock physics model

The acoustic impedance Z is calculated using Wyllie’s equation (Wyllie
et al., 1956):

Z = V ⇢ (5.3)

where
V =

VrVf

�Vr + (1 � �)Vf
(5.4)

and
⇢ = �⇢f + (1 � �)⇢r (5.5)

Here V and ⇢ denote bulk acoustic velocity and density, Vr, Vf are velocities
of the rock matrix and fluid, respectively, and ⇢r and ⇢f are their densities.

The values of Vr and ⇢r depend on the facies type, and typically take con-
stant values, for instance:

Vr, ⇢r =

(
V1, ⇢1 if shale
V2, ⇢2 if sand

(5.6)
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We assume that Vr and ⇢r are dependent on both the facies type and poros-
ity in a way that provides the necessary differentiable link for the smooth
formulation. We assume that the facies 1 and 2 are characterized by con-
stant porosities �1 and �2, therefore we can suggest the following cubic
relationship as a simplified model for the dependence of Vr on �:

Vr = a�3
+ b�2

+ c� + d (5.7)

where, for instance:

a = 4

V2 � V1

(�2 � �1)
3
, b = �3

2

a(�1 + �2),

c = �3a

✓
�1 + �2

2

◆2

� b(�1 + �2), d = V1 � a�3
1 � b�2

1 � c�1

(5.8)

The corresponding plot is shown in Figure 5.1, where V1 = 3200 m/s,
V2 = 2800 m/s, �1 = 0.08, �2 = 0.26. Notice, if � = �1 then V = V1

and, in opposite, if � = �2 then V = V2.

Substituting in Eq 5.8 V1 and V2 with ⇢1 and ⇢2 respectively, we obtain
coefficients a0, b0,c0 and d0 for the model of rock matrix density, which is
computed as:

⇢r = a0�3
+ b0�2

+ c0� + d0 (5.9)

5.2.1.2 Reflectivity series

Reflectivities in depth Rd are calculated as:

Rd
i,j =

Zi,j+1 � Zi,j

Zi,j+1 + Zi,j
, i = 1, . . . , nxny, j = 1, . . . , nz (5.10)

where surface reflection coefficients are set to zero.
The next step is to map reflectivities represented in depth domain with nz

values into time domain discretized with ns sampling points as [t1 · · · tn
s

].
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Figure 5.1: Rock matrix velocity Vr as a function of porosity.

Mapping to the sampling point ts is traditionally performed using two-way
travel times via the following procedure:

Ri,s = Rd
i,j⇤ (5.11)

where j⇤
: tti,j⇤

= argmint ti,j(|ti,s � tti,j |), j = 1 · · · nz and the two-way
travel time tti,j = 2�z

⇣
1

V
i,1

+ · · · +

1
V

i,j

⌘
. Unfilled Ri,s are taken to be zero.

Notice that this conversion prevents us from differentiation with respect to
porosity. To address this difficulty, we propose to define the reflectivity
coefficients in time as a linear combination of all reflective coefficients in
depth such that,

Ri,s = e�(tt
i,1�t

i,s

)2/�2
Rd

i,1 + e�(tt
i,2�t

i,s

)2/�2
Rd

i,2+

· · · + e�(tt
i,n

z

�t
i,s

)2/�2
Rd

i,n
z

(5.12)
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The suggested exponential relationship (Figure 5.2 ) has the following prop-
erty: when the value of travel time tti,j is far from the current sampling
point ti,s, the corresponding reflection coefficient Ri,j contributes into Eq.
5.12 with zero, but when tti,j is close to ti,s, its contribution is almost one.
Parameter � is chosen naturally as the sampling interval divided by two.

We compare the proposed approximation of reflectivities in time (5.12 ) with
traditional approach (5.11) in the next section. It is important that now
reflection coefficients in time become differentiable with respect to porosity
defined in depth since R = R(tt, Rd

), Rd
= Rd

(Z(�)) and tt = tt(V (�)).

Figure 5.2: The proposed exponential relationship with ti,s = 0.003
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5.2.2 Seismic sensitivitiies

The vector of the forward response is shaped by concatenating rows of the
matrix S and therefore consists of nseis

= nsnxny elements. The Jacobian of
the forward response with respect to porosity, per definition, is computed as:

Gseis
=

0
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(5.13)

Due to the 1D convolution approach, the seismogram measured at the sur-
face location i depends only on porosity values below. This means that the
Jacobian matrix is extremely sparse. Fortunately, in quasi-Newton meth-
ods, the Jacobian is only used when its product with a data misfit vector
is computed (see Sec. 1.5.4), therefore storage of the full Jacobian is not
needed. Below we derive the corresponding partial derivatives.

From Eq.5.2 it reads:

@Si,1

@�i,j
· · · @Si,n

s

@�i,j

�T
= W


@Ri,1

@�i,j
· · · @Ri,n

s

@�i,j

�T
(5.14)

where i = 1, · · · , nxny and j = 1, · · · , nz.

From Eq. 5.12 we derive:

@Ri,s

@�i,j
=

n
zX

k=1

@Li,s,k

@�i,j
Rd

i,k +

n
zX

k=1

@Rd
i,k

@�i,j
Li,s,k (5.15)

where Li,s,k = e�(tt
i,k

�t
i,s

)2/�2
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From the definition of two-way travel time we obtain:

@Li,s,k

@�i,j
=

8
<

:

4�z(tt
i,k

�t
i,s

)
�2

@V
i,j

@�
i,j

L
i,s,k

V 2
i,j

if j < k

0 if j > k
(5.16)

Computation of @Vi,j/@�i,j and @Rd
i,k/@�i,j is performed by applying the

chain rule to Eqs. 5.3 – 5.10 and not shown here.

5.3 Numerical example

We consider a synthetic reservoir model similar to one presented in (Zunino
et al. (2013), Appendix I ), which was inspired by the Stanford VI reservoir
model described in (Lee and Mukerji, 2012). We upscaled the first 80 layers
of the original facies model and assumed presence of only two facies. As
it was mentioned above, we assume a constant porosity within each facies.
We choose shale facies to be defined by a porosity value of 0.08 and sand
facies by 0.26. The corresponding true porosity model is shown in Figure
5.3. It consists of 20 horizontal layers, each of size 38 by 38 pixels.

The parameters of the rock physics model are given in Table 5.1. The values
of physical properties were inspired by the Stanford VI dataset.

Table 5.1: Parameters of rock physics model

Shale Sand Fluid

V1 = 3200 m/s V2 = 2800 m/s Vf = 1500 m/s
�1 = 0.08 �2 = 0.26 –
⇢1 = 2500 kg/m3 ⇢2 = 2650 kg/m3 ⇢f = 900 kg/m3

Table 5.2 lists parameters for modeling the seismic response.
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Table 5.2: Parameters of the seismic model

Number of sampling points, ns 120
Sampling interval, �t 0.0005 s
Wavelet maximum frequency 60 Hz
Total thickness of the formation 60 m

First, in order to test the implementation, we model both the observed data
and the forward response without conversion from depth to time. Then we
invert noise-free data to obtain porosity. We choose the starting guess ran-
domly in the range between �1 and �2 (Fig. 5.4). The result of inversion is
shown in Fig. 5.5. As expected, the channels are well reproduced.

Next, we model seismic observations by applying the traditional procedure
of conversion from depth to time (Eq. 5.11 ) and adding Gaussian noise.
However, when modeling the forward response, we stay in the depth do-
main. This results in an incorrect reproduction of geological features (Fig.
5.6).

Figure 5.7 compares seismograms computed using the traditional depth-to-
time conversion and the approach described by Eq. 5.12. The similarity
is very convincing, therefore we proceed by inverting seismic data (that
were computed using Eq.5.11 ), but modeling the forward response through
the procedure described in Eq. 5.12 . The result is shown in Fig. 5.8.
Reconstructed porosity is very smooth, however, most of the channels are
located in correct locations. Therefore, this solution becomes a very good
starting guess for inverting seismic data in combination with multiple point
geostatistics. We have used every fifth layer of the true model to construct
the training image. The result of joint inversion is shown in Fig 5.9. We
have used a one-dimensional template of size 36 x 1 pixels, which showed
the best result. The obtained solution came as close as possible to matching
the seismic data and reproducing the multiple-point statistics of the training
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image.

Figure 5.3: True porosity model.

57



5. Inversion of seismic reflection data using the smooth

formulation

Figure 5.4: Initial randomly generated porosity model.

Figure 5.5: Result of inversion when observations and forward model are
computed in the depth domain.
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Figure 5.6: Result of inversion, when only forward response is modeled in
depth domain.
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Figure 5.7: Seismograms computed by use of traditional depth-to-time con-
version (dark blue) and the proposed procedure (light blue).

Figure 5.8: Result of inversion with the proposed mapping technique.
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Figure 5.9: Inversion of seismic data with the proposed mapping technique
and multiple-point geostatistics.
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CHAPTER 6
Conclusion

In this thesis we have discussed challenges of the inverse problems arising in
geoscience. Most of them can be described as non-linear, underdetermined
and computationally expensive. While inverse problem theory provides us
with all necessary tools for consistent integration of information, yet there
are practical issues associated with their application.

In this work we aimed at finding a balance between consistent data integra-
tion and computational costs. As the result, we proposed an efficient, prob-
abilistically formulated, optimization scheme for solving inverse problems.
Integration of complex a priori information, dictated by the inverse prob-
lem theory, has a useful property of shrinking solution space and decreasing
computational load. The proposed smooth formulation of the multiple-
point geostatistics enabled us to use efficient gradient-based optimization.
We demonstrated its applicability on the problems of history matching and
seismic inversion. The method has a potential to be used in the tasks of
closed-loop reservoir management.

The developed method provides us with possibility of detecting different
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islands of high-posterior probabilities, that can be explored by sampling
techniques to quantify uncertainty. However, it will be just a small part
of the global task of uncertainty quantification, associated with the noise
in observations and modelization error. In reservoir characterization uncer-
tainties arise at every stage: at the stage of data acquisition, their processing
and interpretation, at the stage of choosing parameterization technique, at
the stage of deciding which forward model is to be used. Estimation and
propagation of such uncertainties is without doubt one of the most inter-
esting topics in the field of inverse problems.
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APPENDIX A
Methods of unconstrained

optimization

Algorithms for unconstrained optimization include steepest-descent, New-
ton, Gauss-Newton, Levenberg-Marquardt anf quasi-Newton methods. All
the methods require a starting point x0 that is iteratively updated such that
the value of the objective function is minimized. All these methods vary on
the strategy for finding the search direction pk and step length ↵:

xk+1 = xk + ↵kpk (A.1)

Steepest descent method, for instance, takes the path along pk = �rfk,
however it does not take into account second derivatives of the function
(Hessian) and therefore require a large number of iterations until the con-
vergence.
Newton method, in opposite has the highest convergence speed, however,
the knowledge of the Hessian is needed:

pk = �(r2fk)
�1rfk (A.2)
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A. Methods of unconstrained optimization

It can be computationally unfeasible to compute Hessian for large scale
nonlinear problems. Therefore other methods use approximations of the
second derivatives. Gauss-Newton method that was developed specifically
for solving least-squares problems:

f(x) =

1

2

mX

j=1

r2
j (x) (A.3)

J(x) =


@rj
@xi

�

j=1,...,m i=1,...n

(A.4)

Then

rf(x) =

mX

j=1

rj(x)rrj(x) = J(x)

T r(x) (A.5)

And consequently, the Hessian:

r2f(x) =

mX

j=1

rrj(x)rrj(x)

T
+

mX

j=1

rj(x)r2rj(x)

= J(x)

TJ(x) +

mX

j=1

rj(x)r2rj(x)

(A.6)

In Gauss-Newton and Levenberg-Marquardt techniques we neglect with the
last term in Eq.A.6 and therefore the Hessian is completely defined by the
first derivatives.:

rf2
(x) = J(x)

TJ(x) (A.7)
Therefore, essentially, the Gauss-Newton method is the Newton method
with the approximated Hessian. Levenberg-Marquardt in its own turn, can
be viewed as the Gauss-Newton method with the trust region strategy for
finding the search direction. Levenberg-Marquardt typically requires more
iterations to converge, however it is more robust.
These methods are very popular, since they do not require the knowledge
of Hessian and much more faster than usual steepest-descent. The compli-
cation arise usually when the size of parameters in the model is very high.
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Quasi-Newton methods also use approximation of the Hessian. In general,
the search direction is defined as follows:

pk = �B�1
k rfk (A.8)

where Bk is the approximation of the Hessian at the k’th iteration. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula dictates the iterative
update:

Bk+1 = Bk �
BksksTk Bk

sTk Bksk
+

ykyTk
yTk sk

(A.9)

where sk = xk+1 � xk = ↵kpk and yk = rfk+1 � rfk.
In addition these methods do not require explicit knowledge of the Jacobian.
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APPENDIX B
Defining prior probabilities:

connection with chi-square and

multivariate Gaussian

Consider two discrete images: test and training. Let us assume that their
frequency distributions consist of 3 categories only. The number of counts
is equal to N . Then the histogram of the test image is {H1H2H3} and
the histogram of the training image {Np1, Np2, Np3}. Assuming that the
frequency distribution of the training image is the underlying theoretical
distribution, we define the chi-square distance:

�2
=

(H1 � Np1)
2

Np1
+

(H2 � Np2)
2

Np2
+

(H3 � Np3)
2

Np3
(B.1)

Since H1 + H2 + H3 = N and p1 + p2 + p3 = 1 , we have:

�2
=

(H1 � Np1)
2

Np1
+

(H2 � Np2)
2

Np2
+

(N � H1 � H2 � N(1 � p1 � p2))
2

N(1 � p1 � p2)

(B.2)
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B. Defining prior probabilities: connection with chi-square

and multivariate Gaussian

Then

�2
=

(H1 � Np1)
2

Np1
+

(H2 � Np2)
2

Np2
+

(H1 + H2 � Np1 � Np2)
2

N(1 � p1 � p2)
(B.3)

After regrouping the equation looks as follows:

�2
=

1

Np1p2(1 � p1 � p2)

�
(H1 � Np1)

2 p2(1 � p2)+

(H2 � Np2)
2 p1(1 � p1)+

2(H1 � Np1)(H2 � Np2)p1p2)

(B.4)

Denoting z =

1
Np1p2(1�p1�p2) it is easy to write the equation in matrix form:

�2
= z

⇥
H1 � Np1 H2 � Np2

⇤ p2(1 � p2) p1p2

p1p2 p1(1 � p1)

� 
H1 � Np1

H2 � Np2

�

(B.5)
Let us define as M the following matrix:

M = z


p2(1 � p2) p1p2

p1p2 p1(1 � p1)

�
(B.6)

We assume that M = C�1, where C is the covariance matrix. Then C =

M�1 :

C =

Np1p2(1 � p1 � p2)

p2(1 � p2)p1(1 � p1) � p2
1p

2
2


p1(1 � p1) �p1p2

�p1p2 p2(1 � p2)

�
(B.7)

And even shorter:

C =


Np1(1 � p1) �Np1p2

�Np1p2 Np2(1 � p2)

�
(B.8)

Now we are ready to compute the prior probability:
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f(H1, H2, H3) = f(H1, H2) = const · exp
✓

�1

2

�2

◆
(B.9)

Notice the decrease in the degrees of freedom.
The PDF for the non-degenerate multivatiate normal distribution has the
following form:

fx(x1, · · · , xs) =

1

(2⇡)

s/2|⌃|1/2
exp

✓
�1

2

(x � µ)

T⌃�1
(x � µ)

◆
(B.10)

where |⌃| is the determinant of ⌃ and s = rank(⌃).

