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Summary 

Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both 
laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to 
16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional 
oil per day were recovered in the field applications. The following mechanisms were claimed to be 
responsible for the enhancement of the oil production due to enzymes: wettability improvement of 
the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high 
molecular weight paraffins. However, the positive effect of enzymes on oil recovery is not that 
obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and 
stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect 
to a certain compound, as several components of commercial mixture might possess surface-active 
properties. Hence, the main goals of the present study were to establish whether enzymes alone can 
improve oil production and to identify mechanisms that might underlie enzymatic EOR (EEOR), 
especially, under conditions of the North See petroleum reservoirs.  

At the first stage of the work enzyme samples that might have potential for EOR 
applications were selected. Wettability tests such as measurements of contact angles and 
determination of adhesion behaviour were applied as screening tools. The group of lipases/esterases 
demonstrated strong ability to detach oil from the calcite surface and was identified as the most 
promising group for further investigations. Wettability improvement due to protein adsorption onto 
the mineral was proposed as the main mechanism for EEOR. It was also proved that the enzyme 
molecules themselves caused change of the wetting state of calcite, while presence of stabilising 
ingredients did not interfere the results. 

Implementation of such a mechanism of enzymatic action under reservoir conditions might 
be limited by retention of the protein molecules in the porous medium. In order to verify this 
hypothesis, adsorption behaviour of enzymes/proteins on the reservoir rocks was studied by 
application of the static adhesion tests and adsorption experiments on powders, as well as of 
dynamic flow-through experiments. It was established that enzymes are indeed significantly lost 
during the transport in the porous media due to the irreversible adsorption. The adsorption capacity 
of carbonate material was found to be much higher compared to sandstone. Various methods (for 
example, change of ionic strength and pH of the enzyme solution and displacing fluid) were applied 
in order to desorb attached protein molecules, but no desorption was observed. 

Another possible mechanism that might underlie EEOR is formation of enzyme-stabilised 
emulsions. Similar to the wettability screening, lipases/esterases demonstrated the best surface-
active properties: they formed the most stable emulsions with rather small drops. Light fractions of 
the crude oil participated mostly in formation of the protein-stabilised emulsions. Incubation of the 
oil-[enzyme + sea water] systems was found to be important in order to obtain high stability of 
emulsions. Combined application of enzymes and solid particles was an alternative way to increase 
emulsion stability. 
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Other crude oil-brine interaction tests revealed additional problems that can rise during the 
application of enzymatic EOR. Interaction of the enzyme solution with the crude oil can induce 
gelation/emulsification of the propylene glycol (the main component of the enzyme product 
stabilisers). Moreover, when purified enzyme containing almost no stabilisers was used, a highly 
viscous oil-in-water emulsion was formed. 

 Finally, assessment of enzymes as EOR agents under conditions similar to the conditions of 
the petroleum reservoirs was carried out in core flooding experiments. Two types of enzymes 
(lipase and amylase) were selected based on the results from the wettability and emulsion studies. 
They were only tested in tertiary mode, employing various injection schemes. Application of 
enzymes in sandstone core samples resulted in increase of the ultimate oil production by 0.23-
1.69% relative to original oil in place, while no additional oil due to enzymes was produced from 
chalk. Wettability change was confirmed to be the main EOR mechanism, while emulsification 
plays less significant role.  

Overall, enzymes have possessed low potential for EOR applications at least in sandstone 
and chalk reservoirs containing light crude oils. An alternative technique that will shift adsorption 
balance towards reversible adsorption should be established in order to make enzymatic EOR an 
effective and economically feasible oil recovery method. 

 



Dansk Resumé 

Enzymer er for nylig blevet rapporteret, som effektive stoffer for forbedret olieindvinding 
(EOR). Både laboratorie undersøgelser og felttest viste en markant stigning af olieproduktion. Op til 
ekstra 16 % af olien blev produceret i laboratorie eksperimenter og op til ekstra 269 tønder olie per 
dag blev fremstillet under feltforsøg. Det var foreslået, at følgende mekanismer har medvirket til 
øget olieproduktionen på grund af enzymer: forbedringer af bjergartsoverfladens befugtningsevne; 
dannelse af emulsioner; reduktion af olieviskositet; og fjernelse (kemisk nedbrydning) af 
højmolekylære paraffiner. Umiddelbart kan gevinsten ved at bruge enzymer til olieindvinding være 
svær at få øje på. I de fleste af de undersøgelser, har man anvendt kommercielle enzymprodukter 
bestående af enzymer, overfladeaktive stoffer og stabilisatorer. Anvendelse af sådanne produkter 
gør det besværligt at tildele én positiv EOR effekt til én bestemt komponent, da en eller flere 
komponenter kan have overfladeaktive egenskaber. Hovedformålet for denne undersøgelse var 
derfor at fastslå, om enzymer alene kan forbedre olieproduktionen og identificere de mekanismer, 
der kan ligge til grund for enzymatiske EOR (EEOR), især under de forhold der findes i reservoirer 
i Nordsøen. 

I den første del af projektet, blev enzymer, der kunne have et potentiale for forbedret 
olieindvinding, valgt. Befugtningsevnen var bestemt via screening af kontaktvinkler og adhæsion. 
Lipaser/esteraser viste en stærk evne til at frigøre olie fra calcit overflader og blev identificeret som 
mest interessante gruppe for yderligere undersøgelser. Forbedringer af befugtningsevne, som følge 
af protein adsorption på mineralet, blev foreslået som den vigtigste mekanisme i EEOR. Det blev 
også fundet, at selve enzymmolekylet forårsagede ændringer af befugtningstilstanden af calcit, 
mens stabiliserende ingredienser ikke havde indflydelse på resultaterne. 

Det er muligt, at tilstedeværelse af sådan mekanisme i oliereservoir kan være begrænset pga. 
retentionen af proteiner i porøst medium. For at verificere denne hypotese blev adsorption af 
enzymer/proteiner på reservoirsten undersøgt ved hjælp af de statiske adhæsion test og adsorption 
på pulvere, samt dynamiske gennemstrømningseksperimenter. Det blev konstateret, at en 
signifikant del af enzymer tabes under transporten gennem det porøse medium på grund af den 
irreversible adsorption. Det blev fundet at adsorptionsevnen på karbonat materialer er meget højere 
i forhold til sandsten. Forskellige metoder (fx ændring af ionstyrke og pH af enzymopløsningen og 
forskydningsfluid) blev anvendt i forsøget på at desorbere proteinmolekylerne, men desorptionen 
lykkedes ikke. 

En anden muligt mekanisme som kan forklare EEOR er dannelse af enzym-stabiliserede 
emulsioner. I overensstemmelse med screeningen af befugtningsevnen, udviste lipaser/esteraser de 
bedste overfladeaktive egenskaber: De dannede de mest stabile emulsioner med meget små dråber.  
De lette fraktioner af råolien dannede primært protein-stabiliserede emulsioner. Inkubering af olie-
[enzym + havvand] systemet viste sig at være vigtig for at opnå høj stabilitet af emulsioner. 
Anvendelse af en kombination af enzymer og faste partikler var en alternativ måde at øge 
emulsionsstabiliteten på. 
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Flere studier af råolie-saltvand interaktioner afslørede yderligere problemer, som kunne 
opstå ved anvendelse af enzymatisk EOR. Interaktion af enzymopløsningen med råolien kan 
medføre geldannelse/emulgering af propylenglycol (den vigtigste komponent af stabilisatorerne i 
enzymproduktet). Derudover, førte anvendelse af det oprensede enzym med et minimalt indhold af 
stabilisatorer til dannelse af høj-viskøse olie-i-vand emulsioner. 

 Endelig blev enzymer testet under betingelser svarende til olie reservoirer, ved hjælp af 
kerne fortrængningsforsøg (core flooding experiments). To typer af enzymer (lipase og amylase) 
blev udvalgt på baggrund af resultater fra studierne af befugtningsevnen og emulsioner. De blev 
kun testet i tertiær ”mode”, og der blev brugt forskellige injektionsplaner. Anvendelse af enzymer i 
sandsten kerneprøver resulterede i en forøgelse af olieproduktionen med 0,23-1,69% i forhold til 
den oprindelige oliemængde i kernen (original oil in place - OOIP), mens ingen ekstra olie blev 
produceret i kridtprøverne. Det blev bekræftet at ændringen af befugtningsevnen var den primære 
EOR mekanisme, mens emulgering spillede en mindre rolle. 

Samlet set konkluderes, at enzymer har et lavt potentiale for forbedret olieindvinding, når 
der er tale om sandstens- og kridtreservoirer, som indeholder lette råolier. En alternativ teknik, der 
vil ændre adsorptionsbalancen mod reversibel adsorption, vil skulle udvikles førend enzymatisk 
EOR kan anses at være en effektiv og økonomisk rentabel olieudvinding metode. 
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Chapter 1. Introduction 

Burning petroleum as a fuel “would be  
akin to firing up a kitchen stove with bank notes” 

Mendeleev D.I. (1834-1907) 

Although the economy of the modern society heavily relies on hydrocarbons and its 
derivatives, the efficiency of oil extraction is still quite low. Approximately 1/3 of the existing oil 
reserves is being recovered, mainly by utilisation of primary and secondary methods of recovery 
(Sandrea and Sandrea, 2007). There is plenty of room to improve the production, even if 100% 
recovery might be physically impossible.  