Since our 3-variate case was degraded to bivariate, we have rank(C) = 2:

fH(H1, H2, H3) = fH(H1, H2)

=

1

(2⇡)

2/2|C|1/2
exp

✓
�1

2

(H⇤ � Np⇤
)

TC�1
(H⇤ � Np⇤

)

◆

(B.11)

where H⇤
= (H1, H2) and p⇤

= (p1, p2).
Equation B.8 defines the covariance matrix C, therefore:

|C| = N2p1p2(1 � p1 � p2) = N2p1p2p3 (B.12)

Generalization
We can conclude that in the general case the following is true:

fH(H1, · · · , Hk) = fH(H1, · · · , Hk�1)

=

1

(2⇡)

(k�1)/2|C⇤|1/2
exp

✓
�1

2

(H⇤ � Np⇤
)

TC⇤�1
(H⇤ � Np⇤

)

◆

(B.13)
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B. Defining prior probabilities: connection with chi-square

and multivariate Gaussian

where H⇤
= (H1, · · · , Hk�1) and p⇤

= (p1, · · · , pk�1).
C⇤ is k � 1 ⇥ k � 1 covariance matrix, where:

C⇤
ii = Npi(1 � pi),

C⇤
ij = �Npipj , i = 1, · · · , k � 1, j = 1, · · · , k � 1

(B.14)

and

|C⇤| = Nk�1p1p2 · · · pk (B.15)
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APPENDIX C
Ricker Wavelet

Amplitudes of the Ricker wavelet of maximum frequency wmax at time t is
computed as :

w = (1 � 2(⇡wmaxt)2)e�(⇡wmaxt)2 (C.1)

We consider the wavelet computed at the following discrete moments of
time :

[w1 · · · wn
s

] = [w(t1) · · · w(tn
s

)] (C.2)

where [t1, · · · , tn
s

] = [0, �t, 2�t, · · · , (ns � 1)�t] and �t is the sampling
interval.

Since the wavelet is symmetric around zero,
[w(t1) · · · w(tn

s

)] = [w(t�1) · · · w(t�n
s

)], where
[t�1, · · · , t�n

s

] = [0, ��t, �2�t, · · · , �(ns � 1)�t].

To compute convolution, the following operator is constructed:
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C. Ricker Wavelet

W =

0

BBB@

w1 w�2 · · · w�n
s

w2 w1 · · · w�n
s

+1
...

... . . . ...
wn

s

wn
s

�1 · · · w1

1

CCCA
(C.3)

And due to the aforementioned symmetry:

W =

0

BBB@

w1 w2 · · · wn
s

w2 w1 · · · wn
s

�1
...

... . . . ...
wn

s

wn
s

�1 · · · w1

1

CCCA
(C.4)
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Abstract The frequency matching method defines a closed form expression for a
complex prior that quantifies the higher order statistics of a proposed solution model
to an inverse problem. While existing solution methods to inverse problems are ca-
pable of sampling the solution space while taking into account arbitrarily complex a
priori information defined by sample algorithms, it is not possible to directly compute
the maximum a posteriori model, as the prior probability of a solution model cannot
be expressed. We demonstrate how the frequency matching method enables us to
compute the maximum a posteriori solution model to an inverse problem by using
a priori information based on multiple point statistics learned from training images.
We demonstrate the applicability of the suggested method on a synthetic tomographic
crosshole inverse problem.

Keywords Geostatistics · Multiple point statistics · Training image · Maximum a
posteriori solution

1 Introduction

Inverse problems arising in the field of geoscience are typically ill-posed; the avail-
able data are scarce and the solution to the inverse problem is therefore not well-
determined. In probabilistic inverse problem theory the solution to a problem is given
as an a posteriori probability density function that combines states of information
provided by observed data and the a priori information (Tarantola 2005). The ambi-
guities of the solution of the inverse problem due to the lack of restrictions on the
solution is then reflected in the a posteriori probability.
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A priori information used in probabilistic inverse problem theory is often
covariance-based a priori models. In these models the spatial correlation between
the model parameters is defined by two-point statistics. In reality, two-point-based a
priori models are too limited to capture curvilinear features such as channels or cross
beddings. It is therefore often insufficient to rely only on the two-point statistics,
and thus higher order statistics must also be taken into account in order to correctly
produce geologically realistic descriptions of the subsurface. It is assumed that ge-
ological information is available in the form of a training image. This image could
for instance have been artificially created to describe the expectations for the solution
model or it could be information from a previous solution to a comparable inverse
problem. The computed models should not be identical to the training image, but
rather express a compromise between honoring observed data and comply with the
information extracted from the training image. The latter can be achieved by ensuring
that the models have the same multiple point statistics as the training image.

Guardiano and Srivastava (1993) proposed a sequential simulation algorithm that
was capable of simulating spatial features inferred from a training image. Their ap-
proach was computationally infeasible until Strebelle (2002) developed the single
normal equation simulation (snesim) algorithm. Multiple point statistics in general
and the snesim algorithm in particular have been widely used for creating models
based on training images and for solving inverse problems, see for instance Caers and
Zhang (2004), Arpat (2005), Hansen et al. (2008), Peredo and Ortiz (2010), Suzuki
and Caers (2008), Jafarpour and Khodabakhshi (2011). A method called the proba-
bility perturbation method (PPM) has been proposed by Caers and Hoffman (2006).
It allows for gradual deformation of one realization of snesim to another realization
of snesim. Caers and Hoffman propose to use the PPM method to find a solution to an
inverse problem that is consistent with both a complex prior model, as defined by a
training image, and data observations. PPM is used iteratively to perturb a realization
from snesim while reducing the data misfit. However, as demonstrated by Hansen et
al. (2012), as a result of the probability of the prior model not being evaluated, the
model found using PPM is not the maximizer of the posterior density function, but
simply the realization of the multiple point based prior with the highest likelihood
value. There is no control of how reasonable the computed model is with respect to
the prior model. It may be highly unrealistic.

The sequential Gibbs sampling method by Hansen et al. (2012) is used to sample
the a posteriori probability density function given, for example a training image based
prior. However, as with the PPM it cannot be used for optimization and locating the
maximum a posteriori (MAP) model, as the prior probability is not quantified. The fo-
cus of our research is the development of the frequency matching (FM) method. The
core of this method is the characterization of images by their multiple point statistics.
An image is represented by the histogram of the multiple point-based spatial event
in the image; this histogram is denoted the frequency distribution of the image. The
most significant aspect of this method, compared to existing methods based on multi-
ple point statistics for solving inverse problems, is the fact that it explicitly formulates
an a priori probability density distribution, which enables it to efficiently quantify the
probability of a realization from the a priori probability.

The classical approach when solving inverse problems by the least squares meth-
ods assumes a Gaussian prior distribution with a certain expectation. Solution models
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to the inverse problem are penalized depending on their deviation from the expected
model. In the FM method, the frequency distribution of the training image acts as
the expected model and a solution image is penalized depending on how much its
frequency distribution deviates from that of the training image. To perform this com-
parison we introduce a dissimilarity measure between a training image and a model
image as the χ2 distance between their frequency distributions. Using this dissimilar-
ity measure for quantifying the a priori probability of a model the FM method allows
us to directly compute the MAP model, which is not possible using known techniques
such as the PPM and sequential Gibbs sampling methods.

Another class of methods are the Markov random fields (MRF) methods (Tjelme-
land and Besag 1998). The prior probability density given by Markov methods in-
volves a product of a large number of marginals. A disadvantage is therefore, despite
having an expression for the normalization constant, that it can be computationally
expensive to compute. Subclasses of the MRF methods such as Markov mesh mod-
els (Stien and Kolbjørnsen 2011) and partially ordered Markov models (Cressie and
Davidson 1998) avoid the computation of the normalization constant, and this advan-
tage over the MRF methods is shared by the FM method. Moreover, in contrast to
methods such as PMM and MRF, the FM method is fully non-parametric, as it does
not require probability distributions to be written in a closed form.

This paper is ordered as follows. In Sect. 2 we define how we characterize im-
ages by their frequency distributions, we introduce our choice of a priori distribution
of the inverse problem and we elaborate on how it can be incorporated into tradi-
tional inverse problem theory. Our implementation of the FM method is discussed in
Sect. 3. In Sect. 4 we present our test case and the results when solving an inverse
problem using frequency matching-based a priori information. Section 5 summarizes
our findings and conclusions.

2 Method

In geosciences, inverse problems involve a set of measurements or observations dobs

used to determine the spatial distribution of physical properties of the subsurface.
These properties are typically described by a model with a discrete set of parameters,
m. For simplicity, we will assume that the physical property is modeled using a reg-
ular grid in space. The model parameters are said to form an image of the physical
property.

Consider the general forward problem,

d = g(m), (1)

of computing the observations d given the perhaps non-linear forward operator g
and the model parameters m. The values of the observation parameters are computed
straightforwardly by applying the forward operator to the model parameters. The as-
sociated inverse problem consists of computing the model parameters m given the
forward operator g and a set of observations dobs. As the inverse problem is usually
severely under-determined, the model m that satisfies dobs = g(m) is not uniquely
determined. Furthermore, some of the models satisfying dobs = g(m) within the re-
quired level of accuracy will be uninteresting for a geoscientist as the nature of the
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forward operator g and the measurement noise in dobs may yield a physically unre-
alistic description of the property. The inverse problem therefore consists of not just
computing a set of model parameters satisfying Eq. 1, but computing a set of model
parameters that gives a realistic description of the physical property while honoring
the observed data. The FM method is used to express how geologically reasonable a
model is by quantifying its a priori probability using multiple point statistics. Letting
the a priori information be available in, for instance, a training image, the FM method
solves an inverse problem by computing a model that satisfies not only the relation
from Eq. 1 but a model that is also similar to the training image. The latter ensures
that the model will be geologically reasonable.

2.1 The Maximum A Posteriori Model

Tarantola and Valette (1982) derived a probabilistic approach to solve inverse prob-
lems where the solution to the inverse problem is given by a probability density func-
tion, denoted the a posteriori distribution. This approach makes use of a prior distri-
bution and a likelihood function to assign probabilities to all possible models. The
a priori probability density function ρ describes the data independent prior knowl-
edge of the model parameters; in the FM method we choose to define it as follows

ρ(m) = const. exp
(
−α f (m)

)
,

where α acts as a weighting parameter and f is a dissimilarity function presented in
Sect. 2.4. Traditionally, f measures the distance between the model and an a priori
model. The idea behind the FM method is the same, except we wish not to compare
models directly but to compare the multiple point statistics of models. We therefore
choose a traditional prior but replace the distance function such that instead of mea-
suring the distance between models directly, we measure the dissimilarity between
them. The dissimilarity is expressed as a distance between their multiple point statis-
tics.

The likelihood function L is a probabilistic measure of how well data associated
with a certain model matches the observed data, accounting for the uncertainties of
the observed data,

L
(
m,dobs) = const. exp

(
−1

2

∥∥dobs − g(m)
∥∥2

Cd

)
.

Here, Cd is the data covariance matrix and the measurement errors are assumed to be
independent and Gaussian distributed with mean values 0. The a posteriori distribu-
tion is then proportional to the product of the prior distribution and the likelihood

σ (m) = const.ρ(m)L
(
m,dobs).

The set of model parameters that maximizes the a posteriori probability density is
called the maximum a posteriori (MAP) model

mMAP = arg max
m

{
σ (m)

}

= arg min
m

{
− logσ (m)

}

= arg min
m

{
1
2

∥∥dobs − g(m)
∥∥2

Cd
+ α f (m)

}
.
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The dissimilarity function f is a measure of how well the model satisfies the
a priori knowledge that is available, for example from a training image. The more
similar, in some sense, the image from a set of model parameters m is to the training
image the smaller the function value f (m) is. Equivalently to the more traditional
term ‖m − mprior‖2

Cm
, stemming from a Gaussian a priori distribution of the model

parameters with mean values mprior and covariance matrix Cm, f (m) can be thought
of as a distance. It is not a distance between m and the training image (f (m) may be
zero for other images than the training image), but a distance between the multiple
point statistics of the image formed by the model parameters and the multiple point
statistics of the training image.

2.2 The Multiple Point Statistics of an Image

Consider an image Z = {1,2, . . . ,N} with N voxels (or pixels if the image is only
two dimensional) where the voxels can have the m different values 0,1, . . . ,m − 1.
We introduce the N variables, z1, z2, . . . , zN and let zk describe the value of the
kth voxel of the image. It is assumed that the image is a realization of an unknown,
random process satisfying:

1. The value of the kth voxel, zk , is, given the values of voxels in a certain neigh-
borhood Nk around voxel k, independent of voxel values not in the neighborhood.
Voxel k itself is not contained in Nk . Let zk be a vector of the values of the ordered
neighboring voxels in Nk ; we then have

fZ(zk|zN , . . . , zk+1, zk−1, . . . , z1) = fZ(zk|zk),

where fZ denotes the conditional probability distribution of the voxel zk given the
values of the voxels within the neighborhood.

2. For an image of infinite size the geometrical shape of all neighborhoods Nk are
identical. This implies that if voxel k has coordinates (kx, ky, kz), and voxel l has
coordinates (lx, ly, lz), then

(nx, ny, nz) ∈ Nk ⇒ (nx − kx + lx, ny − ky + ly, nz − kz + lz) ∈ Nl .