According to ExxonMobil (Cohen, 2011), in USA, approximately half of the oil is 
processed to produce gasoline. Another third of the produced oil is used for the production of diesel 
and jet fuels. However, in the recent years, the share of oil in the energy sector is slowly, but surely 
decreasing, due to the development of the alternative energy sources and constant improvement of 
technologies for harvesting non-fossil derived energy (Pickens, 2015). Nevertheless, even if energy 
sector becomes 100% hydrocarbon-free in the future, the demand in oil will still be significant. The 
reason for this is that oil serves as a raw material for production of, for example, polymers, 
detergents, solvents, etc. Therefore, it is hard to imagine an oil-free economy in the foreseeable 
future, which underlines the necessity to apply more efficient, sustainable and economically viable 
oil recovery methods. Even though the oil prices are volatile, there are at least two major reasons 
for development of such methods: 

1. The economical reason: to expand the lifetime of already developed oil reservoirs, thus 
decreasing the prime cost of the extraction. 

2. Sustainability: extended reservoir lifetime implies that oil, which is a limited natural 
resource, will be available for a longer time. 

In this work we have concentrated on one of the possible methods for enhancing the oil 
recovery, namely, tertiary recovery with the aid of enzymes.  

1.1. Enzymes for Enhanced Oil Recovery: Why can it be Interesting? 

Enzymes are rather well known agents in the field of petroleum engineering (Harris and 
McKay, 1998). They have been successfully used for the following purposes: enzyme pre-treatment 
of biopolymers, gel breaking, desulphurization, and enzyme-based production of an acid. However, 
the area of enhanced oil recovery (EOR) is quite new for the enzyme application. Laboratory 
studies and field cases have reported enzymes to be quite effective bioagents that can significantly 
improve oil production (Feng et al., 2007; He and Zhonghong, 2011; Moon, 2008; Nasiri et al., 
2009; Ott et al., 2011). The recovery factor was increased by up to 16% in the laboratory 
displacement studies and up to 269 barrels of oil per day (BOPD) more were produced in the field 
applications (Feng et al., 2007; Moon, 2008; Nasiri et al., 2009; He and Zhonghong, 2011). 
Summary of the field applications of enzymatic enhanced oil recovery (EEOR) is given in Table 1. 
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Table 1. Summary of enzymatic enhanced oil recovery field applications (? – unknown). 

Oil Field Used enzyme Additional 
Components 
added to the 

enzyme 

Concentration of 
the Enzyme 

Product 

Amount 
of the 

Enzyme 
Product 
Injected 

Type of 
Injection 

Increase in Oil 
Production 

 

Incremental 
Oil 

Produced 

Reference 

Dagang, 
China 

Enzyme derived 
from the 
bacteria that can 
detach oil from 
sand  

Surfactant (to 
reduce the cost of 
the enzyme 
product and 
ensure synergetic 
effect) 

8% of the 
modified enzyme 

125.8 bbl Huff and 
Puff 

From 29.2 
BOPD to 77.6 
BOPD 

2409 bbl 
(for 60 days) 

Feng et al., 
2007 

Bailse, 
China 

Enzyme derived 
from the 
bacteria that can 
detach oil from 
sand 

Surfactant  8% of the 
modified enzyme 

? Huff and 
Puff 

From 4.4 
BOPD to 12.4 
BOPD 

496.4 bbl Feng et al., 
2007 

Dagang, 
China 

Enzyme derived 
from the 
bacteria that can 
detach oil from 
sand 

Surfactant  First plug – 4% of 
the modified 
enzyme, second 
plug – 6%. 

73 bbl Flooding From 14.6 
BOPD to 36.5 
BOPD 

7902 bbl Feng et al., 
2007 

Mann, 
Myanmar 

Apollo 
GreenZyme® 

Stabiliser (sodium 
diacetate) 

2% in KCl 
solution (well 
395) 
Recycled enzyme 
from well 395 
(well 101) 

? Flooding From 14 BOPD 
to 18 BOPD 
(well 395) 
From 10 BOPD 
to 16-17 BOPD 
(well 101)  

530 bbl 
(well 395) 
1636 bbl 
(well 101) 

Ott et al., 
2011 
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Table 1 (continuation). Summary of enzymatic enhanced oil recovery field applications (? – unknown). 

Oil Field Used enzyme Additional 
Components 
added to the 

enzyme 

Concentration of 
the Enzyme 

Product 

Amount 
of the 

Enzyme 
Product 
Injected 

Type of 
Injection 

Increase in Oil 
Production 

 

Incremental 
Oil 

Produced 

Reference 

Daqing 
Chaoyang
gou, China 

Biology enzyme ? 2% 1.265*104 
m3 

(0.6%PV) 

Flooding From 27.9 t to 
30.7 t 

2208 t He and 
Zhonghong, 
2011 

Pekabyry, 
Indonesia 

Apollo 
GreenZyme® 

Stabiliser (sodium 
diacetate) 

? ? Flooding  From 40-68 
BOPD to 89-
121 BOPD (in 
different wells)  

? Apollo 
GreenZyme® 
official 
website 

La Salina, 
Venezuela 

Apollo 
GreenZyme® 

Stabiliser (sodium 
diacetate) 

? ? Flooding From 18-158 
BOPD to 40-
269 BOPD 

? Apollo 
GreenZyme® 
official 
website 
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Researchers distinguish four different mechanisms that cause increase of oil production after 
application of enzymes: improvement of the rock surface wettability towards more water-wet state 
(Nasiri et al., 2009); emulsification due to decrease of the interfacial tension (Feng et al., 2007; He 
and Zhonghong, 2011; Moon, 2008; Nasiri et al., 2009); oil viscosity reduction (He and 
Zhonghong, 2011; Moon, 2008); removal of high molecular weight paraffins (Moon, 2008). Based 
on field trials, it has been suggested that main mechanisms underlying EEOR are unplugging of low 
permeable layers from clogged organic material, as well as modification of oil and rock surface 
properties. 

Besides these promising results, there are other advantages for application of EEOR. 
Enzymes are environmentally friendly compounds. When oil is recovered it is possible to restore 
and re-use enzymes (Apollo GreenZyme® official website; Feng et al., 2007).  

Even though results on application of EEOR are quite optimistic, application of commercial 
products or mixtures of enzymes and surfactants in most of the investigations and field studies 
makes it difficult to determine, what component of the mixture and to what extent affects amount of 
the recovered oil. Nasiri (2009) reported some results on experiments, in which a specific class of 
enzymes, lipases/esterases, was employed. To the best knowledge of the author this was the first 
case where pure enzyme products were studied as EOR agents. Still, efficiency of EEOR as well as 
working mechanisms require additional verification with regard to the ingredient that causes 
enhancement of oil recovery.  

1.2. Enzyme Products Designed for EOR Applications Available on the Market 

The survey showed that there are five commercially available enzyme products on the 
market: 

1. StimuZyme™, manufactured by BreakThrough Ventures, LLC. Website: 
www.btventuresllc.com/index.html. The product is claimed to change the wetting state of the 
reservoir rock from oil- or intermediate-wet to water-wet state, thus enabling the oil mobilisation. 
StimuZyme™ was successfully applied in China for years, with the increase of recovery factor of 
25%. According to the data from the company website, the effect was also observed after the 
injection of the enzyme solution during quite long period. 

2. Petrozyme®, manufactured by Petrologic LLC. Website: www.petrologicusa.com. The 
product is claimed to be based on enzymes where the oil digestion properties are neutralized, but 
the ability to attach to hydrocarbons and to release them is kept. The enzymes are deemed to seek 
and release hydrocarbons from oil globules, without being consumed in the releasing mechanism. 
The large oil globules are therefore reduced in size and covered by an enzyme layer, reducing the 
interfacial tension between the oil globule and aqueous phase. The technology is used in the Far 
East, US and South America (enhancement data not given). 

3. GreenZyme® is manufactured by Apollo Separation Technologies Inc. Website: 
www.apollogreenzyme.com . The enzyme product is believed to bind to the surface of the oil-
particle complex in the reservoir rock, triggering breakdown of the complex. Then the enzyme 

http://www.btventuresllc.com/index.html
http://www.petrologicusa.com/
http://www.apollogreenzyme.com/
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covers the surface of the released particle. Thereby the particle is prevented from re-agglomeration 
with the oil, which enables the oil to be carried away with the flow. The product is claimed to be the 
first bio-enzyme used in EEOR, which is nowadays utilised for oil recovery projects all over the 
world. 

4. WF-E OilStim Catalyst, manufactured by Wellfix. Website: www.wellfixtechnology.com . 
The suggested working mechanism is that enzymatic treatment improves oil recovery by catalysing 
breakdown of larger molecules in oil into smaller molecules, which improve flow characteristics of 
oil, including heavy oil. According to the data from the website, the product was successfully tested 
in China, Indonesia, Venezuela and Texas. 

5. Z Enzyme. Website: www.zenzyme.webs.com . It is claimed that the viscosity of the oil is 
reduced, and thus its mobility is enhanced. It is, however, not specified which mechanism is 
responsible for the reduction of the viscosity. The data regarding field studies was not found.  

  It can be concluded that the main working principle of the enzymes is to change the state of 
the system from oil-wet to water wet, i.e. to “free” the oil globules into the porous structure of the 
reservoir rock by reducing the adhesion of the oil to the rock. Furthermore, the enzyme is claimed 
to attach to the oil globules, breaking them down into smaller oil drops. As a result, the diffusion of 
the smaller droplets out of the porous medium (in the direction of the flow) is made easier. 

The data given in the open sources on these commercially available enzyme products is, 
however, very limited. The available information does not allow drawing an unambiguous 
conclusion that the enzyme itself, but not another component (or components) of the enzyme 
product is responsible for the enhancement of the oil recovery. Only for the WF-E OilStim Catalyst 
it is mentioned, that the recovery tests were performed both with and without enzyme treatment, 
and in the latter case the positive effect was achieved. Generally, the mechanisms of enzymatic 
action, as well as conditions for application of the EEOR and possible challenges are not well 
studied and systematised. Therefore, the present study was initiated. 

1.3. Research Objectives 

The study was carried out in order to assess potential of enzymes as EOR agents. The 
following questions have been answered during the investigation: 

• Can enzymes enhance oil recovery? 

• Which group(s) of enzymes has (have) the highest potential for EOR applications? 

• Which mechanisms underlie EEOR? 

• What problems might arise during application of EEOR? 

• What conditions and injection schemes will be optimal for implementation of EEOR 
technique? 

http://www.wellfixtechnology.com/
http://www.zenzyme.webs.com/
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In order to fulfil these objectives, several experimental procedures have been developed and 
followed during the project. In particular, an advanced core flooding set-up was built for 
penetration and recovery studies.  

1.4. Thesis Outline 

This thesis is divided into eight chapters. In the first two chapters general overview of the 
research topic is given. The rest of the thesis deals with the accomplished experimental work. Brief 
description of the chapters is presented below. 

Chapter 1 introduces the reader to the subject of EEOR and explains the motivation behind 
the project. Research goals as well as organisation of the thesis are also described in Chapter 1. 

Chapter 2 presents a discussion on potential role of enzymes in EOR applications. Protein 
behaviour at oil-water and water-solid interfaces is described.  

Chapter 3 is the first stage of the entire experimental investigation that was conducted to 
identify the group of enzymes with the highest potential for EOR applications. Initial selection of 
the samples for the screening was accomplished under the expertise of Novozymes A/S. Adhesion 
behaviour tests in conjunction with contact angle measurements were used as screening tools. The 
group of lipases/esterases demonstrated ability to fully detach oil from the calcite surface and was 
chosen as the most promising enzyme group. Effect of the pure enzyme was confirmed by 
experiments with purified enzyme samples. EOR mechanisms that might be realised after 
application of enzymes are proposed in the chapter. 

Chapter 4 describes investigation of enzyme/protein adsorption at water-solid interface. 
Various substrates such as minerals, powders, rock samples were used to imitate sandstone and 
chalk reservoir materials. Two types of static (adhesion test on minerals and adsorption on powders) 
and one type of dynamic (flow-through test) experiments were carried out. Irreversible protein 
adsorption was found to be significant. Various methods were applied in order to desorb attached 
biomolecules, but no desorption was obtained. Hence, enzyme retention in porous media might 
become a serious obstacle on the way of application of EEOR. 

Chapter 5 is emulsion and crude oil-brine interaction study. A methodology of the emulsion 
preparation was developed. Several groups of enzymes were screened for the highest surface-
activity at oil-brine interface. The lipase/esterase-stabilised emulsions were found to be the most 
perspective from the EOR point of view. Combined effect of enzymes and solid particles was also 
investigated. The crude oil-brine interaction experiments revealed potential problems that might 
affect work of enzymes. 

Chapter 6 presents results of the core flooding experiments. Effect of lipase and amylase on 
oil recovery was tested in tertiary mode in sandstone and chalk cores. Various injection schemes 
were tested. Application of the enzymes resulted in relatively low recovery values during the 
tertiary recovery stage (up to 1.69% relative to original oil in place in sandstone and no additional 
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oil produced in chalk). Factors affecting successful application of EEOR as well as overall 
performance of enzymes for the purpose of oil production are discussed in the chapter. 

Chapter 7 summarizes the key results of the thesis, while recommendations for future works 
are given in Chapter 8. 

A detailed description of an oil displacement experiment can be found in Appendix 1. The 
joint author statements for published and submitted manuscripts are included in Appendix 2. 

1.5. List of Research Papers and Conference Contributions 

The results of the research that was carried out during the PhD project have been presented 
through the following research papers and conference contributions: 

Research Papers: 

Khusainova, A., Nielsen, S.M., Pedersen, H.H., Woodley, J.M., Shapiro, A., 2015. Study of 
Wettability of Calcite Surfaces Using Oil–Brine–Enzyme Systems for Enhanced Oil Recovery 
Applications. Journal of Petroleum Science and Engineering, 127, 53–64. 

Khusainova, A., Shapiro, A., 2016. Study of Enzyme/Protein Adsorption for Chalk and Sandstone 
Reservoir Rocks. Submitted to Journal of Petroleum Science and Engineering. 

Khusainova, A., Shapiro, A., 2016. Experimental Investigation of Enzymatic Enhanced Oil 
Recovery. Submitted to Journal of Petroleum Science and Engineering. 

Conference Contributions: 

Khusainova, A., Shapiro, A.A., Stenby, E.H., Woodley, J.M. Wettability improvement with 
enzymes: application to enhanced oil recovery under conditions of the North Sea reservoirs. The 
IEAEOR’s 33rd Annual Workshop and Symposium, August 27-30th, 2012, Regina, Canada. (Oral)  

Khusainova, A., Shapiro, A.A., Stenby, E.H., Woodley, J.M. Potential of Enzymes as Enhanced 
Oil Recovery.  75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013, 10 – 13 
June 2013 in London, United Kingdom. (Oral) 
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Chapter 2. What can We Expect from Enzymes? 

 In the chapter potential roles of enzymes in enhanced oil recovery (EOR) applications are 
presented. Typical protein behaviour at oil-water interface is described. Key parameters regulating 
enzyme/protein adsorption/desorption at water-solid interface are reviewed. 

2.1. What are Enzymes? 

Enzymes are naturally occurring biological catalysts of the protein nature (Copeland, 2000). 
Being a globular protein, enzyme molecules comprise of amino acid residues that fold and form 
three-dimensional (3D) structures. The sequence of the amino acids determines the spatial 
configuration of the biomolecule and defines its catalytic properties. In addition to the 
enhancement/inhibition of chemical reactions, enzymes possess unique surface activity, which is 
determined by the presence of hydrophobic and hydrophilic functional groups. Out of the definition 
and characteristics given above, three potential roles of enzymes during the EOR process can be 
proposed a priori (Figure 1).  

 

Figure 1: Potential functions of enzymes as EOR agents. 

First, enzymes are biocatalysts, therefore, they can potentially use some crude oil 
components as a substrate. For example, one of the samples that was tested in the study is the 
NS44164 esterase (Chapter 3, Table 2). Its catalytic function is to enhance hydrolysis of ester bonds 
in lipids and other compounds. Crude oil might include esters in the form of either free compounds, 
e.g. a dioctylphthalate (Phillips and Breger, 1958), or as binding elements within high-molecular 
compounds (Kam’yanov et al., 1990). Thus, hydrolysis of the ester bonds might result in the 
formation of carboxylic acid and alcohol. Both of the reaction products are surface-active 
compounds and can affect the ultimate oil recovery (Chen and Zhao, 2015; Fathi et al., 2011). 

 Second, enzymes have both hydrophilic and hydrophobic functional groups. Hence, they can 
work in a way similar to surfactants: by reducing an interfacial tension (IFT) between oil and water 
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phases, application of enzymes can cause an emulsification (more details in Section 2.2), while 
decrease of IFT followed by formation of emulsions is one of the key mechanisms of EOR 
techniques (Dake, 1978). 

 Finally, enzymes demonstrate high affinity to the water-solid interface (Norde, 2008). 
Adsorption of the biomolecules might improve wettability of the rock surface towards oil recovery 
favourable conditions. More details on protein adsorption onto the water-solid interface can be 
found in Section 2.3. 

2.2. Enzymes/Proteins and Oil-Water Interface 

Adsorption of enzymes/proteins at the oil-water interface might be advantageous (e.g. 
emulsion and foam stabilisation in food industry) or disadvantageous (e.g. reduction of the 
therapeutic efficiency of drugs). From the EOR point of view, formation of the adsorbed protein 
layer between oil and water phases is rather beneficial as formation of such layer reduces IFT and, 
consequently, promotes formation of the emulsion. The EOR mechanism would be similar to that of 
surfactant flooding.  

However, surfactant molecules and protein macromolecules perform differently at the oil-
water interface (Damodaran, 2005). In general, surfactants are more efficient IFT reducers 
compared to proteins (Razumovsky and Damodaran, 1999). The reason for such a difference is 
fairly simple molecular structure of surfactants and complex structure of protein molecules. 
Surfactants are relatively small molecules with clearly defined hydrophilic head and hydrophobic 
tail. In contrast, hydrophilic and hydrophobic functional groups are spread on the surface of the 
protein molecule as well as some functional groups are remaining inside the globular structure. The 
functional groups at the surface form some hydrophilic and hydrophobic zones, but the separation is 
not as clear as in surfactant molecules. Nevertheless, protein molecules provide better emulsion 
stabilisation due to gel-like structure of the adsorbed protein layer, which can be reached at 
saturated monolayer and multilayer coverage modes (Dickinson, 2001). Protein fragments that do 
not participate in the surface interactions and become available after protein unfolding provide 
additional stabilising effect, which prevents coalescence of the oil drops. Steric stabilisation is also 
more pronounced for proteins compared to surfactants. 