3. If we assume ergodicity, that is, when two voxels, voxel k and voxel l, have the
same values as their neighboring voxels, then the conditional probability distribu-
tion of voxel k and voxel l are identical

zk = zl ⇒ fZ(zk|zk) = fZ(zl |zl).

Knowing the conditionals fZ(zk|zk) we know the multiple point statistics of the
image, just as a variogram would describe the two-point statistics of an image. The
basis of sequential simulation as proposed by Guardiano and Srivastava (1993) is
to exploit the aforementioned assumptions to estimate the conditional probabilities
fZ(zk|zk) based on the marginals obtained from the training image, and then to
use the conditional distributions to generate new realizations of the unknown ran-
dom process from which the training image is a realization. The FM method, on the
other hand, operates by characterizing images by their frequency distributions. As
described in the following section, the frequency distribution of voxel values within
the given neighborhood of an image is given by its marginal distributions. This means
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that comparison of images is done by comparing their marginals. For now, the train-
ing image is assumed to be stationary. With the current formulation of the frequency
distributions this is the only feasible approach. Discussion of how to avoid the as-
sumption of stationarity exists in literature, see for instance the recent Honarkhah
(2011). Some of these approaches mentioned here might also be useful for the FM
method, but we will leave this to future research to determine.

2.3 Characterizing Images by their Frequency Distribution

Before presenting the FM method we define what we denote the frequency distri-
bution. Given an image with the set of voxels Z = {1, . . . ,N} and voxel values
z1, . . . , zN we define the template function Ω as a function that takes as argument
a voxel k and returns the set of voxels belonging to the neighborhood Nk of voxel k.
In the FM method, the neighborhood of a voxel is indirectly given by the statistical
properties of the image itself; however, the shape of a neighborhood satisfying the
assumptions from Sect. 2.2 is unknown. For each training image one must therefore
define a template function Ω that seeks to correctly describe the neighborhood. The
choice of template function determines if a voxel is considered to be an inner voxel.
An inner voxel is a voxel with the maximal neighborhood size, and the set of inner
voxels, Zin, of the image is therefore defined as

Zin =
{
k ∈ Z: |Nk| = max

l∈Z
|Nl |

}
,

where |Nk| denotes the number of voxels in Nk . Let n denote the number of voxels
in the neighborhood of an inner voxel. Typically, voxels on the boundary or close to
the boundary of an image will not be inner voxels. To each inner voxel zk we assign a
pattern value pk ; we say the inner voxel is the center voxel of a pattern. This pattern
value is a unique identifier of the pattern and may be chosen arbitrarily. The most
obvious choice is perhaps a vector value with the discrete variables in the pattern, or
a scalar value calculated based on the values of the variables. The choice should be
made in consideration of the implementation of the FM method. The pattern value is
uniquely determined by the value of the voxel zk and the values of the voxels in its
neighborhood, zk . As the pattern value is determined by the values of n + 1 voxels,
which can each have m different values, the maximum number of different patterns
is mn+1.

Let πi , for i = 1, . . . ,mn+1, count the number of patterns that have the ith pattern
value. The frequency distribution is then defined as π

π = [π1, . . . ,πmn+1].
Let pΩ denote the mapping from voxel values of an image Z to its frequency distri-
bution π , that is, pΩ(z1, . . . , zN) = π .

Figure 1 shows an example of an image and the patterns it contains for the template
function that defines neighborhoods as follows

Nk =
{
l ∈ Z \ {k}: |lx − kx | ≤ 1, |ly − ky | ≤ 1

}
.

Recall from Sect. 2.2 that (lx, ly) are the coordinates of voxel l in this two-
dimensional example image. We note that for a given template function the frequency
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Fig. 1 Example of patterns found in an image. Notice how the image is completely described by the
(ordered) patterns in every third row and column; the patterns are marked in red

distribution of an image is uniquely determined. The opposite, however, does not
hold. Different images can, excluding symmetries, have the same frequency distribu-
tion. This is what the FM method seeks to exploit by using the frequency distribution
to generate new images, at the same time similar to, and different from, our training
image.

2.4 Computing the Similarity of Two Images

The FM method compares a solution image to a training image by comparing its
frequency distribution to the frequency distribution of the training image. How dis-
similar the solution image is to the training image is determined by a dissimilarity
function, which assigns a distance between their frequency distributions. This dis-
tance reflects how likely the solution image is to be a realization of the same un-
known process as the training image is a realization of. The bigger the distance, the
more dissimilar are the frequency distributions and thereby also the images, and the
less likely is the image to be a realization of the same random process as the training
image. The dissimilarity function can therefore be used to determine which of two
images is most likely to be a realization of the same random process as the training
image is a realization of.

The dissimilarity function is not uniquely given but an obvious choice is the χ2

distance also described in Sheskin (2004). It is used to measure the distance between
two frequency distributions by measuring how similar the proportions of patterns in
the frequency distributions are. Given two frequency distributions, the χ2 distance
estimates the underlying distribution. It then computes the distance between the two
frequency distributions by computing each of their distances to the underlying dis-
tribution. Those distances are computed using a weighted Euclidean norm where the
weights are the inverse of the counts of the underlying distribution, see Fig. 2. In our
research, using the counts of the underlying distribution turns out to be a favorable
weighting of small versus big differences instead of using a traditional p-norm as
used by Peredo and Ortiz (2010).
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Fig. 2 Illustration of the χ2

distance between two frequency
distributions π and πTI, each
containing the counts of two
different pattern values, p1 and
p2. The difference between the
frequency distributions is
computed as the sum of the
length of the two red line
segments. The length of each
line segment is computed using
a weighted Euclidean norm. The
counts of the underlying
distribution are found as the
orthogonal projection of the
frequency distributions onto the
a line going through the origin
such that
‖π − ε‖2 = ‖πTI − εTI‖2

Hence, given the frequency distributions of an image, π , and of a training image,
πTI, and by letting

I =
{
i ∈

{
1, . . . ,mn+1}: πTI

i > 0
}

∪
{
i ∈

{
1, . . . ,mn+1}: πi > 0

}
, (2)

we compute what we define as the dissimilarity function value of the image

c(π) = χ2(π ,πTI) =
∑

i∈I

(πTI
i − εTI

i )2

εTI
i

+
∑

i∈I

(πi − εi )
2

εi
, (3)

where εi denotes the counts of the underlying distribution of patterns with the ith
pattern value for images of the same size as the image and εTI

i denotes the counts
of the underlying distribution of patterns with the ith pattern value for images of the
same size as the training image. These counts are computed as

εi = πi + πTI
i

nZ + nTI
nZ, (4)

εTI
i = πi + πTI

i

nZ + nTI
nTI, (5)

where nZ and nTI are the total number of counts of patterns in the frequency distri-
butions of the image and the training image, that is, the number of inner voxels in the
image and the training image, respectively.

2.5 Solving Inverse Problems

We define the frequency matching method for solving inverse problems formulated
as least squares problems using geologically complex a priori information as the fol-
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lowing optimization problem

min
z1,...,zN

∥∥dobs − g(z1, . . . , zN)
∥∥2

Cd
+ α c(π),

w.r.t. π = pΩ (z1, . . . , zN), (6)

zk ∈ {0, . . . ,m − 1} for k = 1, . . . ,N,

where c(π) is the dissimilarity function value of the solution image defined by Eq. 3
and α is a weighting parameter. The forward operator g, which traditionally is a
mapping from model space to data space, also contains the mapping of the categorical
values zk ∈ {0, . . . ,m − 1} for k = 1, . . . ,N of the image into the model parameters
m that can take m different discrete values.

The value of α cannot be theoretically determined. It is expected to depend on
the problem at hand; among other factors its resolution, the chosen neighborhood
function and the dimension of the data space. It can be thought of as playing the
same role for the dissimilarity function as the covariance matrix Cd does for the data
misfit. So it should in some sense reflect the variance of the dissimilarity function
and in that way determine how much trust we put in the dissimilarity value. Variance,
or trust, in a training image is difficult to quantify, as the training image is typically
given by a geologist to reflect certain expectations to model. Not having a theoretical
expression for α therefore allows us to manipulate the α value to loosely quantify the
trust we have in the training image. In the case where we have accurate data but only
a vague idea of the structures of the subsurface the α can be chosen low, in order to
emphasize the trust we have in the data and the uncertainty we have of the structure
of the model. In the opposite case, where data are inaccurate but the training image is
considered to be a very good description of the subsurface, the α value can be chosen
high, to give the dissimilarity function more weight.

Due to the typically high number of model parameters, the combinatorial opti-
mization problem should be solved by use of an iterative solution method; such a
method will iterate through the model space and search for the optimal solution.
While the choice of solution method is less interesting when formulating the FM
method, it is of great importance when applying it. The choice of solution method
and the definition of how it iterates through the solution space by perturbing images
has a significant impact on the feasibility of the method in terms of its running time.
As we are not sampling the solution space we do not need to ensure that the method
captures the uncertainty of the model parameters, and the ideal would be a method
that converges directly to the maximum a posteriori solution. While continuous op-
timization problems hold information about the gradient of the objective function
that the solution method can use to converge to a stationary solution, this is not the
case for our discrete problem. Instead we consider the multiple point statistics of the
training image when perturbing a current image and in that way we seek to generate
models which better match the multiple point statistics of the training image and thus
guide the solution method to the maximum a posteriori model.

2.6 Properties of the Frequency Matching Method

The FM method is a general method and in theory it can be used to simulate any
type of structure, as long as a valid training image is available and a feasible template
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function is chosen appropriately. If neighborhoods are chosen too small, the method
will still be able to match the frequency distributions. However, it will not reproduce
the spatial structures simply because these are not correctly described by the cho-
sen multiple point statistics and as a result the computed model will not be realistic.
If neighborhoods are chosen too big, CPU cost and memory demand will increase,
and as a result the running time per iteration of the chosen solution method will in-
crease. Depending on the choice of iterative solution method, increasing the size n
of the neighborhood is likely to also increase the number of iterations needed and
thereby increase the convergence time. When the size of neighborhoods is increased,
the maximum number of different patterns, mn+1, is also increased. The number of
different patterns present is, naturally, limited by the number of inner voxels, which
is significantly smaller than mn+1. In fact, the number of patterns present in an image
is restricted further as training images are chosen such that they describe a certain
structure. This structure is also sought to be described in the solutions. The structure
is created by repetition of patterns, and the frequency distributions will reveal this
repetition by having multiple counts of the same pattern. This means, the number of
patterns with non-zero frequency is greatly smaller than mn+1 resulting in the fre-
quency distributions becoming extremely sparse. For bigger test cases, with millions
of parameters, patterns consisting of hundreds of voxels and multiple categories, this
behavior needs to be investigated further.

The dimension of the images, if they are two or three dimensional, is not im-
portant to the FM method. The complexity of the method is given by the maximal
size of neighborhoods, n. The increase in n as a result of going from two- to three-
dimensional images is therefore more important than the actual increase in physical
dimensions. In fact, when it comes to assigning pattern values a neighborhood is,
regardless of its physical dimension, considered one dimensional where the ordering
of the voxels is the important aspect. Additionally, the number of categories of voxel
values m does not influence the running time per iteration. As with the number of
neighbors, n, it only influences the number of different possible patterns mn+1 and
thereby influences the sparsity of the frequency distribution of the training image.
The higher m is, the sparser is the frequency distribution. It is expected that the spar-
sity of the frequency distribution affects the level of difficulty of the combinatorial
optimization problem.

Strebelle (2002) recommends choosing a training image that is at least twice as
large as the structures it describes; one must assume this advice also applies to the
FM method. Like the snesim algorithm, the FM method can approximate continuous
properties by discretizing them into a small number of categories. One of the advan-
tages of the FM method is that by matching the frequency distributions it indirectly
ensures that the proportion of voxels in each of the m categories is consistent between
the training image and the solution image. It is therefore not necessary to explicitly
account for this ratio. Unlike the snesim algorithm, the computed solution images
therefore need very little post treatment—in the current implementation the solution
receives no post treatment. However, the α parameter does allow for the user to spec-
ify how strictly the frequency distributions should be matched. In the case where the
data are considered very informative or the training image is considered far from re-
ality, decreasing the α allows for the data to be given more weight and the multiple
point statistics will not be as strictly enforced.
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Constraints on the model parameters can easily be dealt with by reducing the fea-
sible set {0, . . . ,m − 1} for those values of k in the constraints of the problem stated
in Eq. 6. The constrained voxels remain part of the image Z and when computing the
frequency distribution of an image they are not distinguished from non-constrained
voxels. However, when perturbing an image all constraints of the inverse problem
should at all times be satisfied and conditioned to the hard data. The additional con-
straints on the model parameters will therefore be honored.

3 Implementation

This section describes the current implementation of the frequency matching method.
Algorithm 1 gives a general outline of how to apply the FM method, that is, how to
solve the optimization problem from Eq. 6 with an iterative optimization method.
In the remainder of the section, the implementation of the different parts of the
FM method will be discussed. It should be noted that the implementation of the
FM method is not unique; for instance, there are many options for how the solu-
tion method iterates through the model space by perturbing models. The different
choices should be made depending on the problem at hand and the current imple-
mentation might not be favorable for some given problems. The overall structure in
Algorithm 1 will be valid regardless of what choices are made on a more detailed
level.