Protein adsorption at the oil-water interface occurs in three stages (Figure 2) (Baldursdottir 
et al., 2010; Beverung et al., 1999): 

1. Induction. During the induction stage, IFT almost does not change. Diffusion of the protein 
molecules to the oil-water interface is determining parameter of the adsorption at this stage. Once 
protein molecules reach the surface, they begin to undergo conformational changes: 
macromolecules start unfolding in order to release functional groups hidden inside the globular 
structure. The induction stage is only characteristic for dilute protein solutions (≤10µg/ml) as at 
higher concentrations time measurement of the first two stages is limited by their fast speed. 
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 Figure 2: Three regimes of protein molecules adsorption at an oil-water interface. The 
circles represent original molecular structure, while the ovals represent protein molecules that 
underwent conformational changes (adapted from Beverung et al., 1999). 

2. Monolayer saturation. During the second stage the sharpest decrease of IFT is observed due 
to increase of the protein surface concentration. Further saturation of the adsorbed layer occurs in 
the two parallel ways. New protein molecules are continuously supplied by diffusion from the bulk 
aqueous solution. Meanwhile, proteins that are already adsorbed continue unfolding, providing new 
contact sites. So the molecules become attached stronger due to larger number of the available 
functional groups. Such conformational changes are always irreversible and no protein desorption is 
observed from the emulsion droplets (Bos and Vilet, 2001). Loss of 3D structure leads in turn to 
loss of enzymatic activity. It should be noted that for already denaturated proteins the adsorption 
scenario might differ from what was described above. As a result, they can possess less surface-
active properties. Multilayer formation may also be initiated at the stage of monolayer saturation if 
proteins from the bulk solution start being attracted by the initial adsorbed layer.  

3. Interfacial gelation. The IFT values demonstrate steady decline during the last stage of the 
protein adsorption. Molecules in the already adsorbed layers continue undergoing structural 
rearrangements to reach the energetically favourable state, while the monolayer continues 
accumulating new protein molecules. As a result, a gel-like network structure, stabilised by 
intramolecular conformational adjustments and intermolecular interactions, is formed. 



Chapter 2. What can We Expect from Enzymes? 

 12 

2.3. Enzymes/Proteins and Water-Solid Surface Interface 

Protein adsorption from a fluid on a solid surface has been widely investigated in various 
areas, such as biological, medical and technological systems. Different combinations of proteins, 
fluids and solid adsorbents depending on an area of the interest have been extensively investigated 
for years. However, generalisation of the results is still quite difficult as different research groups 
use different procedures and the obtained results sometimes contradict each other. 

Parameters controlling adsorption and further desorption of the proteins can be divided into 
four groups: 

1. Nature and concentration of the protein. Depending on the internal stability of proteins their 
adsorption can be governed by the electrostatic forces or by the protein surface-induced structural 
changes (Norde, 1998; Norde, 2008). Hard proteins are proteins that are characterised by high 
internal stability. They can keep their globular structure upon attachment, and adsorption occurs 
only due to electrostatic attraction between the biomolecules and the solid surface. For the soft 
proteins with low structural stability conformational changes play a major role during adsorption 
and can outweigh electrostatic forces. 

The proteins at low concentrations adsorb in monolayer mode. Due to surface availability 
they can undergo structural modifications that result in a higher contact area (Evers et al., 2008). 
Thus, desorption of those molecules is often irreversible due to strong binding between a monolayer 
and a solid sorbent (Kirchman et al., 1989). During adsorption at high concentrations, the proteins 
form multilayers, where protein molecules are packed compactly and stay folded, therefore 
desorption will be much higher. 

2. Solid surface. Substrates for the protein adsorption can differ in surface tension, polarity and 
charge. The highest amount of adsorbed proteins would be on a non-polar charged material with 
high surface energy. (Hlady et al., 1999). Wettability of the surface also highly affects protein 
adsorption. Adsorption of proteins is higher on the hydrophobic surfaces, whereas desorption occurs 
more easily from the hydrophilic sorbent surfaces (Lai et al., 2008; Sethuraman et al., 2004). 

3. Solution. Two characteristics of the solution and of the solvent can influence their 
adsorption. The value of pH determines the surface charge of the protein molecules. At pH below 
isoelectric point, proteins are positively charged; at isoelectric point negative and positive charges 
of the different protein fragments are balanced, so the molecules are neutrally charged; and at pH 
above the isoelectric point the proteins have a positive charge. In most of the cases maximum 
adsorption of the proteins occurs near the isoelectric point   (McLaren, 1957; Norde, W., 1986; 
Skujiņš et al., 1974). If the charge of the sorbent is known, by changing pH it is possible to enhance 
or inhibit adhering of the proteins to the surface (i.e. it is possible to control electrostatic 
attraction/repulsion forces). 

Increase of the ionic strength of the solution has an opposite effect compared to increase of 
pH (Jones and O’Melia, 2000; Kirchman et al., 1989). The increased salt content leads to 
compression of the double layer, which in turn decreases electrostatic repulsive forces between like-
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charged protein molecules and solid surface and reduces electrostatic attractive forces between 
oppositely charged protein molecules and solid surface.  

A special example of protein adsorption from high ionic strength solution is adsorption from 
seawater, that is, the case for application of enzymatic EOR. There are few studies of the protein 
adsorption from seawater (Kirchman et al., 1989; Raspor, 1991; Taylor et al., 1994), and they are in 
a good agreement between each other. Independently of the surface type, protein adsorption is 
higher in seawater than in low ionic solutions (Kirchman et al., 1989). The process is mainly 
governed by hydrophobic interactions as solution counter-ions neutralize protein charge and 
electrostatic forces are not that important (Kirchman et al., 1989; Raspor, 1991). It was found that 
among all the counter-ions contained in genuine seawater (pH=7.8) ions of Ca2+ and Mg2+ made the 
highest contribution for neutralizing BSA, whereas effect of Na+ ions was quite negligible (Raspor, 
1991). Adsorption was reversible when bulk protein concentrations were high (>10 μg/ml) 
(Kirchman et al., 1989). 65% of protein could be recovered within 1 min. Secondary binding of the 
desorbed proteins was also observed (Taylor et al., 1994). 

4. External parameters. External parameters include temperature, pressure and porosity of the 
solid adsorbent. Increase of the temperature in most of the cases promotes adsorption rate and 
consequently amount of the adsorbed protein (Eltekova and Eltekov, 2008; Kiesel et al., 2014). It 
should be noted that depending on conformational stability of the protein desorption of the protein 
molecules in protein-free buffer can also be heat-induced (Kiesel et al., 2014). Hard proteins (e.g. 
lysozyme and RNase A) keep their mobility at the interface and it increases with increase of the 
temperature. Soft protein molecules (e.g. BSA) due to low internal stability start denaturating at 
about 60°C. Unfolding of the protein leads to higher protein-surface contact area that hinders 
desorption of the biomolecules. 

 Recent studies (Koo et al., 2013; Wirkert et al., 2014) revealed that adsorption of proteins is 
also pressure-induced process. The effect of pressure can be explained by conformational changes 
during which a “hard” protein becomes more “soft”. It should be emphasized that elevated pressure 
in the framework of the protein adsorption implies values of 2500-5000 bar. However, the pressure 
effect can be avoided by addition of stabilisers (e.g. glycerol) that keeps globular confirmation of 
the protein molecules (Koo et al., 2013). 

 A general trend for the porosity dependence of the protein adsorption is increase of the 
amount of adsorbed molecules with increasing pore diameter (Eltekova and Eltekov, 2008). 
Investigation of the BSA adsorption on silica with pore diameter range between 3 and 160 nm 
showed that maximum of adsorbed amount occurred at a pore diameter of 80 nm with no further 
significant increase. Thus, dependence of the pore diameter is important for microporous and 
sometimes mesoporous media, and is not relevant to the most porous media of petroleum reservoirs. 
On the contrast, Kondo et al. (1989) reported that adsorption was faster and higher in small and 
large pores. Most likely, effect was due to lack of the space for small pores and due to availability 
of the space and easy diffusion for large pores. 
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When it comes to the desorption of proteins, two generally observed features should be 
taken into account (Norde, 1986). First, desorption of proteins can be achieved in three different 
ways: 

1. Desorption by diluting – dilution of the system with the solvent that was used for protein 
adsorption. When protein adsorbs to a solid surface, attachment of a molecule occurs via several 
segments, therefore desorption of this molecules can be quite difficult and often diluting the system 
with the solvent is not enough to detach the protein molecules; 

2. Change of pH, ionic strength of the solvent or change of some external parameters (e.g. 
temperature); 

3. Replacement of the adsorbed protein molecules by other protein that has higher affinity for 
the sorbent. 

Second, adsorption of the proteins is often irreversible. Either protein strongly adsorbs to 
the surface and cannot be detached, or the desorbed molecules undergo some structural changes 
(such as unfolding, for example) during the attachment and cannot return to the original structure. 
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Abstract 

Enzymes have recently been considered as possible agents for enhanced oil recovery (EOR) 
acting at the liquid–solid interface. One way to assess this is via measuring the wettability of calcite 
surfaces, important for EOR methods in carbonaceous reservoirs. In the present work, we have 
experimentally investigated the effect of enzymes on the wettability of calcite mineral surfaces with 
oil–brine systems. The action of various enzymes, including esterases/lipases, carbohydrases, 
proteases and oxidoreductases (along with two commercial mixtures) was studied by contact angle 
measurements and adhesion behaviour tests. Comparative studies with a surfactant, protein, purified 
enzyme, enzyme stabiliser using n-decane (as a model for the oil) have also been carried out in 
order to verify experimental results. The enzymes that have the highest effect on the wettability 
have been identified. Those enzymes, which were found the most promising from a practical 
perspective, have shown the ability to fully detach oil from the surface, even at very low enzyme 
concentrations. For example, esterases/lipases were found to strongly affect the wettability and to 
remove adhesion at concentrations as low as 0.1% of the enzyme product (corresponding to 0.002–
0.005% protein). Likewise, proteases could also improve wettability, although the effect was not 
consistent and was dependent on impurities. Other enzymes had no effect on the wettability of 
calcite at the concentration studied. The main mechanism of enzymatic action has been found to be 
replacement of oil at the solid surface by the enzyme. Other mechanisms (modification of the 
surface tension or catalytic modification of hydrocarbons resulting in reducing the oil viscosity) 
have shown to be much less pronounced from the measurements reported here.  

Keywords: Enhanced Oil Recovery; Enzymes; Wettability; Adhesion; Carbonaceous Reservoirs 

1. Introduction 

Today, application of enhanced oil recovery (EOR) to carbonaceous reservoirs is becoming 
increasingly important, given the growing oil demand. Indeed, the recovery of oil from such 
reservoirs is usually considerably lower than that from sandstone reservoirs. Recently reported 
methods for EOR are mostly based on the application of biological agents such as enzymes (Feng et 
al., 2007; Nasiri et al., 2009; He and Zhonghong, 2011; Ott et al., 2011). Enzymes may be 
particularly advantageous as EOR agents, since they are biologically produced, environmentally 
friendly, surface-active substances, which usually act at extremely low concentrations. Several 
initial field trials in China, Indonesia, Venezuela and USA have demonstrated quite promising 
results (Feng et al., 2007; He and Zhonghong, 2011; Moon, 2008; Ott et al., 2011). Meanwhile, the 
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mechanism of enzyme action and their efficiency have not been thoroughly investigated, especially, 
with respect to carbonaceous reservoirs. Consequently, there is currently no method for the 
selection of suitable enzymes and co-solvents, or their concentrations to apply to EOR.  

Based on laboratory experiments, three potential mechanisms have been proposed to explain 
the positive effect of enzymes on oil extraction from the reservoir rocks (Feng et al., 2007; He and 
Zhonghong, 2011; Moon, 2008; Nasiri et al., 2009; Ott et al., 2011): (1) breaking the connections 
between oil and internal porous surface; (2) decreasing the interfacial tension (IFT) and creation of 
emulsions; and (3) decreasing the oil viscosity.  

In all cases the mechanistic explanations result in an increase of oil mobility and, as a result, 
increased oil production.  

The primary mechanism responsible for the successful action of enzymes is claimed to be 
their activity on the rock surface, breaking the oil–rock bonds (Feng et al., 2007). Some authors 
(Moon, 2008; Ott et al., 2011) have also reported a change of oil properties due to application of 
enzymes. For example, breakage of carbon bonds and a decrease of wax content with a consequent 
decrease of oil viscosity were previously reported for Apollo GreenZymeTM commercial product 
(Moon, 2008).  

Most of the published scientific reports have used enzymes in the form of commercial 
mixtures. In such mixtures, enzymes are usually present in combination with stabilisers and 
surfactants (see for example, Apollo GreenZymeTM Material Safety Data Sheet; Feng et al., 2007). 
This makes it difficult to assign observed effects to a particular component of the mixture, meaning 
that experimental work with these commercial products may lead to misinterpretations. Further 
research is needed in order to identify the working mechanisms of pure enzymes and the relevant 
concentrations that can be applied in the field.  

In general, data on specific classes of enzymes that might be effective for EOR application 
is very restricted. Indeed, to the best of our knowledge, only lipases have been applied as pure 
enzymes in previous reports (Nasiri, 2011).  

In this study we have carried out a systematic screening of the four most promising groups 
of enzymes (esterases/lipases, carbohydrases, proteases and oxidoreductases) with respect to their 
ability to alter the wettability of the calcite surface, characteristic of the chalk reservoir rock and, 
ultimately, to detach oil from the surface.  

Among different techniques, adhesion tests of oil drops on mineral surfaces, in the presence 
of known enzyme solutions, are the most suitable for wettability screening as they keep the balance 
between accuracy, timing and simplicity which is very important in the case of a large number of 
samples. Measurement of the contact angles in conjunction with adhesion tests gives an even better 
indication of wettability (Buckley and Morrow, 1990). This method was used in the present work. 
In order to distinguish the specific effect of the enzymes, comparative studies were conducted with 
a surfactant, a protein and an oil model (mimic). The obtained results should enable direct 
assessment of the enzyme as a working biological component and correlation of the enzyme class 
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with respect to its potential for EOR. Adsorption of enzymes at interfaces and/or formation of 
surface-active compounds were proposed to be key mechanisms underlying changes introduced into 
a crude oil–brine–calcite system.  

The experimental program is proposed as the first step in the study of the applicability of 
enzymes for enhanced oil recovery. Further studies will be necessary, including dynamic adsorption 
experiments, flow-through experiments, flooding tests and pilot reservoir tests. However, the 
present study is independent of the subsequent steps and provides a thorough description of the 
wettability alteration mechanisms as well as reasonable screening criteria for enzyme selection and 
working concentrations of enzymes.  

The paper is organized as follows. First, we give an overview of materials and methods 
applied (Section 2). Section 3 describes results of the assessment of wettability of crude oil–sea 
water and enzyme–calcite systems. The reference experiments and comparative studies for similar 
systems are discussed in Section 4. In Section 5, we discuss significance of our findings for 
enzymatic EOR. Finally, the key results of the work are summarized in Section 6.  

2. Materials and methods  

2.1. Materials  

2.1.1. Fluids  

All the tests were performed using light dead oil recovered from a chalk reservoir in the 
Danish sector of the North Sea. None of the enzymes utilised in this study interact with small 
hydrocarbon molecules, so that the difference between the live and dead oils was unimportant for 
the purpose of the experiment. In the reference experiment n-decane (Sigma-Aldrich, purity ≥99%) 
was used as the model oil phase.  

Table 1: Composition of synthetic North Sea water used for adhesion behaviour and contact 
angle tests. 

Salt   Concentration, g/l 
NaCl   
NaHCO3   
KCl   
MgCl2.6H2O   
CaCl2.2H2O   
Na2SO4   

18.01 
0.17 
0.74 
9.15 
1.91 
3.41 

Total Dissolved Salts 33.39 
 

The aqueous phase was synthetic North Sea water (pH=7.78; composition as given in Table 
1). Chemicals for brine preparation were purchased from Fluka (purity ≥99.5%) and were not 
subjected to further purification.  
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2.1.2. Enzyme, protein and surfactant samples 

Fifteen enzyme products kindly provided by Novozymes A/S, and two enzyme-based 
commercial mixtures (Apollo GreenZymeTM and EOR-ZYMAXTM) were investigated in the study 
(Table 2). Each of the Novozymes enzyme products belonged to one of four classes 
(esterases/lipases, carbohydrases, proteases, oxidoreductases). Three solutions (0.1%, 0.5%, and 1% 
(weight/weight)) were prepared for each enzyme sample by dilution of the enzyme products in the 
sea water (SW). The actual content of protein is much lower, typically in the range of 2–5% of the 
enzyme products. This is further discussed in Section 4.1.  

Table 2: Enzyme samples used in the study. 

Sample Enzyme type Enzymatic action 
Esterases/Lipases 

NS 44034 Lipase EC 3.1.1.3 Hydrolysis of ester bonds in a lipid (activity: 100 KLU/g) 
NS 81249 Lipase EC 3.1.1.3 Hydrolysis of ester s in a lipid (activity: 50 KLU/g) 
NS 44124 Lipase EC 3.1.1.3 Hydrolysis of ester bonds in a lipid (activity: 100 KLU/g) 
NS 44033 Lipase EC 3.1.1.3 Hydrolysis of ester bonds in a lipid (activity: 6 KLU/g) 
NS 44035 Lipase EC 3.1.1.3  Hydrolysis of ester bonds in a lipid (activity: 20 KLU/g) 
NS 44164 Esterase/lipase EC 3.1.1.3 Hydrolysis of ester bonds in lipids and other compounds (activity: 15 

KLU/g) 
NS 44129 Phospholipase EC 3.1.1.32 Hydrolysis of ester bonds in phospholipids (activity: 10 KLU/g) 

Carbohydrases 
NS 81251 Amylase EC 3.2.1.1 Hydrolysis of starch (activity: 120 KNU/g) 
NS 81252 Cellulase EC 3.2.1.4 Hydrolysis of cellulose (activity: 1000 ECU/g) 

Proteases 
NS 81253 Subtilisin protease EC 3.4.21.62  Hydrolysis of proteins (activity: 2.5 AU/g) 
NS 44110 Subtilisin protease EC 3.4.21.62 Hydrolysis of proteins (activity: 8 KNPU/g) 

Multicomponent products 
NS 44053 

 
Cellulases EC 

3.2.1.4/Hemicellulases EC 
3.2.1.6/EC 3.2.1.8/Amylase EC 

3.2.1.1 

Hydrolysis of cellulose/hemicellulose/ starch. (standardised activity:  
45 FBG/g but it contains many different enzymes) 

NS 44055 Pectinases EC 3.2.1.15, EC 
4.2.2.10, EC 4.2.2.2, EC 3.1.1.11 
 Hemicellulases/ EC 3.2.1.6, EC 
3.2.1.8/ Cellulases EC 3.2.1.4/ 

Proteases 

Hydrolysis of carbohydrates/ pectins/ proteins etc. 
standardised activity:  100 FBG/g but it contains many different 
enzymes 

Oxidoreductases 
NS 81254   Laccase EC 1.10.3.2 Redox reactions on phenolic or aniline/amine structures. Laccase 

requires oxygen as an electron acceptor (activity : 1000 LAMU/g) 
NS 44071 Peroxidase EC 1.11.1.7 Redox reactions on phenolic and other structures. Peroxidases require 

H2O2 as an electron acceptor (activity : 10000 POXU/g) 
Commercial mixtures containing enzymes 

Apollo 
GreenZyme™  

Undisclosed – 

EOR-
ZYMAX™ 

Undisclosed – 



Chapter 3. Study of Wettability of Calcite Surfaces using Oil-Brine-Enzyme Systems for Enhanced 
Oil Recovery Applications 

 21 

Two oxidoreductases were applied (peroxidase and laccase) that required the presence of 
hydrogen peroxide (1–3 mM) and oxygen, respectively. Hydrogen peroxide (Sigma-Aldrich) was 
added during preparation of the peroxidase solution, while no additional amount of oxygen was 
supplied during application of laccase, since the amount of dissolved oxygen was considered to be 
sufficient.  