Algorithm 1: The Frequency Matching Method

Input: Training image, ZTI, Starting image Z

Output: Maximum a posteriori image ZFM

Compute frequency distribution of training image πTI and pattern list p
(Algorithm 2)
Compute partial frequency distribution of starting image π (Algorithm 3)
while not converged do

Compute perturbed image Z based on Z (Algorithm 4)
Compute partial frequency distribution of perturbed image π (Algorithm 5)
if accept the perturbed image then

Set Z ← Z and π ← π
end

end

The current implementation is based on a Simulated Annealing scheme. Simu-
lated Annealing is a well-known heuristic optimization method first presented by
Kirkpatrick et al. (1983) as a solution method for combinatorial optimization prob-
lems. The acceptance of perturbed images is done using an exponential cooling rate
and the parameters controlling the cooling are tuned to achieve an acceptance ratio
of approximately 15 accepted perturbed models for each 100 suggested perturbed
models. A perturbed model is generated by erasing the values of the voxels in a part
of the image and then re-simulating the voxel values by use of sequential simula-
tion.
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3.1 Reformulation of the Dissimilarity Function

The definition of the dissimilarity function from Eq. 3 has one great advantage that
we for computational reasons simply cannot afford to overlook. As discussed previ-
ously, the frequency distributions are expected to be sparse as the number of patterns
present in an image is significantly smaller than mn+1. This means that a lot of the
terms in the dissimilarity function from Eq. 3 will be zero, yet the dissimilarity func-
tion can be simplified further. It will be shown that the dissimilarity function value of
a frequency distribution, c(π), given the frequency distribution of a training image,
π , can be computed using only entries of π where πTI > 0. In other words, to com-
pute the dissimilarity function value of an image we need only to know the count of
patterns in the image that also appear in the training image. Computationally, this is
a great advantage as we can disregard the patterns in our solution image that do not
appear in the training image and we need not compute nor store the entire frequency
distribution of our solution image, which is shown by inserting the expressions of the
counts for the underlying distribution defined by Eqs. 4 and 5

c(π) =
∑

i∈I

(πTI
i − εTI

i )2

εTI
i

+
∑

i∈I

(πi − εi )
2

εi

=
∑

i∈I

(
√

nZ
nTI

πTI
i −

√
nTI
nZ

πi )
2

πTI
i + πi

. (7)

This leads to the introduction of the following two subsets of I

I1 =
{
i ∈ I : πTI

i > 0
}
,

I2 =
{
i ∈ I : πTI

i = 0
}
.

The two subsets form a partition of I as they satisfy I1 ∪ I2 = I and I1 ∩ I2 = ∅. The
dissimilarity function Eq. 7 can then be written as

c(π) =
∑

i∈I1

(
√

nZ
nTI

πTI
i −

√
nTI
nZ

πi )
2

πTI
i + πi

+ nTI

nZ

∑

i∈I2

πi

=
∑

i∈I1

(
√

nZ
nTI

πTI
i −

√
nTI
nZ

πi )
2

πTI
i + πi

+ nTI

nZ

(
nZ −

∑

i∈I1

πi

)
(8)

recalling that
∑

i∈I πi = nZ and that πi = 0 for i /∈ I .
A clear advantage of this formulation of the dissimilarity function is that the entire

frequency distribution π of the image does not need to be known; as previously stated,
it only requires the counts πi of the patterns also found in the training image, which
is for i ∈ I1.

3.2 Computing and Storing the Frequency Distributions

The formulation of the dissimilarity function from Eq. 3 and later Eq. 8 means that
it is only necessary to store non-zero entries in a frequency distribution of a training
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image πTI. Algorithm 2 shows how the frequency distribution of a training image is
computed such that zero entries are avoided. The algorithm also returns a list p with
the same number of elements as the frequency distribution and it holds the pattern
values corresponding to each entry of πTI.

Algorithm 2: Frequency Distribution of a Training Image

Input: Training Image ZTI

Output: Frequency distribution πTI, list of pattern values p
Initialization: empty list πTI, empty list p
for each inner voxel, i.e., k ∈ ZTI

in do
Extract pattern k

Compute pattern value pk

if the pattern was previously found then
Add 1 to the corresponding entry of πTI

else
Add pk to the list of pattern values p
Set the corresponding new entry of πTI equal to 1

end
end

Algorithm 3 computes the partial frequency distribution π of an image that is
needed to evaluate the dissimilarity function c(π) = χ2(π ,πTI) from Eq. 8. The
partial frequency distribution only stores the frequencies of the patterns also found in
the training image.

Algorithm 3: Partial Frequency Distribution of an Image
Input: Image Z, list of pattern values p from the training image
Output: Partial frequency distribution π
Initialization: all zero list π (same length as p)
for each inner voxel, i.e., k ∈ Zin do

Extract pattern k

Compute pattern value pk

if the pattern is found in the training image then
Add 1 to the corresponding entry of π

end
end

3.3 Perturbation of an Image

The iterative solver moves through the model space by perturbing models and this is
the part of the iterative solver that leaves the most choices to be made. An intuitive
but naive approach would be to simply change the value of a random voxel. This
will result in a perturbed model that is very close to the original model, and it will
therefore require a lot of iterations to converge. The current implementation changes
the values of a block of voxels in a random place of the image.
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Before explaining in detail how the perturbation is done, let Zcond ⊂ Z be the set
of voxels that we have hard data for, which means their value is known and should
be conditioned to. First a voxel k is chosen randomly. Then the value of all voxels in
a domain Dk ⊂ (Z \ Zcond) around voxel k are erased. Last, the values of the voxels
in Dk are simulated using sequential simulation. The size of the domain should be
chosen to reflect how different the perturbed image should be from the current image.
The bigger the domain, the fewer iterations we will expect the solver will need to it-
erate through the model space to converge, but the more expensive an iteration will
become. Choosing the size of the domain is therefore a trade-off between number
of iterations and thereby forward calculations and the cost of computing a perturbed
image.

Algorithm 4 shows how an image is perturbed to generate a new image.

Algorithm 4: Perturbation of an Image
Input: Image Z, partial frequency distribution π of Z

Output: Perturbed image Z

Initialization: set π = π
Pick random voxel k

for each voxel l around voxel k, i.e., l ∈ Dk do
Erase the value of voxel l, i.e., zl is unassigned

end
for each unassigned voxel l around voxel k, i.e., l ∈ Dk do

Simulate zl given all assigned voxels in Nl .
end

3.4 Updating the Frequency Distribution

As a new image is created by changing the value of a minority of the voxels, it would
be time consuming to compute the frequency distribution of all voxel values of the
new image when the frequency distribution of the old image is known. Recall that
n is the maximum number of neighbors a voxel can have; inner voxels have exactly
n neighbors. Therefore, in addiction to changing its own pattern value, changing the
value of a voxel will affect the pattern value of at most n other voxels. This means
that we obtain the frequency distribution of the new image by performing at most
n + 1 subtractions and n + 1 additions per changed voxel to the entries of the already
known frequency distribution.

The total number of subtractions and additions can be lowered further by exploit-
ing the block structure of the set of voxels perturbed. The pattern value of a voxel
will be changed when any of its neighboring voxels are perturbed, but the frequency
distribution need only be updated twice for each affected voxel. We introduce a set
of voxels Zaff, which is the set of voxels who are affected when perturbing image Z
into Z, that is, the set of voxels whose pattern values are changed when perturbing
image Z into image Z

Zaff = {k ∈ Z: pk += pk}. (9)

How the partial frequency distribution is updated when an image is perturbed is illus-
trated in Algorithm 5.
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Algorithm 5: Update Partial Frequency Distribution of an Image

Input: Image Z, partial frequency distribution π of Z, perturbed image Z, set
of affected voxels Zaff, set of pattern values p from the training image

Output: Partial frequency distribution π of Z

Initialization: set π = π
for each affected voxel, i.e., k ∈ Zaff do

Extract pattern k from both Z and Z

Compute both pattern values pk and pk

if the pattern pk is present in the training image then
Subtract 1 from the corresponding entry of π

end
if the pattern pk is present in the training image then

Add 1 to the corresponding entry of π
end

end

As seen in Algorithm 1, the FM method requires in total two computations of a
frequency distribution, one for the training image and one for the initial image. The
FM method requires one update of the partial frequency distribution per iteration.
As the set of affected voxels Zaff is expected to be much smaller than the total im-
age Z, updating the partial frequency distribution will typically be much faster than
recomputing the entire partial frequency distribution even for iterations that involve
changing the values of a large set of voxels.

3.5 Multigrids

The multigrid approach from Strebelle (2002) that is based on the concept initially
proposed by Gómez-Hernández (1991) and further developed by Tran (1994) can also
be applied in the FM method. Coarsening the images allows the capture of large-scale
structures with relatively small templates. As in the snesim algorithm, the results from
a coarse image can be used to condition upon for a higher resolution image.

The multigrid approach is applied by running the FM method from Algorithm 1
multiple times. First, the algorithm is run on the coarsest level. Then the resulting im-
age, with increased resolution, is used as a starting image on the next finer level, and
so on. The resolution of an image can be increased by nearest neighbor interpolation.

4 Example: Crosshole Tomography

Seismic borehole tomography involves the measurement of seismic travel times be-
tween two or more boreholes in order to determine an image of seismic velocities in
the intervening subsurface. Seismic energy is released from sources located in one
borehole and recorded at multiple receiver locations in another borehole. In this way
a dense tomographic data set that covers the interborehole region is obtained.

Consider a setup with two boreholes. The horizontal distance between them is (X
and they both have the depth (Z. In each borehole a series of receivers and sources
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Fig. 3 Training image
(resolution: 251 × 251 pixels)

Table 1 Parameter values for
the test case (X 500 m

(Z 1,200 m

(x 10 m

(z 10 m

ds 250 m

dr 100 m

vlow 1,600 m/s

vhigh 2,000 m/s

is placed. The vertical domain between the two boreholes is divided into cells of
dimensions (x by (z and it is assumed that the seismic velocity is constant within
each cell. The model parameters of the problem are the propagation speeds of each
cell. The observed data are the first arrival times of the seismic signals. For the series
of sources and receivers in each borehole the distances between the sources are ds and
the distances between the receivers are dr . We assume a linear relation between the
data (first arrival times) and the model (propagation speed) from Eq. 1. The sensitivity
of seismic signals is simulated as straight rays. However, any linear sensitivity kernel
obtained using, for example, curvilinear rays or Fresnel zone-based sensitivity, can
be used.

It is assumed that the domain consists of zones with two different propagation
speeds, vlow and vhigh. Furthermore a horizontal channel structure of the zones with
high propagation speed is assumed. Figure 3 shows the chosen training image with
resolution 251 cells by 251 cells where each cell is (x by (z. The training image
is chosen to express the a priori information about the model parameters. The back-
ground (white pixels) represents a low velocity zone and the channel structures (black
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Fig. 4 Reference model
(resolution: 50 × 120 pixels)

Fig. 5 Computed model for
α = 1.8 × 10−2 (resolution:
50 × 120 pixels)

pixels) are the high velocity zones. The problem is scalable and for the example we
have chosen the parameters presented by Table 1.

The template function is chosen, such that the neighborhood of pixel k is the fol-
lowing set of pixels

Nk =
{
l ∈ Z \ {k}: |lx − kx | ≤ 4, |lz − kz| ≤ 3

}
.

Recall that pixel l has the coordinates (lx, lz); the first coordinate being the horizon-
tal distance from the left borehole and the second coordinate being the depth, both
measured in pixels. To compute a perturbed image, the domain used in Algorithm 4
is defined as follows

Dk =
{
l ∈ Z \ Zcond: |lx − kx | ≤ 7, |lz − kz| ≤ 7

}
.

The values of all pixels l ∈ Dk will be re-simulated using Sequential Simulation con-
ditioned to the remaining pixels l /∈ Dk . We are not using any hard data in the exam-
ple, which means Zcond = ∅.

This choice of template function yields n = 34 where the geometrical shape of the
neighborhood of inner pixels is a 7 pixels by 5 pixels rectangle. This is chosen based



800 Math Geosci (2012) 44:783–803

Fig. 6 The computed models
for increasing values of α:
(a) α = 10−3, (b) α = 10−2,
(c) α = 10−1, (d) α = 10

on the trends in the training image, where the distance of continuity is larger horizon-
tally than vertically. However, it should be noted that this choice of template function
is not expected to meet the assumptions of conditional independence of Sect. 2.2.
The distance of continuity in the training image appears much larger horizontally
than only seven pixels, and vertically the width of the channels is approximately ten
pixels. This implies that, despite matched frequency distributions, a computed so-
lution will not necessarily be recognized to have the same visual structures as the
training image. The goal is solve the inverse problem which involves fitting the data
and therefore, as our example will show, neighborhoods of this size are sufficient.
The data-fitting term of the objective function guides the solution method, such that
the structures from the training image are correctly reproduced. The low number of
neighbors constrains the small-scale variations, which are not well-determined by the
travel time data. However, the travel time data successfully determine the large-scale
structures. The template function does not need to describe structures of the largest
scales of the training image as long as the observed data are of a certain quality.
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Fig. 7 L-curve used to
determine the optimal α value.
Models have been computed for
13 logarithmically distributed
values of α ranging from 1
(upper left corner) to 10−3

(lower right corner). Each of the
13 models is marked with a blue
circle. See the text for further
explanation

Figure 4 shows the reference model that describes what is considered to be the
true velocity profile between the two boreholes. The image has been generated by the
snesim algorithm (Strebelle 2002) using the multiple point statistics of the training
image. The arrival times d for the reference model mref are computed by a forward
computation, d = Gmref. We define the observed arrival times dobs as the computed
arrival times d added 5 % Gaussian noise. Figure 5 shows the solution computed us-
ing 15,000 iterations for α = 1.8×10−2. The solution resembles the reference model
to a high degree. The FM method detected the four channels; their location, width and
curvature correspond to the reference model. The computations took approximately
33 minutes on a Macbook Pro 2.66 GHz Intel Core 2 Duo with 4 GB RAM.

Before elaborating on how the α value was determined, we present some of the
models computed for different values of α. Figure 6 shows the computed models for
four logarithmically distributed values of α between 10−3 and 101. It is seen how
the model for lowest value of α is geologically unrealistic and does not reproduce
the a priori expected structures from the training image as it primarily is a solution
to the ill-posed, under-determined, data-fitting problem. As α increases, the channel
structures of the training image are recognized in the computed models. However, for
too large α values the solutions are dominated by the χ2 term as the data have been
deprioritized, and the solutions are not geologically reasonable either. As discussed,
the chosen template is too small to satisfy the conditions from Sect. 2.2, yielding
models that do in fact minimize the χ2 distance, but do not reproduce the structures
form the training image. The data misfit is now assigned too little weight to help
compensate for the small neighborhoods, and the compromise between minimizing
the data misfit and minimizing the dissimilarity that before worked out well is no
longer present.

We propose to use the L-curve method (Hansen and O’Leary 1993) to determine
an appropriate value of α. Figure 7 shows the value of χ2(mFM) versus the value of
1
2‖g(mFM)−dobs‖2

Cd
for 13 models. The models have been computed for logarithmi-

cally distributed values of α ranging from 1 (upper left corner) to 10−3 (lower right
corner). Each of the 13 models is marked with a blue circle. The models from Fig. 6
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are furthermore marked with a red circle. The model from Fig. 5 is marked with a red
star. We recognize the characteristic L-shaped behavior in the figure and the model
from Fig. 5 is the model located in the corner of the L-curve. The corresponding value
α = 1.8 × 10−2 is therefore considered an appropriate value of α.

5 Conclusions

We have proposed the frequency matching method which enables us to quantify a
probability density function that describes the multiple point statistics of an image.
In this way, the maximum a posteriori solution to an inverse problem using training
image-based complex prior information can be computed. The frequency matching
method formulates a closed form expression for the a priori probability of a given
model. This is obtained by comparing the multiple point statistics of the model to the
multiple point statistics from a training image using a χ2 dissimilarity distance.

Through a synthetic test case from crosshole tomography, we have demonstrated
how the frequency matching method can be used to determine the maximum a pos-
teriori solution. When the a priori distribution is used in inversion, a parameter α is
required. We have shown how we are able to recreate the reference model by choos-
ing this weighing parameter appropriately. Future work could focus on determining
the theoretically optimal value of α as an alternative to using the L-curve method.
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Introduction 

History matching problem arises regularly at the stage of reservoir development and its 
performance optimization. One wants to match simulation response with production data adjusting 
reservoir model parameters, e.g. permeability values, location of faults and fractures. Good history-
matched model must possess two important properties: be able to match data observations within their 
uncertainty and be consistent with geological expectations, i.e. prior information. If most of the 
attention is paid to the minimization of the data misfit, the geological realism of the solution may 
suffer. Traditionally, prior information is conserved in the form of covariance model that is defined by 
two-point statistics.  This means that spatial variability is accounted for only on a pairwise basis, and 
as a result, curvilinear long-correlated features become neglected. 

With the development of data assimilation techniques, such as the Ensemble Kalman Filter 
(EnKF), matching the data and estimation of the uncertainty became a feasible task (Aanonsen et al. 
2009).  However, due to the mentioned traditional approach of incorporating prior information, 
geologically realistic features, such as channels are hardly ever reproduced.  To keep complex 
geological structures in the solution, multiple-point statistics framework has to be used (Journel and 
Zhang 2006).  Many authors suggest inferring complex spatial information from the so-called training 
images (Strebelle 2002, Caers 2003, Eskandaridalvand 2010). Training images contain expected 
geological features and can be constructed using geologists’ expertise, database of characteristic 
structures, photographs of the outcrops.   

In this study we also use multiple point statistics of training images to provide geological realism 
of the solution.  This paper is the first application of the Frequency Matching (FM) method (Lange et 
al. 2011) to the solution of the history matching problem. The FM method allows us to accurately 
quantify the consistency of the model with complex prior, e.g. training image, computing prior 
probability of the model. Consequently, it enables us to guide the model safely by both prior 
information and data observations.  

Description of the method can be found in the next section. It is followed by a 3D synthetic 
example and the conclusion. 

 Methodology  

In this study we apply a multiple-point statistics framework defined by the FM method for solving 
history matching problem. Multiple point statistics gained its popularity in characterization of 
sedimentary reservoirs that possess channel-like features; see, for example, paper by Hoffman et al. 
(2006). The Probability perturbation method (PPM) suggested by Caers and Hoffman (2006) aims at 
finding solution that is consistent both with prior information, i.e. obtained from a training image, and 
data observations. However, as stated in Hansen et al. (2012), the PPM approach finds the solution 
that belongs to the space of prior models allowed by training image and only maximizes the data fit. 
While the FM method is a Bayesian approach and hence maximizes the posteriori model. The FM 
technique characterizes images by their multiple point statistics. To retrieve multiple point statistics. 
from an image, a scanning template is applied to it.  Further, the scanned information is sorted and 
forms the frequency distribution of the image. In such a way, the image is uniquely described by the 
histogram of the multi-point spatial event. For comparing of two images, a dissimilarity measure is 
introduced, and defined as χ2 distance between their histograms. 

Generally, the FM method can be used for the solution of inverse problems, where one wants to 
estimate a model m, given some data observations dobs, with respect to a complex prior information in 
the form of a training image. Mathematically, this can be formulated as the following optimization 
problem: 
 

  (1) 

where g is non-linear forward operator, Cd is data covariance matrix, π and πTI are the frequency 
distributions of the test image and training image respectively and α is a weight parameter. The first 
term in equation (1) minimizes the difference between observations and the forward simulation 



                                                                                                               
                                                                                                                                                                                                                

74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012 
Copenhagen, Denmark, 4-7 June 2012 

response, while the second term minimizes the discrepancy between statistics of the model and of the 
training image. 

  We solve the optimization problem (1) with a greedy stochastic annealing algorithm. First, we 
choose a proper scanning template and construct the histograms of the training image and the starting 
model. Then we conduct a random walk in model space, suggesting change for the values of voxels 
(pixels in 2D space). The change is accepted or rejected depending on the optimization method 
criteria. For the test case, described in the next section we used the “greedy” approach: if the 
suggested change decreased the value of the objective function (1) the change was accepted. The 
greedy stochastic annealing algorithm may get stock in local minima. However, it is more 
computationally efficient and provides sufficiently low values for the both terms in the objective 
function (1). Since the history matching problem is very much undetermined, we are satisfied with a 
solution that honours (with desirable accuracy) both data and prior information. The described 
iterative approach involves one forward simulation per iteration. This is a bottleneck of the method. 
However, the development of the FM method is an active topic of the research and the strategy for 
decreasing number of forward simulations is under investigation. For example, increasing amount of 
flipped blocks may improve the algorithm performance. 

Example 

In this section we test the Frequency Matching method on the 3D synthetic example. Let us 
consider a 3D synthetic oil reservoir of 25x25x3 cells. Physical dimension of a cell is 50x50x10 m. 
Wells configuration is a traditional nine-spot pattern with one water injector in the middle and 8 
producers on the sides. We use a streamline simulator for modelling flow response. Initial water 
saturation is 0, initial pressure 100 bar.  
As geological model, we use binary training image of size 60x60x3 with distinct narrow high 
permeable channels of 500 mD and shale background of 50 mD, as shown in Figure 1 (all three 
layers are the same). It should be mentioned, that generally the FM method is suitable for the 
assessing priors with multiple categorical values. The reference permeability model, shown on Figure 
22 together with the well positions, just as the training image, is presented by two discrete values of 
500 mD and 50 mD. 
 

 
Figure 1 Training image, 
60x60x3 cells 

 
Figure 2 Reference permeability 25x25x3 cells, layers 1-3 

 

 
Production history was generated applying forward simulation to the reference model and adding five 
percent Gaussian noise. Observations consist of 5 measurements of oil rate for each producer at 600, 
1200, 1800, 2400 and 3000 days respectively. Note that we only gauge the cumulative production 
value of data at each well, and not at each segment of the wells. The corresponding data covariance 
matrix is a diagonal matrix with the values equal to the added noise variance. 
The starting model consists of random combination of channel and shale facies. We follow the 
algorithm described in the previous section. It is worth saying that for computational efficiency only a 
2D scanning template of 3x3 pixels was used. However, this choice is unlikely to have influence on 
the result as the reference channels have vertical continuity of one pixel. The value of the weight 
parameter α from equation (1) was chosen empirically to be equal to 1, however, it is clearly a 
question for the future research. 
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The solution model was obtained at the moment of approximately of 30000 iterations. Agreement 
with the prior is assessed by comparing the histograms of the solution and the training image in  
Figure 3: at first glance the histograms seems the same, however, there are still some discrepancies. 
With a larger template or with more iteration we may have improved more on the result. Analysis of 
the solution (Figure 4) shows that some of the features, in comparison to the reference model, were 
successfully reproduced, for example, the diagonal connection in the first layer. Dissimilarities may 
be explained by the low amount of the data values, which is unavoidable when dealing with the ill-
posed inverse problem. 

 
Figure 3 Histograms of the training image (upper) and the model (lower) at the moment of 30000 
iterations. 

 

 
Figure 4 Permeability model at the moment of 30000 iterations 

 
As for the quality of the data match, we can infer from Figure 5 and Figure 6 that most of the wells 
were matched within their uncertainty. The legend is following: red solid line - data with noise, red 
dashed line - data without noise, blue line with diamond marker – data from the solution. 
 

 
Figure 5 Oil production rate for wells 1-4. 
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Figure 6 Oil production rate for wells 4-8.  

Conclusions 

 We demonstrated a new multiple-points statistics framework for finding geology-consistent 
solution of history matching problem. We used the Frequency Matching method that allows us to 
combine prior information based on training image and production data. The 3D synthetic test case 
showed that the obtained solution was consistent both with prior information and data observations. 
This demonstrated the potential of the method and suggests that it could be used on more complicated 
cases. Future work will be related on improving of computational efficiency 
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Introduction 

   History matching is an essential part of reservoir characterization process.  Reliable reservoir 
models must fit production history and feature expected geology. Therefore geological a priori 
information should be included in the estimation of reservoir parameters. Due to the high 
computational cost of forward simulations (reservoir simulator runs) use of Monte-Carlo techniques 
can be unfeasible.  
   A fast compromise solution would be to find an approximation of the maximum a posteriori 
solution (MAP). To succeed in this task the probability of the model to resolve geological features 
(prior probability) must be estimated. Recently Lange et al. (2012) suggested the Frequency Matching 
(FM) method for solving inverse problems by use of geologically realistic prior information.  In the 
FM approach the a priori information takes the form of multiple-point statistics learned from reservoir 
geological prototypes - training images (e.g. Guardiano and Srivastava 1993).  The attractiveness of 
the FM method lies in its ability to quantify the prior probability of the proposed model and hence 
iteratively guide the model towards the maximum a posteriori solution. The FM method solves a 
combinatorial optimization problem, perturbing the model in a discrete manner until it explains both 
production data and a priori information.  In practice, this requires a lot of forward simulations and 
can be impractical for solving history matching problems. 
   While following the philosophy of the Frequency Matching method, we suggest a differentiable 
expression for a complex prior, so that, as a result, the approximation of the MAP solution can be 
found by gradient-based techniques with much fewer forward simulations required. 

Methodology  

   We suggest a gradient-based method for obtaining geologically feasible solutions of history 
matching problem. The algorithm integrates production data and complex geological a priori 
information into a single objective function.  Importantly, we propose a differentiable formulation of a 
priori information. 
    As a priori information, we use multiple point statistics derived from training images, which 
characterizes the expected spatial distribution of the sought physical property, for instance, 
permeability. Similar to Lange et al. (2012) we define an optimization problem, i.e. to minimize: 
 

O(m) = 1
2
dobs ! g(m)

Cd

2
+ f (m, TI)   

 

 
 (1) 

Reservoir parameters m  are then inferred by minimizing two misfits:  1) between observed 
production data dobs and reservoir response g(m)  and 2) between statistics of the model (test image)
m  and statistics of the training image TI .  One way to collect the statistics is to apply a scanning 
template to an image and compute the frequency distribution of the event defined by the chosen 
template (Lange et al., 2012).  The result will be the histogram that describes the image uniquely. The 
distance (defined in some sense) between the histogram of the training image and one of the test 
image estimates their statistical similarity.   
   The challenge in the gradient-based approach is to define a differentiable similarity measure 
between the continuous image m  and the discrete training image TI .  Keeping the idea of histogram 
in mind, we first define the similarity function  between a continuous pattern i  and a discrete 
pattern j , using the normalized Euclidian distance  between their pixels values:  
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Here , ,  are adjustable parameters. Then the pseudo-histogram is constructed calculating the 
“contributions“  of patterns in the image to all possible discrete patterns. The number of the 

histogram bins is equal to the number of all possible discrete patterns, i.e. cNpat , where c  is the 
number of categories in the training image and Npat is the number of pixels in the pattern.   

In (1) the function f (m, TI)  is the L2 norm of the difference between the pseudo-histograms of the 
training image TI  and the test image m .  
     For solving (1) we chose the unconstrained implementation of the LBFGS method (Zhu et al. 
1997), which is known to be efficient for history matching problems (Oliver et al. 2008). To use 
unconstrained optimization we applied the logarithmic scaling of reservoir parameters proposed in 
Gao and Reynolds (2006): 
 

xi = ln
mi !m

low

mup !mi

"

#
$

%

&
'  

 
(3) 

 
Here  i =1,...,n , where n  is the number of pixels in the test image m ,  mlow  and mup  are the lower 
and upper scaling boundaries respectively. Global criterion method (Marler and Arora 2004) was used 
to combine the data misfit and prior terms into one objective function.  This yielded to the final look 
of the objective function:  
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Here h* and f *  are the target values for data and prior misfits respectively. For forward simulations 
E300 reservoir simulator was used (Schlumberger GeoQuest 2009). The gradient of the data misfit 
term in (4) was evaluated using the adjoint calculation implemented in E300. The gradient of the prior 
term in (4) was calculated analytically. 
   As in any gradient-based technique, solution and convergence properties of the suggested method 
are strongly dependent on the initial guess and quality of the production and statistical data. In case of 
a poor choice of the template size geological features cannot be reproduced. However, large amount 
of data may compensate for the lack of statistical information. In the numerical example below we 
will see how sufficient wells coverage yields the correct length of geological features, while a priori 
information resolves their width in agreement with training image. 
 
 
Numerical example 
   In the test study we aim at reconstructing permeability field of a 2D synthetic oil reservoir of 
49x49x1cells. The true permeability and wells (9 injectors, triangles and 9 producers, circles) are 
shown in Figure 1. Training image of 200x200 pixels (Figure 2) has two categories and features 
highly permeable channels of 10000 mD and  500 mD background.  Notice the scaling boundaries  of 
450 mD  for mlow and 10500 mD for mup . Production data were generated by running a forward 
simulation with the true permeability model and adding 5% of Gaussian noise. Specifically, the 
reservoir was in production for 210 days and the data were collected every 30 days. For history 
matching we used BHP values from the injectors and oil rates from the producers (126 measurements 
in total). 
   A priori information was collected applying a 1D-scanning template of 10 pixels in vertical 
direction. We let the template to take care about the width of the channels, while the production data 
assure the horizontal continuity. 
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While parameters , , , in (2) are empirical, such values as 100, 2 and -1 respectively provide the 
optimal quality of the reconstructed image and may serve as a general recommendation. 
 
 
 

 
 
 

 
 
 

Figure 1 
True permeability model, 49x49 pixels 

Figure 2 
Training image, 200 x200 pixels  

 
The initial model (see Figure 3) gives the data misfit of the order of 105 and the histograms misfit - of 
10-1. In the optimization framework given by (4), we set the target values as 20 and 0.005 for the data 
and the histograms misfits respectively.  
   Figure 4 shows the solution at the 97th iteration. Visual inspection tells us that geological features 
were successfully reproduced. Additionally, the expected order of 10-3 in the histograms misfit was 
achieved. The production data were resolved well, obtaining the data misfit equal to 52 (expected 
! N 2 = 63 , where N is the number of measurements, see, e.g., Oliver et al. (2008)).  
 