Bovine serum albumin protein (BSA, 98% purity) and sodium dodecyl sulphate surfactant 
(SDS, 99% purity) were purchased from Sigma-Aldrich. Concentrations of BSA (0.001%, 0.005%, 
0.01%, 0.05%, 0.1% and 1% w/w) and SDS (0.003%, 0.05%, 0.5% w/w) were chosen so that they 
were correlated with the amount of enzyme used in experiments. The BSA and SDS solutions in 
synthetic brine were prepared in an identical way to the enzyme solutions.  

Other chemicals used were propylene glycol (Sigma-Aldrich, purity ≥99.5%), and a purified 
version of the enzyme (lipase) sample NS 44034 (Novozymes A/S) (without stabilisers).  

2.1.3. Calcite minerals 

In laboratory experiments it is usual practice to use various minerals to mimic specific 
reservoir rocks. Calcite minerals were used in this work to represent a chalk reservoir. Three calcite 
crystals (white, yellow and grey) with crystal faces were kindly provided by the Geological 
Museum of Copenhagen, Denmark. A further calcite sample with the surface created after cleavage 
of a larger mineral was kindly supplied by Center for Arctic Technology, Technical University of 
Denmark (Lyngby, Denmark). One of the crystal face samples was transparent. One of the samples 
with the crystal face and freshly cleaved samples were transparent and opaque calcites with no 
additives, correspondingly. Two other samples were yellow and grey minerals, where the colour 
was due to the presence of colour-changing additives. Application of these particular samples 
allowed assessment of the effect of different additives and effect of origin of the mineral surface.  

In order to approach realistic roughness of the natural surfaces (such as pore walls), the 
calcite surfaces were not subjected to any treatment (e.g., polishing), although they were thoroughly 
cleaned, as described below. The surface roughness may significantly affect wettability, which 
would be expected to lead to different drop shapes and scattering of the apparent contact angles, 
even for a single drop. In order to acquire an axisymmetric shape, the drop size should be 
sufficiently large compared to the scale of roughness (Marmur, 2006). This requirement was met in 
all our experiments. However, if the drop size becomes large, gravity affects the value of contact 
angle (Vafaei and Podowski, 2005; Shojai Kaveh et al., 2014). In order to check what type of 
forces, surface or gravity dominates in our experiments, the Bond number reflecting relative 
contribution of these forces was calculated:  

 

𝐵𝑜 = (𝜌1− ρ2)∗𝑔∗𝐿2
𝛾 , 
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where Bo is Bond number; ρ1, the density of aqueous phase (kg/m3); ρ2, the density of oil phase 
(kg/m3); g, the acceleration due to gravity (m/s2); L, the characteristic length of the drop (m); and γ, 
the interfacial tension (N/m). 

For an average oil drop, the Bond number equals 0.3, which means that surface forces 
determine the drop shape (Shojai Kaveh et al., 2014). Hence, the oil drops are neither too small 
(significantly larger than surface roughness) nor too large (the surface forces prevail over gravity). 

Prior to introduction of calcite minerals into the experiments they were thoroughly washed 
with acetone in the ultrasonic bath, followed by cleaning with ethanol. After each experiment the 
mineral samples were cleaned in three steps. First, water was used to wash the bulk enzyme solution 
from the surface (in order to avoid potential denaturation/solidification of enzymes/proteins and 
subsequent clogging of the voids on the mineral surface due to following application of the solvent). 
Secondly, the surface was washed with the toluene, in order to remove all the crude oil components. 
Finally, the surface was rinsed with ethanol, to eliminate remains of the enzymes. Testing adhesion 
behaviour and contact angle in crude oil – SW – calcite system after experiments with enzyme 
samples proved the efficiency of this cleaning procedure. 

2.2.  Methods 

 The goal of this study is to investigate the effect of enzymes on crude oil/brine attachment to 
the surfaces of minerals representing the porous rocks of petroleum reservoirs. It is important to 
measure and to evaluate the quantitative characteristics of this attachment. To date, two such 
characteristics have been considered in the scientific literature: сontact angle (Anderson, 1986) and 
adhesion behaviour (Buckley and Morrow, 1990). These characteristics may be studied together, in 
similar tests. A common opinion in the scientific literature has been that the results of the two tests 
are somehow correlated, and, for example, a decrease of the contact angle indicates also less 
adhesive behaviour (Buckley and Morrow, 1990; Nasiri, 2011). 

 As discussed below, our results indicate that these two measurements are not fully 
correlated. Moreover, they have a different meaning with respect to applicability of enzymes for 
EOR. Therefore, it was important for us to carry out both tests simultaneously and to analyse them 
in greater detail. Below we describe an experimental approach and procedure making this possible.  

2.2.1. Adhesion test  

Adhesion tests were carried out according the procedure developed by Buckley and Morrow 
(1990). All the experiments were accomplished under ambient conditions. To the best of our 
knowledge, the enzymes are relatively insensitive to pressure, while temperature will change their 
activity. Indeed, the selected enzyme samples might become more active at the elevated 
temperatures characteristic of petroleum reservoirs. Nevertheless, it is not expected that this will 
alter their behaviour (Cobianco et al., 2007; Turner and Vulfson, 2000). Hence, the simple (ambient 
temperature) tests carried out here are to a large extent expected to be representative of the 
behaviour of enzymes under reservoir conditions. 
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Calcite was immersed into the brine/enzyme solution in a glass container (5x5x5 cm or 
6x6x6 cm dependent on the size of the mineral). The container was placed on an anti-vibration 
platform, accurately levelled prior to use. A drop of oil (1.5-2 μl) was carefully deposited on to the 
lower crystal face using a syringe with an inverted needle (Figure 1). The oil drop was allowed to 
contact with the mineral in the presence of brine for 2 minutes without detachment from the needle. 
Afterwards the needle was moved down in order to either remove the drop from the mineral, or to 
leave it on the surface. At this stage three types of behaviour were observed (Figure 2):  

1. Adhesion behaviour: Oil sticks to the mineral surface, the link between the needle and oil breaks 
and oil drop is left on the surface;  

2. Non-adhesion behaviour: The oil drop does not attach to the crystal and stays on the needle 
leaving the mineral surface clean; 

3. Temporary adhesion: Oil initially sticks to the calcite surface; while the needle is lowered, the 
drop detaches from the surface and stays on the needle leaving a small oil spot on the mineral.  

 

 

 

 

 

 

Figure 1: Scheme of the experimental setup. 1 – calcite mineral, 2 – oil drop, 3 – glass 
container, 4 – inverted needle, 5 – brine/enzyme solution, 6 – glass stand. 

  

 

 

 

 

 

 

Figure 2: Adhesion behaviour types. 
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Each crude oil – brine – calcite system was tested at least twice. Adhesion behaviour of a 
certain system was determined on the basis of 12 to 24 drops. The response of adhesion behaviour 
after addition of enzyme was considered to be uniform or homogeneous if more than 90% of the 
drops showed similar results. Otherwise the results were considered to be inconclusive. 

2.2.2. Contact angle measurements  

Measurements of contact angles were based on image analysis (Roero, 2004; Shojai Kaveh 
et al., 2014; Yang et al., 2008). The procedure consisted of three steps: 1. Placing a liquid drop on a 
solid surface; 2. Recording the drop shape (image acquisition); 3. Image processing and analysis 
(determination of the final contact angle). 

The oil drops were placed on a mineral surface in the same way as for the adhesion test, as 
described in section 2.2.1 and Figure 1. After the deposition, a drop was allowed to settle for about 
an hour (60 minutes was found to be the optimal interval to stabilise the drop, while achieving a 
reliable contact angle). An image of the drop was recorded with a Canon EOS 50D camera 
equipped with a Canon EF 100mm F2.8 L IS USM Macro lens in order to get high-quality images. 
An external flash unit was used to obtain high light-dark contrast, which also allowed accurate 
determination of the drop shapes, particularly of the oil-brine-mineral contact point. Settings on the 
camera were as follows: ISO speed 100, shutter speed 1/400 and aperture 18 – 22. 

The contact lines between the two liquid phases and also between the liquids and the solid 
were established by applying edge detection techniques. Dependent on the quality of the images, the 
drop boundaries and the triple contact point of the phases were determined by image processing in 
the ImageJ software or, in more ambiguous cases, by a Matlab script that applied the Canny edge 
detector. Image analysis was performed using the drop analysis plugin of the ImageJ software. 
Low-Bond Axisymmetric Drop Shape Analysis (LBADSA), which is based on fitting Young-
Laplace equation, was selected to determine the contact angle (Stalder et al., 2010). 