 

  
Figure 3 Initial permeability model 
 

Figure 4 Solution, 97th iteration 

 
 
Figure 5 demonstrates history matching for injector 4 and producer 3 (wells are numbered starting 
from the top). 
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Conclusions 
 
The proposed approach allows us to solve history matching problem by gradient-based optimization 
techniques, conserving geological realism of the solution. The differentiable formulation scales down 
the amount of required forward simulations and can be a valuable approach in modern reservoir 
management techniques as, for instance, in closed-loop optimization. Besides, the ability to quantify 
prior probability of history-matched reservoir models allows us to control the quality of reservoir 
characterization choosing the most reliable solutions.  
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Figure 5 History matching: observed data (red circles) with error bars and solution response (blue 
line).  
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History matching with geostatistical prior: a
smooth formulation

Yulia Melnikova, Katrine Lange, Andrea Zunino, Knud Skou Cordua and Klaus
Mosegaard

Abstract We present a new method for solving the history matching problem by
gradient-based optimization within a probabilistic framework. The focus is on min-
imizing the number of forward simulations and conserving geological realism of
the solutions. Geological a priori information is taken into account by means of
multipoint statistics borrowed from training images. Then production data and prior
information are integrated into a single differentiable objective function, minimizer
of which has a high posterior value. Solving the proposed optimization problem for
an ensemble of different starting models, we obtain a set of solutions honouring
both data and prior information.

Key words: history matching, multi-point statistics, gradient-based optimization

1 Introduction
History matching — inversion of reservoir production data for rock properties —
is an ill-posed inverse problem with computationally expensive forward simulation.
Highly non-linear relationship between data dobs and model parameters m result in
non-uniqueness of solutions. With the aid of geostatistical prior information (usu-
ally in the form of training images TI) it has become possible to restrict the solution
space drastically (Caers 2003; Jafarpour and Khodabakhshi 2011). The main chal-
lenge in history matching consists in minimizing the amount of forward simulations
needed to achieve attractive solutions. In this work we present a new method for
solving history matching problem using a probabilistic framework (Tarantola 2005),
searching for solutions deterministically.

2 Methodology
Our approach consists in integrating production data and prior information into a
single differentiable objective function, minimizer of which has a high posterior
value:

mHighPosterior
= argmin

m

⇢
1
2
||dobs �g(m)||2CD

+ f d
(m,TI)

�
(1)
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2 Melnikova et al.

where the first term is a conventional data misfit term (Tarantola 2005) and g repre-
sents forward simulation; the second term is the prior information misfit explained
below (superscript d stands for differentiable). Solving Equation 1 by a gradient-
based technique for an ensemble of starting models, we obtain a set of solutions
with high-posterior value running a small number of forward simulations.

Lange et al (2012) define the prior misfit as the chi-square distance between
multi-point statistics of the model and the training image, assuming both images
to be discrete. Essentially, the statistics is the frequency distribution of multi-point
patterns defined by a template. Contrary to Lange et al (2012), our formulation im-
plies gradual change of the model parameters, therefore the prior misfit f d

(m,TI)
should be defined for any continuous image. A continuous image can not be rep-
resented by the frequency distribution, however its differentiable approximation (a
pseudo-histogram) can be computed.

Consider a set of size K of all unique discrete patterns observed in the training im-
age. Then the pseudo-histogram of a continuous image is Hd,image

j = �Nimage
i=1 pi j, j =

1, · · · ,K, where Nimage is the number of patterns in the continuous image and pi j is
a measure of similarity between continuous and discrete patterns:

pi j =

1
(1+Adk

i j)
s . (2)

Here di j = ||pat image
i � patTI,unique

j ||2 (Euclidean distance between pixel values
of the corresponding patterns ) and A, k, s are adjustable parameters. Per defini-
tion statistically similar images will have similar pseudo-histograms. Therefore we
define the prior misfit as follows:

f d
(m,TI) =

K

�
j=1

(Hd,TI
j �Hd,m

j )

2

Hd,TI
j

. (3)

Use of the pseudo-histogram of the training image as a weight factor in Equation
3 results in proper reproduction of the pattern statistics.

3 Numerical example
We perform history matching on a 2D synthetic oil reservoir model. The goal is to
obtain a set of permeability models having high posterior values. Others parame-
ters, such as porosity, relative permeabilities and initial saturations, are assumed to
be known. The reservoir model has 50 by 50 cells of size 10 by 10 meters. Figure 1a
shows the true permeability and locations of injectors (down-triangles) and produc-
ers (up-triangles). Production data are generated by running a forward simulation
with the true model and applying 5% Gaussian noise to the calculated water and oil
rates. Physics of the flow (two-phase immiscible displacement) allows us to use few
observations to perform history matching and spend less time computing sensitivi-
ties. We use only 2 measurements for each well (at 100 and 200 days), therefore 52
measurements in total. However, we show the full history to assure the quality of
history matching.
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Fig. 1: a) True permeability model (channels - 500 mD, background - 50 mD); b)
Training image (channels - 500 mD, background - 50 mD)

(a) (b)

(c)

Fig. 2: a) Starting permeability models; b) Models after 30 iterations; c) Solutions
for each of the starting models above

The prior information is given by a training image (Fig 1b), which is an upscaled
part of the Strebelle image (Strebelle 2000). A square template of 6x6 pixels is used
for collecting pattern statistics. Parameters A, k and s (Eq. 2) are set to 100, 2 and
2 respectively (empirically optimal values). Starting models (Fig 2a) are smoothed,
upscaled parts of the Strebelle image (Strebelle 2000); after 30 iterations they are
turned into models shown in Figure 2b ( LBFGS optimization algorithm was used
(Gao and Reynolds 2006)). Figure 2c shows final equally good solutions.

In all cases the pattern statistics of the training image is successfully reproduced,
and the expected prior misfit value of 100 is achieved. Production data are resolved,
since the data misfit value is everywhere ⇡ N/2, where N is the number of mea-
surements (Oliver et al 2008). Data matching and convergence plots (for the first
solution) are shown in Figure 3a and Figure 3b respectively. Naturally, the conver-
gence properties of the algorithm are dependent on the initial guess and quality of
the production and statistical data. Multiple solutions found in this example is a
natural consequence of the fact that the history matching problem is a strongly un-
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(a) (b)

Fig. 3: a) History matching: water injection rates (left column) and oil production
rates (right column) of some wells, m3 /day; b) Convergence for prior and produc-
tion data misfits. Expected values of the misfits are shown by red lines.

derdetermined problem. Thoroughly chosen initial guesses, obtained, for instance,
from seismic data inversion, would be helpful in minimizing divergence of the so-
lutions.

4 Discussion
We demonstrated how an ensemble of starting models can be gradually transformed
into valuable solutions of the history matching problem. The suggested formulation
has several advantages: 1) it guarantees prior-consistent solutions by including com-
plex a priori information, 2) it allows using gradient-based optimization techniques,
which save computational time, 3) it provides quantitative estimates of the data and
prior information misfits and therefore allows us to distinguish between solutions as
well as to choose the most reliable ones.
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2 Yulia Melnikova et al.

1 Introduction

History matching is a task of inferring knowledge about subsurface models of oil

reservoirs from production data. History matching is a strongly underdetermined

problem: having data in a limited number of wells, one needs to estimate rock

properties in the whole reservoir model. This problem has infinitely many solutions,

and in addition, most of them lack geological realism. Furthermore, the intensive

computational work needed to simulate the data redoubles the complexity.

To address these challenges, we develop a probabilistic framework that com-

bines complex a priori information and simultaneously aims at reducing number

of forward simulations needed for finding solutions. We propose a smooth formu-

lation of the inverse problem with discrete-facies prior defined by a multiple-point

statistics model. This allows us to use gradient-based optimization methods to

search for feasible models.

In probabilistic inverse problem theory (Tarantola 2005) the solution of an in-

verse problem is represented by its a posteriori probability density function (PDF).

Each possible state in the model space is assigned a number — a posteriori proba-

bility density — which reflects how well the model honors the data and the a priori

information (knowledge about the model parameters independent from the data).

The a posteriori PDF of high-dimensional, underdetermined inverse problems, such

as history matching, may feature isolated islands of significant probabilities and

low probabilities everywhere else. Therefore, when the full description of the pos-

terior PDF is not possible, the goal is to locate and explore islands of significant

posterior probabilities.

One may explore the a posteriori PDF in several ways. Monte Carlo methods

(Mosegaard and Tarantola 1995; Cordua et al 2012b) allow, in principle, sampling

of the a posteriori PDF. However, for large scale non-linear inverse problems,

there is a risk of detecting only a local island of significant posterior probability.

In addition, sampling is not feasible for inverse problems with computationally

expensive forward simulation, such as history matching. Other methods rely on
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Discrete-facies History Matching in a Smooth Formulation 3

optimization (Caers and Ho�man 2006; Jafarpour and Khodabakhshi 2011) to

determine a collection of models that fit the data and the a priori information.

However, these methods fail to describe a posteriori variability of the models as

the weighting of prior information versus data information (likelihood) is not taken

into account.

Regardless of the chosen philosophy, most of the research community favor the

advanced prior information that helps to significantly shrink the solution space of

legal models (Caers 2003; Jafarpour and Khodabakhshi 2011; Hansen et al 2012).

For instance, the a priori information borrowed from a training image (Guardiano

and Srivastava 1993; Strebelle 2002) would permit only models of a specific con-

figuration defined by statistical properties of the image. Ideally, training images

reflect expert knowledge about geological phenomena (facies geometry, contrast in

rock properties, location of faults) and play a role of vital additional information,

drastically restricting the solution space (Hansen et al 2009).

Our strategy for exploring the a posteriori PDF, which is especially suitable

for inverse problems with expensive forward simulation (e.g. history matching), is

to obtain a set of models that have high posterior values, and rank the solutions

afterwards in accordance with their relative posterior probabilities. We integrate

complex a priori information represented by multiple-point statistics inferred from

a training image. One of the challenges here is to define a closed form expression

for the prior probability that, multiplied by the likelihood function, would provide

the a posteriori probability. It is not su�cient to perturb the model in consistency

with the training image until the dynamic data are matched as it is done in the

probability perturbation method (Caers and Ho�man 2006). As it was noticed

by Hansen et al (2012), in this method the fit to the prior information is not

quantified, so the method will spot models of maximum likelihood/nonzero prior,

not of the maximum posterior; the resulting model may resemble the training

image very poorly, and therefore may have a low posterior value.
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Lange et al (2012) were the first who aimed at estimating prior probabilities

solving inverse problems with training images. The developed Frequency Matching

(FM) method is able to quantify the prior probability of a proposed model and

hence to iteratively guide it towards the high posterior solution. Specifically, Lange

et al (2012) solve a combinatorial optimization problem, perturbing the model in

a discrete manner until it explains both data and a priori information. In practice,

this requires many forward simulations and can be prohibitive for the history

matching problem.

While following the philosophy of the Frequency Matching method, we are

interested in minimizing the number of forward simulations needed to achieve a

model of a high posterior probability. Similar to the FM method, we minimize the

sum of the data and the prior misfits. However, a new smooth formulation of the

objective function allows us to apply gradient-based optimization and su�ciently

cut-down the number of reservoir simulations. After convergence the model has all

statistical properties of the training image and simultaneously fits the data. Having

several starting models, possibly very di�erent, we are able to obtain di�erent

solutions of the inverse problem and to detect places of high posterior probability.

In case of the history matching problem, starting models obtained from seismic

data interpretation probably would be of most practical use.

To our knowledge, gradient based techniques were first coupled with training

images in the work of Sarma et al (2008) by means of Kernel PCA. The authors

were the first who used Kernel Principal Component Analysis (PCA) for geolog-

ical model parametrization. The Kernel PCA generates di�erentiable (smooth)

realizations of the training image, maintaining its multiple-point statistics and,

as a result, reproducing geological structures. The di�erentiable formulation by

(Sarma et al 2008) allows the use of gradient-based methods; however the quality

of the solution in terms of consistency with the prior information is not estimated.

In this work we actually derive a closed form expression for the prior probability.
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This allows us to quantify the relative posterior probabilities of the solutions and

therefore to assess their importance.

This paper is organized as follows. In Sect. 2 we provide a smooth formulation

of the inverse problem with training-image-defined prior. We introduce the concept

of the smooth histogram and suggest a closed form expression for computing prior

probabilities. In Sect. 3 we solve a two dimensional history matching problem and

rank solutions in accordance with their relative posterior probabilities. Section 4

summarizes our findings.

2 Methodology

In this work we use a probabilistic formulation of the inverse problem, integrating

complex a priori information with production history. The algorithm integrates dy-

namic data and a priori information into a single di�erentiable objective function,

minimizer of which has high-posterior value. Solving the optimization problem

for an ensemble of starting models we obtain a set of solutions that honor both

the observations and prior information. We start with a definition of the inverse

problem.

2.1 Inverse problem with training-image-defined prior

Denoting the model parameters as m, the non-linear forward operator as g and

its response as d we introduce the forward problem:

d = g(m) . (1)

The inverse problem is defined then as the task of inferring the model parameters m

given the observed data dobs, the forward relation g and, if available, some (data

independent) a priori information about model parameters. Addressing inverse

problems, we employ a probabilistic approach (Tarantola 2005), where the solution

is characterized by its a posteriori probability density function. The a posteriori
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PDF �(m) containes the combined information about the model parameters as

provided by the a priori PDF �(m) and the likelihood function L(m):

�(m) = k �(m) L(m), (2)

where k is a normalization constant. The likelihood function L(m) shows how well

the model m fits the observations dobs:

L(m) = c exp

✓
�1

2
||g(m) � dobs||2

CD

◆
(3)

where c is a constant and C
D

is the covariance matrix representing Gaussian un-

certainties in the measurements.

Prior information is assumed to be obtained from a training image with discrete

pixel (voxel) values, representing some subsurface property. In this case the ex-

pression for the a priori probability density function is actually known explicitly

from the work of Lange et al (2012):

�(m) = const · exp(��f(m,TI)) (4)

where the function f(m,TI) measures the similarity between the multiple-point

statistics of the training image TI and the model m; const. is the normalization

constant, � is the problem-dependent weight factor. The statistics has the form of

the frequency distribution of the observed patterns in the image. A pattern is a set

of neighbouring pixels in the image of shape defined by the template T . Consider,

for instance, a 2x2 square template applied to the binary image in Fig. 1a and the

obtained histogram shown in Fig. 1c with dark-blue color (only non-zero counts

out of possible 16 combinations are shown). Lange et al (2012) use the chi-square

distance between the histogram of the training image and the histogram of the

model to estimate their statistical similarity.