All the experiments were checked for reproducibility. Conditions applied in this study 
corresponded to water receding conditions when water is displaced by oil from the solid surface. 
Each value of the contact angle was determined from an average of 12 to 24 oil drops.  

2.2.3. Validity of the adhesion tests and contact angle measurements 

 It should be verified whether the observed adhesion behaviour and contact angle values are 
affected by the way the experiments were carried out. Two sources of uncertainty should be 
checked: the effect of buoyancy on the shape of the oil drop surrounded by brine, and the effect of 
“pushing” during the placement of a drop on the surface. The last effect is very difficult to control, 
since, in order to reach equilibrium during the adhesion behaviour test an oil drop should be 
allowed to interact with the mineral for two minutes (this time interval was found to be sufficient 
for oil – brine – mineral interaction and reasonable in terms of the experimental timing (Buckley 
and Morrow, 1990)). During the equilibration period, the oil drop should not be detached from the 
needle and should be slightly ‘pushed’ towards the mineral.  
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 For verification of the effect of ‘pushing’, an oil drop of a defined volume was created at the 
tip of the needle and then the needle was slightly shaken, so that the drop floated up. The contact 
angle was measured after 12, 30 and 60 minutes. The result was a contact angle of 37°±7°, which is 
the same value as for slight pressing. Similar results were also obtained when applying several 
enzyme samples. Therefore, it may be concluded that “pushing” does not affect the formation of a 
certain drop shape.  

 During placement of the drops underneath the mineral, buoyancy might also impact the 
adhesive forces and affect the drop shape formation. In one of the experiments minerals were turned 
upside down, and the oil drops were placed on the top of the mineral. Despite the fact that oil phase 
is less dense than the surrounding aqueous phase, the oil drops got attached to the mineral surface 
due to strong adhesive forces. No changes in adhesion behaviour were observed. However, the 
average value of the contact angle increased from 38˚ up to 43˚ in case of SW applied as an aqueous 
phase.  

 

Figure 3: Effect of buoyancy on shape of the oil drops: 1a and 2a – shapes of the drops 
placed on the bottom surface of the mineral in presence of SW and 1% NS81254 sample, 
respectively; 1b and 2b – shapes of the drops placed on the top surface of the mineral in presence of 
SW and 1% NS81254 sample, respectively. Pictures in Figures 1a and 2a are turned upside down 
for easier comparison with Figures 1b and 2b. 

The same experiment was carried out with the 1% NS 81254 enzyme sample. When the 
drops were put underneath the rock, no difference in adhesion behaviour and contact angles were 
observed compared to the crude oil – SW – calcite system. After turning the mineral upside down 
adhesive forces were still predominant and oil drops remained stuck to the surface. However, the 
shape of drops and consequently the contact angle values were altered more significantly, and the 
drops became elongated in a vertical direction (Figure 3, 2b). The average contact angle increased 

  

(1a) (1b) 

  

(2a) (2b) 

SW SW 

1% NS81254 1% NS81254 
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from 39.5 to 49˚. For this system the effect of buoyancy is quite significant and becomes 
comparable with the surface forces.  

The surface tensions for given systems are equal to 19.9 mN/m for brine-oil, and 17.4 mN/m 
in the presence of the NS81254. Apparently, they are around a threshold value at which buoyancy 
becomes comparable with the surface forces. 

Overall, buoyancy had some effect on the contact angles, but does not affect the type of the 
adhesive behaviour. This is also consistent with the calculated Bond number (see Section 2.1.3). In 
order to achieve the objectives of this research, it has been found to be sufficient to work solely 
with the drops beneath the mineral surfaces, as also suggested in the scientific literature (Nasiri et 
al., 2009). 

2.2.4. Interfacial Tension Measurements 

Measurements of interfacial tension (IFT) were implemented by applying the drop volume 
method (Harkins and Brown, 1919). The method involves the following steps: 

1. Generation of the oil drop using inverted needle (500 µl Hamilton syringe with inverted needle) 
immersed into the brine solution. It was found very important that the drop is created slowly and the 
last stage of the drop formation should take at least 1 – 2 minutes (Alpbaz et al., 1988).  

2. Determination of the oil drop volume at the moment of oil drop break-off from the needle tip 
(the volume of floating drop).  

3. Measurement of liquid densities (Anton Paar, DMA 4100). 

4. Calculation of IFT. This was done using in-house built algorithm, based on Tate’s law with 
Harkins and Brown (1919) correction factor: 

𝛾 = 𝑔∗(𝜌1− ρ2)∗𝑉
2∗ 𝜋∗𝑟∗𝑓(𝐻𝐵), 

 
where γ is the interfacial tension (N/m); g, the acceleration due to gravity (m/s2); ρ1, the density of 
aqueous phase (kg/m3); ρ2, the density of oil phase (kg/m3); V, the average volume of the oil drop 
(m3); r, the radius of the inverted needle (m); and f(HB), the Harkins-Brown empirical correction 
factor. 

The radius of the inverted needle was determined by applying the drop volume method for 
pure compound systems with known values of IFT. Based on measurements for n-decane – distilled 
water and n-octane – distilled water systems, the diameter of the inverted needle was found to be 
0.39 mm. Using this value Harkins-Brown coefficient was determined as a function of r/V1/3 ratio as 
one of the steps of the algorithm (Harkins and Brown, 1919). 



Chapter 3. Study of Wettability of Calcite Surfaces using Oil-Brine-Enzyme Systems for Enhanced 
Oil Recovery Applications 

 27 

The experiments were carried out at 25°C and ambient pressure, in accordance with the 
adhesion/contact angle tests. The water bath was used to keep constant temperature. The value of 
IFT for each unknown system was determined based on 10 oil drops. 

3. Results 

3.1. Crude oil – SW – calcite system 

The efficiency of water-flooding in a chalk reservoir (without additional agents such as 
enzymes) is largely determined by the wettability behaviour of the oil and brine on the mineral 
surface of the porous rock. Since water-flooding is a “reference” process for comparison of the 
EOR methods in petroleum engineering, the wettability state of the crude oil – SW – calcite system 
should be taken as a reference point. Hence, the influence of enzymes on the wetting properties of 
calcite was assessed relatively to this system.   

Adhesion tests revealed that the initial wettability state of the crude oil – SW – calcite 
system corresponded to fully adhesive behaviour. The contact angles (38°±7°), complies with the 
weakly water-wet state according to the classification by Anderson (1986).  Therefore, the oil–
brine–calcite system has a potential for de-adhesion of the oil. 

3.2. Adhesion behaviour test 

Addition of specific enzymes modified the behaviour described in the previous subsection. 
The adhesion map for the different enzyme solutions is given in Table 3.  Initially each enzyme 
sample was tested at three concentrations (1%, 0.5% and 0.1%). For enzyme products that were 
found to change the original adhesion state, all enzyme concentration gave the same result. Hence 
for the final experiments using samples NS 44055, NS 81254 and NS 44071, for which oil adhered 
already at 1%, no study was made at two lower concentrations of the enzymes. However, there was 
one case of inverse effect: for NS 44110 experiments on grey calcite demonstrated the non-adhesion 
behaviour at 1%, temporary adhesion at 0.5%, which again changed to non-adhesion at 0.1%. 

The results on adhesion tests revealed that each type of enzyme has a distinct behaviour. In 
accordance with previous studies (Nasiri et al., 2009), esterases/lipases showed the highest ability to 
change wettability, implying the highest surface activity of this enzyme class. Most of the lipase 
samples turned calcite from an adhesion to a non-adhesion state at a concentration of 1%. At 0.5% 
the two samples NS 44034 and NS 44164 could keep the non-adhesion behaviour of the oil drops, 
while for other lipases temporary adhesion mainly occurred at this concentration. Decrease of the 
enzyme product content down to 0.1 % showed that few samples such as NS 44164 and NS 44035 
could still provide temporary adhesion and sample NS 44034 could even provide the non-adhesion 
state, but for the rest of enzymes calcite adhered oil at the concentration of 0.1%. 
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Table 3: Summarized adhesion behaviour of the calcite minerals in the presence of various enzyme 
products. The colours indicate:                  – adhesion,                  – temporary adhesion,                    
– non-adhesion; N/A – information is not available, N/R – not reasonable. 

 

Out of the lipase group (Table 3), samples NS 44033 and NS 44035 are the least desirable 
for further investigation, since for both of them non-adhesion behaviour was not reached at any 
concentration ≤ 1%.  On the contrary, sample NS 44035 kept predominantly steady temporary 
adhesion state in the whole range of investigated concentrations. The rest of the samples exhibited a 
transient zone between 0.1 and 1%, where adhesion changed to non-adhesion via temporary 
adhesion state. The NS 44034 enzyme product also was not subjected to further studies, even 
though it performed well at low concentrations, because of a non-uniform response of pure calcite 
and calcite minerals with additives after addition of the enzyme sample. 

Two esterase/lipase products – NS 44164 and NS 81249 – were found to be the most 
suitable for a more detailed examination. The advantage of NS 44164 is stable non-adhesion 
behaviour at concentrations equal or more than 0.5%, whereas NS 81249 is attractive due to its 
stable uniform response. 