[Fig. 1 about here.]
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Equation 3 and 4 immediately define the value of the posterior probability of

a model (Eq. 2). Lange et al (2012) find the maximum a posteriori solution of the

inverse problem minimizing the following sum of misfits:

mMAP = argmin
m

⇢
1
2
||dobs � g(m)||2

CD
+ �f(m,TI)

�
(5)

The Frequency Matching method requires the search space to be discrete. There-

fore Eq. 5 is a combinatorial optimization problem that typically requires running

a large number of forward simulations. Lange et al (2012) used simulated anneal-

ing algorithm for the optimization ending up with several thousands of forward

runs needed to achieve the solution. Aiming at minimizing the number of forward

simulations (reservoir simulations) we suggest an alternative approach, where we

replace categorical variables with continuous variables, thereby turning the combi-

natorial optimization problem into a continuous one and applying gradient-based

search.

2.2 Approximating the frequency distribution

For clarity we use two-dimensional images in our explanation, while the approach is

suitable for three dimensional problems as well. Assume that the prior information

is represented by a categorical training image TI. The goal is to gradually change

a continuous starting model m into a model mHighPosterior with the high posterior

value, i.e - one that honors both data and the prior information. We construct the

following di�erentiable objective function:

mHighPosterior = argmin
m

⇢
1
2
||dobs � g(m)||2

CD
+ fd(m,TI)

�
(6)

where superscript d stands for di�erentiable. Notice the absence of the weight factor

� in comparison with Eq. 5. Constructing fd(m,TI), we keep in mind the idea

of representing and comparing images by their frequency distributions. However,
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8 Yulia Melnikova et al.

instead of computing the frequency distribution, we introduce its di�erentiable

approximation that can be computed for any continuous image as well.

Our notation is presented in Table 1.

[Table 1 about here.]

Pixel values in patterns are represented by real numbers. Notice that categorical

images are now treated as continuous. First we collect pattern statistics from the

TI and save its unique patterns as a database. Then for both m and TI their

pseudo-histograms are constructed. For image the pseudo-histogram Hd,image is

a vector of the length equal to the number of unique patterns in the TI. Hd,image
j

reflects the “contribution” of all patterns found in image to patTI,unique

j

:

Hd,image
j

=
N

imageX

i=1

psim
ij

(7)

where psim
ij

defines the level of similarity between patimage
i

and patTI,unique

j

.

We define psim
ij

such that it equals 1 when patimage
i

is pixel-wise equal to patTI,unique

j

.

A natural choice for psim
ij

would be one based on the Euclidean distance between

pixel values of the corresponding patterns , defined, for instance, as below:

psim
ij

=
1

(1 + A tk
ij

)s

(8)

where t
ij

= ||patimage
i

� patTI,unique

j

||2 and A, k, s are the user-defined parame-

ters.

Notice the following property:

psim
ij

=

8
��<

��:

1 t
ij

= 0

� (0, 1) t
ij

�= 0

(9)

The smooth histogram computed for the discrete Image A (Fig 1a) is shown

in Fig. 1c by light-blue color. Figure 1b shows a continuous image, while in Fig.

1c one can see its histogram, defined in the smooth sense, depicted by the orange
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Discrete-facies History Matching in a Smooth Formulation 9

color. Notice the small counts everywhere: indeed, according to Eq. 9, this image

does not contain patterns su�ciently close to those observed in the training image.

The choice of A, k, s is very important: from one side, they define how well the

pseudo-histogram approximates the true frequency distribution; from the other

side, they are responsible for “smoothing” and, consequently, for the convergence

properties. Figure 2 reflects how di�erent values of k, s with fixed A = 100 influ-

ence the shape of the patterns similarity function (distance is normalized). Our

empirical conclusion is that values A = 100, k = 2, s = 2 are optimal. Compare

them (Fig 2) with the extreme case A = 100, k = 1, s = 2 where the majority of

patterns have a close-to-zero contribution. These parameters are applicable after

t
ij

has been normalized on the quantity representing maximum possible Euclidean

distance between the discrete patterns.

[Fig. 2 about here.]

2.3 Similarity function

Per definition statistically similar images will have similar pseudo-histograms.

Therefore we introduce the similarity function:

fd(m,TI) =
1
2

N

TI,uniqueX

i=1

(Hd,m
i

� Hd,TI
i

)2

Hd,TI
i

(10)

Essentially, it is a weighted L2 norm, where the role of the weight parameter

is played by the smooth histogram of the training image. The suggested measure

favors patterns that are encountered less frequently in the training image and

facilitates proper reproduction of the training image features. If number of patterns

in the training image NTI di�ers from the number of patterns in the model Nm,

we multiply Hd,TI
i

by the following ratio:

r =
Nm

NTI
(11)
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10 Yulia Melnikova et al.

The use of the suggested similarity measure (Eq.10) can be validated through

the following reasoning. Our idea consist in representing an image as an outcome

of some multinomial experiment (see also Cordua et al (2012a)). Consider two

categorical images: training and test. Assume, that a pattern in the test image is a

multiple-point event that leads to the success for exactly one of K categories, where

each category has a fixed probability of success p
i

. By definition, each element H
i

in the frequency distribution H indicates the number of times the ith category has

appeared in N trials (number of patterns observed in the test image). Then the

vector H = (H1, ..., H
K

) follows the multinomial distribution with parameters N

and p, where p = (p1, ..., p
K

)

P (H) = P (H1, · · · , H
K

, N, p1, · · · p
K

) =
N !

H1! · · · H
K

!
pH1
1 · · · pHK

K

(12)

Let us assume that the test image is a realization of the random process that

generated the training image. Then the vector of probabilities p can be obtained

from the frequency distribution of the training image HTI: normalizing its entries

on the total number of counts we obtain the probabilities of success. In other

words, we assume that the histogram of the training image defines the theoretical

distribution underlying the multinomial experiment. In general, the histogram of

the training image is very sparse, therefore many categories of patterns will be

assigned zero probabilities. It means that if a test image has a single pattern that

is not encountered in the training image, its prior probability from Eq. 12 will be

zero. It happens due to the insu�cient prior information derived from the training

image; it is very likely that many of the non-observed patterns have some non-zero

probabilities to be observed. This problem is well-known in the field of the natural

language processing (NLP): small vocabulary can imply zero probabilities of some

words to exist. The NLP research community address the challenge with a fun-

damental technique called “smoothing” (Chen and Goodman 1999). The common

idea of smoothing algorithms lies in making prior distributions more uniform by

adjusting low probabilites upward and high probabilities downward. Since there
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Discrete-facies History Matching in a Smooth Formulation 11

is no information about the probabilities of the patterns not encountered in the

training image, we assume them to be equal to �. To make the sum of p
i

equal to

one, we subtract a small number � from all non-zero bins of HTI:

p
i

=

8
��<

��:

H

TI
i ��

N

TI HTI
i

> 0

� HTI
i

= 0

(13)

where � = �(K � NTI,unique)NTI/NTI,unique

This simple technique called absolute discounting is one of the many smoothing

techniques, however, it is a topic of a separate research to define which smoothing

methodology is the best for the training-image-based prior and we do not address

it here.

After p
i

having been defined in some manner, P (H) can be computed through

its logarithm:

log(P (H)) = log(
N !

H1! · · · H
K

!
) +

KX

i=1

H
i

log(p
i

) (14)

We apply Stirling’s approximation:

log(n!) = n log n � n + O(log n) (15)

Defining I = {i : H
i

> 0} we have:

log(
N !

H1! · · · H
k

!
) = log(N !) �

X

i�I

log(H
i

!) � N log N � N�

X

i�I

(H
i

log(H
i

) � H
i

) = N log N �
X

i�I

H
i

log(H
i

)

(16)

And finally,

log(P (H)) � N log N +
X

i�I

H
i

log(
p

i

H
i

) =
X

i�I

H
i

log(
Np

i

H
i

) (17)
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12 Yulia Melnikova et al.

Then

� log(P (H)) �
X

i�I

H
i

log(
H

i

Np
i

) (18)

Substituting H
i

with Np
i

+ �
i

and applying Taylor expansion of the second order

one arrives to the chi-square distance divided by two:

� log(P (H)) � 1
2

X

i�I

(H
i

� Np
i

)2

Np
i

(19)

Notice that Eq.19 justifies our choice of the similarity function (Eq. 10). Indeed, by

minimizing expression 10 we minimize the value defined by Eq.19 as well. Further,

if we denote h = H/N , Eq.17 is transformed:

log(P (H)) �
X

i�I

Nh
i

log(
p

i

h
i

) = �
X

i�I

Nh
i

log(
h

i

p
i

) = �ND
KL

(h||p) (20)

where D
KL

(h||p) is the Kullback-Leibler divergence, a dissimilarity measure be-

tween two probability distributions h and p. In other words, it defines the informa-

tion lost when the theory (training image) is used to approximate the observations

(test image).

Having at hand a discrete image, one can compute its relative prior probability

using Eq. 17. Moreover, it is also applicable to the continuous image at conver-

gence, since the algorithm aims at finding solutions (images), pixel values of which

are very close to the expected categorical values and therefore its patterns can be

considered as a success in the multinomial experiment.

2.3.1 Generating prior realizations

Minimizing Eq. 10, we are able to generate a realization of the prior represented by

a training image, given a starting guess. Consider a training image (Fig. 3), which

is an upscaled part of a training image proposed by Strebelle (Strebelle 2000).

We assume that it represents permeability of an oil reservoir with 500 mDarcy in

channels and 10 mD in the background.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Discrete-facies History Matching in a Smooth Formulation 13

[Fig. 3 about here.]

To derive the multiple-point statistics, we used a square template of 6x6 pixels

(optimal size according to the entropy approach suggested by Honarkhah (2011)).

The training image has 789 unique 6x6 patterns, therefore the pseudo-histograms

(Eq. 10) have 789 bins. Parameters A, k and s (Eq. 8) were set to the empirically

optimal values: 100, 2, and 2. We solve the following optimization problem:

mHighPrior = argmin
m

�
fd(m,TI)

�
(21)

Figure 4a shows three starting guesses: random, and upscaled smoothed parts

of the aforementioned image of Strebelle (Strebelle 2000). Figure 4b shows state

of the models after 20 iterations. And finally, Fig. 4c demonstrates the solutions

obtained after 100 iterations. Since unconstrained optimization is used, the so-

lutions have few outliers, however, the logarithmic transformation used in the

optimization allows us to regulate the boundaries of pixel values. In this example

the minimum possible value is 5 mD, and the maximum is 500 mD. The solutions

clearly reproduce features of the training image. The value of prior misfit(Eq. 10)

is close to 100.0.

[Fig. 4 about here.]

2.4 Optimization problem

It would be tempting to find the a high-posterior model by minimizing the objec-

tive function:

O(m) =
1
2
||dobs � g(m)||2

Cd
+ fd(m) (22)

However, the two terms in this objective function have di�erent dimensions and

scales; this may lead to inconsistency in optimization. We overcome these di�-

culties transforming the current objective terms into dimensionless ones. For the

current implementation we used the following expression (Osyczka 1978):
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14 Yulia Melnikova et al.

F trans

i

(x) =
F

i

(x) � F ⇤
i

F ⇤
i

. (23)

Here F
i

(x) is the ith function to transform, and F ⇤
i

is the target (desired) value

of the objective function value. We denote the target value of the data misfit term

as u⇤ , and from Oliver et al (2008) expect u⇤ � N/2, where N is the number of

observations. The target value of the prior misfit f⇤ is not zero, since the training

image and most of its realisations have slightly di�erent histograms. However the

order of magnitude of f⇤, which corresponds to the well reproduced features of the

training image, is the same and can be found empirically. It can be estimated by

finding, for instance, the value of fd(m⇤), where m⇤ is a realization of the training

image. Alternatively the order of f⇤ can be found solving Eq. 21 for some starting

model.

One of the easiest ways to combine objective functions into a single function

is to use the weighted exponential sum (Marler and Arora 2004). We put equal

weights on two misfit terms and the exponent equal to 2. This leads to the final

expression for the objective function:

O⇤(m) =

 
1
2 ||dobs � g(m)||2

Cd
� u⇤

u⇤

!2

+

✓
fd(m,TI) � f⇤

f⇤

◆2

(24)

Notice that the term with the largest di�erence between its current and target

values gets higher priority. Essentially, u⇤ and f⇤ play roles of the weight, and the

exact value is not needed to be known, the order is important. In practice, target

values can be set below the desired values to provide faster convergence.

To be able to use unconstrained optimization in case of non-negative model

parameters (such as permeability), we applied the logarithmic scaling of the pa-

rameters (Gao and Reynolds 2006):

x
i

= log

✓
m

i

� mlow

mup � m
i

◆
. (25)
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Discrete-facies History Matching in a Smooth Formulation 15

Here i = 1, ..., n, where n is the number of pixels in the test image m, mlow and mup

are the lower and upper scaling boundaries, respectively, of the parameters. The

log-transform does not allow extreme values of the model parameters and makes

the algorithm perform in a more robust way. Additionally, the applied scaling of

model parameters results in better convergence properties of the algorithm (Gao

and Reynolds 2006).

For solving (24) we suggest using quasi-Newton methods that are known to

be e�cient for history matching problems (Oliver et al. 2008). In this work we

employed the unconstrained implementation of the L-BFGS method (Zhu et al.

1997). The algorithm requires calculation of the objective function value and its

gradient (the Hessian needed for the search direction is evaluated by approxima-

tion (Nocedal and Wright 2006). The gradient of the data misfit term is calculated

by the adjoint method implemented in the reservoir simulator Eclipse (Schlum-

berger GeoQuest 2009). The gradient of the prior term is computed analytically.

The algorithm is stopped when the values of the objective terms in the optimiza-

tion problem (24) approach their target values. The computational e�ciency of

the algorithm decreases with increase of the number of categories in the training

image or the template size, since larger number of Euclidean distances is to be

calculated.

3 History matching

We perform history matching on a two-dimensional synthetic oil reservoir, aiming

at estimating its permeability field. All other parameters, such as porosity, relative

permeabilities and initial saturations are assumed to be known. To investigate non-

uniqueness of the solutions we solve Eq. 24 for a set of starting models. Table 2

lists some parameters of the reservoir model.

[Table 2 about here.]

Figure 5a shows the true permeability field that features sand channels of 500

mD and background shale of 10 mD; 13 injectors are marked by triangles, and
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16 Yulia Melnikova et al.

13 producers by circles respectively. All wells work at the bottom hole pressure

control: 300 Barsa for the injectors and 50 Barsa for the producers. Production

data are generated by running a forward simulation with the true permeability

model and adding 5 % of Gaussian noise. Physics of the flow (steady two-phase

immiscible displacement ) allows us to use few observations and not to lose in

history matching accuracy. We choose just two measurements (at 100 and 200

days) per well, 52 measurements in total (we measure water rate in injectors and

oil rate in producers ). This approach results in faster performance, since much

less time is required to compute sensitivities. However, we show full history to

assure the quality of history matching.

[Fig. 5 about here.]

Prior information is given by the training image in Fig. 3. We used the same

parameters as in Sect. 2.3.1 to derive multiple-point statistics and construct the

objective function. The ensemble of starting guesses (Fig. 6a) is presented by

randomly chosen parts of a smoothed and upscaled version of the training image

proposed by Strebelle (Strebelle 2000).

Solving Eq. 24 we put target values of u⇤ and f⇤ as 10.00 and 25.00 to assure

the convergence of the algorithm to the desired values of the misfits. For the data

misfit we expect a value close to � N/2 where N is the number of measurements

(Oliver et al 2008) and for the prior close to 1.e+2. On average the algorithm

converges in 100 iterations; its performance depends on the closeness of the initial

guess to the solution. Fig. 6b demonstrates the transformation of the models after

50 iterations: most of the original channels are blurred and new ones are being con-

structed. Fig. 6c shows models at the 150th iteration.The algorithm successfully

reproduced high-contrast channels of the expected continuity and width. Produc-

tion data assured correct location of channels, and in many cases they are very

close to the true model. Naturally, since the data sensitivity decreases with the

increase of the distance from a well, the location of channels is very well defined

on the sides of the model in the vicinity of wells, while in the middle we observe
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Discrete-facies History Matching in a Smooth Formulation 17

some deviation from the true model. This example clearly demonstrates the con-

sequences of the underdetermined inverse problem: existence of many solutions

satisfying the available information.

Figure 7a shows history matching for the first solution: injection rates of the

first four injectors and production rates of the first four producers (counting from

top). Convergence plot for the prior and the data misfit is shown in Fig. 7b (notice

log-scale for the data misfit term). Red lines mark the desired values of the misfits.
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18 Yulia Melnikova et al.

[Fig. 6 about here.]

[Fig. 7 about here.]

Finally, we are able to distinguish between the solutions (Fig. 6c) by calculating

for each of them the value of the relative posterior probability derived from Eq. 2

and Eq. 3:

log(�(m)/(k � c)) = log(�(m)) � 1
2
||g(m) � dobs||2

CD
(26)

where log(�(m)) is defined by Eq.17. We chose � = 0.1. Table 3 lists the results

(numeration of the models starts from top).

[Table 3 about here.]

For the comparison, in the last row we give the value calculated for the true

model (Fig. 5a). We can conclude that models 5, 8 and 9 are the most preferable

within this ensemble, while model 3 is the most inferior.

4 Conclusions

We presented an e�cient method for solving the history matching problem with

the aid of gradient optimization integrating complex training- image-based prior

information into the solution. History matching is a severely undetermined in-

verse problem and existence of multiple solutions is a direct (and unfortunate)

consequence of this property. However, production data contain valuable informa-

tion about rock properties, such as porosity and permeability. Inversion of them

is necessary for construction of reservoir models that can be used in prediction.

Geological information, if available, can drastically decrease the solution space.

One way of applying the methodology is to explore the solution space. Since

we are able to start from any smooth model in many cases we can detect solutions

that would have high posterior values and look very di�erent, due to the fact that

they would belong to the di�erent islands of high probability. Quantification of
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the relative posterior probabilities allows us to rank solutions and choose the most

reliable ones.

The algorithm needs a starting guess, and, clearly as in any gradient-based op-

timization, the convergence properties would depend on it. In the history matching

problem, the choice of the starting guess is particularly important. The sensitivity

of the production data with respect to the rock properties decreases non-linearly

with the distance from wells. Therefore it is hard to invert for model parameters

in the areas with the poor well coverage. The situation can be greatly simplified if

one would integrate seismic data, or at least, would use the results of the seismic

inversion as the starting guesses. Indeed, having in general high resolution, the

geophysical data may serve as a powerful constraining tool in the inversion. This

is a topic of our future research.
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FIGURES 23

(a) Discrete Image A (b) Continuous image B

(c) Frequency distribution of Image A; Smooth
histogram of Image A; Smooth histogram of Im-
age B; 2x2 template applied

Fig. 1: Frequency distribution and its approximation
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Fig. 2: Patterns similarity function
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Fig. 3: Training image
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(a) Starting models

(b) Models after 20 iterations

(c) Models after 100 iterations

Fig. 4: Generating prior realizations
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(a)

Fig. 5: True model of permeability
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(a) (b) (c)

Fig. 6: (a) Starting models, (b) Models after 50 iterations, (c) Models after 150
iterations
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(a) (b)

Fig. 7: a) History matching for the first solution; b) Convergence of the prior and
data misfits
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Table 1: Notation

Notation Description

TI training image, categorical

m model (test image), can contain continuous values

image image (training or test)

T scanning template

Hd,image pseudo-histogram of image

patTI,unique

j

jth unique pattern in TI

N image number of patterns in image

patimage
i

ith pattern of pixels from image .
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Table 2: Reservoir model parameters

Model size 50x50 cells

Cell size 10x10 m

Initial water saturation 0.0

Porosity 0.3 (constant everywhere)
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Table 3: Posterior ranking of the solutions

Model N log(�(m)) � 1
2 ||g(m) � dobs||2

CD

1 -8122.0324
2 -8134.6031
3 -10383.1467
4 -7860.2211
5 -6568.7915
6 -8900.5525
7 -9781.7611
8 -7107.3847
9 -6734.4299
10 -7608.2761
11 -7713.9272
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Reservoir modeling combining geostatistics with
Markov chain Monte Carlo inversion

Andrea Zunino, Katrine Lange, Yulia Melnikova, Thomas Mejer Hansen and Klaus
Mosegaard

Abstract We present a study on the inversion of seismic reflection data generated
from a synthetic reservoir model. Our aim is to invert directly for rock facies and
porosity of the target reservoir zone. We solve this inverse problem using a Markov
chain Monte Carlo (McMC) method to handle the nonlinear, multi-step forward
model (rock physics and seismology) and to provide realistic estimates of uncer-
tainties. To generate realistic models which represent samples of the prior distribu-
tion, and to overcome the high computational demand, we reduce the search space
utilizing an algorithm drawn from geostatistics. The geostatistical algorithm learns
the multiple-point statistics from prototype models, then generates proposal models
which are tested by a Metropolis sampler. The solution of the inverse problem is fi-
nally represented by a collection of reservoir models in terms of facies and porosity,
which constitute samples of the posterior distribution.

Key words: monte carlo, inversion, reservoir modeling, seismic reflection, rock
physics

1 Introduction
Reservoir modeling conditioned by recorded seismic reflection data is the most
prominent geophysical technique to investigate the unknown properties of the sub-
surface. However, even if seismology produces good quality tomographic images,
it still remains challenging to obtain a good picture of some particular properties
such as porosity or permeability that are of most interest for oil and gas explo-
ration. The link between elastic parameters and such properties lies in the complex
relationships between, among others, intrinsic properties of rocks, mineralogy, and
interaction with fluids which are usually described by a rock physics model (Mavko
et al, 2003). Since these relationships are usually nonlinear and affected by uncer-
tainty, it is difficult to invert seismic data directly for, e.g., porosity employing the
standard optimization approaches because they generally rely on linearised models
and simple scaling laws. Here we propose an approach based on a Markov chain
Monte Carlo (McMC) technique which is able to combine rock physics modeling
and reflection seismology to invert for porosity and facies of the subsurface. It takes

A. Zunino · K. Lange · Y. Melnikova · T. Mejer Hansen · K. Mosegaard
Department of Mathematical and Computational Geoscience (DTU Space) and CERE, Technical
University of Denmark, Lyngby, Denmark; e-mail: anzu@dtu.dk
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2 Zunino et al.

into account the nonlinearities deriving from the rock physics model and more-
over it provides an estimation of uncertainties on the unknown properties. Similar
approaches have been studied before, see e.g., González et al (2008); Bosch et al
(2010); Rimstad and Omre (2010).

2 Overview of the Markov chain Monte Carlo inverse method
We follow a probabilistic approach, in which all information is represented by prob-
abilities, as described in Tarantola (2005), where the inverse problem consists in
performing an indirect measurement of unobservable parameters of the subsurface
given some measured quantities on the surface of the Earth. The solution to the in-
verse problem is the posterior distribution, a combination of the prior and likelihood
functions describing all possible models and relative probabilities.

Our aim is then to explore the model space in order to obtain a collection of
models which all fit the measured data and are consistent with the a priori informa-
tion. Moreover we are interested in estimating the uncertainty on unknown model
parameters. Markov chain Monte Carlo algorithms represent a natural choice to ful-
fill these requirements, so we construct a multi-step algorithm capable of sampling
the posterior distribution. The ingredients necessary to sample solutions to this in-
verse problem are essentially two (Mosegaard and Tarantola, 1995): I) an algorithm
generating samples from a proposal distribution according to the available prior in-
formation and II) a sampler of the likelihood function. The prior geological informa-
tion is represented by one or multiple training images which supply the necessary
information about geological patterns to the algorithm. The posterior distribution
is finally sampled employing the extended Metropolis algorithm (Metropolis et al,
1953; Mosegaard and Tarantola, 1995) based on the degree of fit between measured
and calculated seismograms. We consider Gaussian uncertainties and hence we uti-
lize an L2-norm for the misfit function.
Importance of informed priors - Geostatistics

One difficulty arising in high-dimensional space sampling is that a tremendous
computational effort is needed to properly sample the posterior distribution. The
huge size of model space, in fact, hampers the adoption of this kind of methodol-
ogy in several cases. However, the use of proper informed priors can significantly
improve the situation, reducing drastically the size of the model space to be sam-
pled. This is obtained by employing an algorithm which generates models adher-
ing to the prior knowledge so that only plausible models are taken into account in
the sampling process. One recently introduced technique consists in generating re-
alizations of a model exploiting the multiple-point statistics contained in prototype
models. Specifically, the sequential Gibbs sampling method (see Hansen et al, 2012,
and references therein) uses a sequential simulation approach where the algorithm
learns the statistics from a training image which is scanned searching for recurring
patterns. In principle, to increase the number of patterns, multiple training images
may be used. A randomly selected hyper-rectangular volume of the model is then
chosen to be re-simulated at each iteration of the Markov chain to propose a new
model, where voxels are re-computed using sequential simulation conditioned on
the rest of voxels (Strebelle, 2002).
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Fig. 1 a) An example of a
two-facies reservoir model
from the collection of so-
lutions with some slices
through the volume of ob-
served seismograms plot-
ted on top. b) Histogram
of porosity for two voxels,
one located at (x,y,z) =

(1500,3500,20)m and the
other at (1000,1000,48)m.
c) Probability of having sand
(and hence a channel) on a 2D
slice of the model at z = 40m.

0 5 10 15 20 25 30 35
x

0

10

20

30

40

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Porosity

0

20

40

60

80

100

120

140
Co

un
ts

vox1
vox2

b) c)

a)

3 Numerical experiments
The target of our study is a synthetic reservoir model derived (but modified) from
the Stanford VI-E model (Castro et al, 2005). It consists of a 3D arrangement of
38⇥50⇥20 voxels with size of 100, 100 and 4m each respectively. Each voxel is
parameterised with facies and porosity as the unknown parameters. Using the reser-
voir model derived from the Stanford VI-E model we constructed some “synthetic
observations” by computing the seismograms to be inverted. In our case the for-
ward model calculation consists of several steps. The first is the computation of the
elastic properties from the facies and porosity of the subsoil. Then we compute the
synthetic seismograms using a convolution approach.

The target zone of the reservoir is constituted by two facies, one representing
sand (channel in a fluvial deposition system and oil-saturated) and the other rep-
resenting shale (floodplain and brine-saturated). We assume the mineralogy to be
known and describe it as consisting of four minerals (clay, quartz, feldspar, rock
fragments) with known volume fraction in each facies but unknown porosity. The
link between porosity and other petrophysical properties with the elastic moduli of
the bulk rock for sand facies is modeled using the constant cement model (Dvorkin
et al, 1994) and the usual formula for isotropic VP. An empirical law from Gardner
et al (1974) is used instead to compute VP for shale facies.

Seismic modeling is carried out in the framework of the acoustic approximation,
where the basic ingredients are the P-wave velocity and the density model. The
seismic data are “recorded” at the surface on top of each pixel column as a zero-
offset section. This in reality can correspond to data recorded at different source-
receiver offset that have been processed such that they represent an equivalent zero-
offset section which is easier to interpret. The wavelet is constructed from a Ricker
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function with 50Hz peak frequency and is assumed to be known in the inversion
process.

4 Results and discussion
We ran 2·106 iterations, obtaining about 7·105 models, of which only one every 102

was retained to ensure independence of samples. Fig. 1a shows one particular model
from the solutions. We ended up with a collection of models representing samples
of the posterior distribution which can be used to estimate subsurface properties and
their relative probabilities/uncertainties. The solutions are used as a database that
can be queried to obtain information on several different aspects since it represents
the complete solution of the inverse problem. Here we show two examples of the
kind of information which can be retrieved from the collection of models. The first is
to compute the value of porosity at two different locations, obtaining histograms of
possible values (Fig. 1b). The histogram tells us which range of values is most prob-
able and, moreover, gives us an estimation of the uncertainty. The two histograms
show a different behavior, one having a more pronounced peak, reflecting the dif-
ferent degree of resolving power. The second example is a map of the probability of
having the sand facies on a slice of the 3D model at z = 40m (Fig. 1c). The conti-
nuity of structures depicted in Fig. 1c is due to the prior information deriving from
the geostatistical algorithm which takes into account the spatial continuity present
in the training image. This example shows how it is possible to retrieve more so-
phisticated information from the database of solutions that can result very useful for
real problems applications. Again, the uncertainty, clearly imaged in this probability
plot, is an integral part of the answer we were searching for.
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