Addition of carbohydrases and oxidoreductases to the brine solution had no effect on 
adhesion behaviour of the oil drops. The only positive observation was the temporary adhesion state 
of the grey calcite at 1% for the NS 81252 sample. 

Proteases performed better than carbohydrases and oxidoreductases, but the effect on 
adhesion behaviour was not as significant as for esterases/lipases. Addition of proteases NS 81253 
and NS 44110 caused some positive changes in the wettability state of calcite, but responses were 
very non-uniform. For example, addition of 0.5% NS 81253 resulted in 50% of adhering and 50% 
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of temporarily adhering oil drops for pure calcite with natural crystal face; 100% of adhering oil 
drops for cleaved calcite; 80% of temporarily adhering and 20% of non-adhering oil drops for grey 
calcite, and 50% of temporarily adhering and 50% of non-adhering oil drops for yellow calcite. The 
only observed trend was that grey and yellow calcite crystals were less “sticky” than the pure calcite 
with no additives. At an enzyme product concentration of 1% non-adhesion behaviour could be 
observed for the calcite with additives, while white minerals turned only to the temporary adhesion 
or adhesion state. Likewise, at 0.5%, crystals with additives demonstrated predominantly temporary 
adhesion, while white calcites mainly showed adhesion of the oil.  

Samples NS 44034 (enzyme product content of 0.5% and 0.1%), NS 44033 (enzyme 
product content of 0.5%) and NS 81249 (enzyme product content of 0.1%) showed a similar trend. 
However, for one case a reverse effect was found: application of 0.5 % NS 44124 enzyme sample 
resulted in predominantly adhesion state of grey calcite as temporary adhesion occurred for other 
minerals. It might be proposed that interaction between the different enzymes and the mineral 
surface is a predominant effect, and that it depends on both enzyme and mineral composition. Even 
though proteases have some potential for EOR in terms of wettability change, their selective effect 
on different minerals makes them less desirable biological agents. 

Multicomponent products which include several different enzyme types including cellulases, 
hemicellulases, amylases and proteases (NS 44055 and NS 44053), were also tested to examine 
possible synergistic effect of simultaneous application of several enzymes. However, no noticeable 
effect was observed: 1% NS 44055 was not capable of changing the adherence of oil to calcite, and 
NS 44053 kept a steady temporary adhesion state of the minerals at all the concentrations. 

Two commercial enzyme-based mixtures, Apollo GreenZyme™ and EOR-ZYMAX™, 
were included into the enzyme screening list. Addition of EOR-ZYMAX™ did not influence the 
adhesion behaviour of the oil drops. On the contrary, application of Apollo GreenZyme™ resulted 
in absolute non-adhesion behaviour for all the calcite minerals at all the investigated concentrations. 
Based on adhesion behaviour, Apollo GreenZyme™ appeared to be a better product, but this will 
further be discussed in Section 4.2. 

3.3. Contact angle measurements 

The adhesion tests described above were subsequently complemented by contact angle 
measurements. Absolute values and relative decreases of contact angles for different enzyme 
product samples and calcite minerals are given in Table 4. Contact angle experiments generally 
correlated well with the results obtained on adhesion behaviour. Esterases/lipases were found to be 
the most surface active group of enzymes, reducing the water contact angle under both non-
adhesion and temporary adhesion conditions – from 38° to 0°. A contact angle of 0° implies 
absolute water-wetness, which is favourable for oil recovery. At concentrations of enzyme product 
of 0.1%, when usually adhesion behaviour was observed, the decrease in contact angles was about 
35%. Within the investigated range of enzyme concentrations it seems likely esterases/lipases can 
keep 0° water contact angle up to a certain threshold concentration, below which a decrease of the 
enzyme content causes increase in the contact angle values, as normally occurred at temporary 
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Table 4: Absolute values with standard deviations and relative decreases of the contact angles for various enzyme concentrations and various 
calcite minerals (relative decreases were calculated as (θref - θenz)/ θref, where θref is reference water contact angle, and θenz the contact angle after 
addition of an enzyme). If standard deviation value is not given, it equals to zero.  

 1% (weight) 0.5% (weight) 0.1% (weight) 
Grey 
Calcite  

Yellow 
Calcite 

White 
Calcite 

White 
Cleaved 
Calcite 

Grey 
Calcite 

Yellow 
Calcite 

White 
Calcite 

White 
Cleaved 
Calcite 

Grey 
Calcite 

Yellow 
Calcite 

White 
Calcite 

White 
Cleaved 
Calcite 

Es
te

ra
se

s/
 L
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es
 

NS 44124 
Absolute 0° 0° 0° 0° 20°±5° 0° 0° 0° 28°±3° 27°±2° 26°±1° 27°±2° 
Relative 1 1 1 1 0.47 1 1 1 0.26 0.29 0.32 0.29 

NS 44129 
Absolute 0° 0° 0° 0° 0° 0° 0° 4°±3° 23°±4° 27°±3° 28°±3° 28°±2° 
Relative 1 1 1 1 1 1 1 0.89 0.39 0.29 0.26 0.26 

NS 81249 
Absolute 0° 0° 0° 0° 0° 0° 0° 0° 25°±1° 23°±2° 25°±1° 27°±2° 
Relative 1 1 1 1 1 1 1 1 0.34 0.39 0.34 0.29 

NS 44034 
Absolute 0° 0° 0° 0° 0° 0° 13°±5° 0° 0° 0° 24°±2° 31°±5° 
Relative 1 1 1 1 1 1 0.66 1 1 1 0.37 0.18 

NS 44033 
Absolute 0° 0° 0° 0° - 0° 18°±4° 14°±5° - 20°±3° 25°±3° 24°±4° 
Relative 1 1 1 1 - 1 0.53 0.63 - 0.47 0.34 0.37 

NS 44164 
Absolute 0° 0° 0° 0° 0° 0° 0° 0° - 12°±3° 13°±3° 22°±4° 
Relative 1 1 1 1 1 1 1 1 - 0.68 0.66 0.42 

NS 44035 
Absolute - 0° 11°±3° 0° - 0° 12°±3° 0° - 0° 23°±2° 16°±2° 
Relative - 1 0.71 1 - 1 0.68 1 - 1 0.39 0.58 

C
ar

bo
-

hy
dr

as
es

 NS 81251 
Absolute 28°±4° 24°±2° 31°±3° 29°±4° 33°±4° 29°±2° 28°±2° 31°±4° 33°±4° 30°±3° 31°±3° 36°±5° 
Relative 0.26 0.37 0.18 0.24 0.13 0.24 0.26 0.18 0.13 0.21 0.18 0.05 

NS 81252 
Absolute 8°±1° 29°±5° 30°±4° 29°±2° 29°±3° 32°±2° 33°±4° 32°±3° 31°±5° 33°±2° 32°±3° 30°±4° 
Relative 0.79 0.24 0.21 0.24 0.24 0.16 0.13 0.16 0.18 0.13 0.16 0.21 
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Table 4 (continuation): Absolute values with standard deviations and relative decreases of the contact angles for various enzyme concentrations 
and various calcite minerals (relative decreases were calculated as (θref - θenz)/ θref, where θref is reference water contact angle, and θenz the contact angle 
after addition of an enzyme). If standard deviation value is not given, it equals to zero. 

 

1% (weight) 0.5% (weight) 0.1% (weight) 
Grey 
Calcite 

Yellow 
Calcite 

White 
Calcite 

White 
Cleaved 
Calcite 

Grey 
Calcite 

Yellow 
Calcite 

White 
Calcite 

White 
Cleaved 
Calcite 

Grey 
Calcite 

Yellow 
Calcite 

White 
Calcite 

White 
Cleaved 
Calcite 

Pr
ot

ea
se

s  NS 81253 
Absolute 0° 0° 28°±2° 8°±4° 0° 0° 22°±3° 20°±2° 15°±5° 0°±° 25°±3° 27°±4° 
Relative 1 1 0.26 0.79 1 1 0.42 0.47 0.61 1 0.34 0.29 

NS 44110 
Absolute 0° 0° 6°±2° 4°±2° 0° 0° 16°±5° 20°±3° 0° 28°±3° 32°±6° 35°±4° 
Relative 1 1 0.84 0.89 1 1 0.58 0.47 1 0.26 0.16 0.08 

M
ul

tip
le
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m
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nt
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NS 44055 
Absolute - 24°±3° 21°±2° 25°±3° - - - - - - - - 
Relative - 0.37 0.45 0.34 - - - - - - - - 

NS 44053 
Absolute - 0° 0° 0° - 0° 18°±5° 15°±2° - 10°±2° 24°±3° 26°±4° 
Relative - 1 1 1 - 1 0.53 0.61 - 0.74 0.37 0.32 

O
xi

do
re

-
du

ct
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es
 NS 81254 

Absolute - 29°±2° 32°±3° 29°±5° - - - - - - - - 
Relative - 0.24 0.16 0.24 - - - - - - - - 

NS 44071 
Absolute - 23°±3° 24°±3° 25°±4° - - - - - - - - 
Relative - 0.39 0.37 0.34 - - - - - - - - 

C
om

m
er

ci
al

 
pr

od
uc

ts
 EOR-

ZYMAX™ 
Absolute 27°±2° 28°±3° 29°±4° 30°±2° 30°±4° 32°±3° 34°±6° 33°±4° 32°±3° 28°±2° 29°±2° 29°±2° 
Relative 0.29 0.26 0.24 0.21 0.21 0.16 0.11 0.13 0.16 0.26 0.24 0.24 

Apollo 
GreenZyme
™ 

Absolute 32°±4° 24°±3° 25°±5° 30°±4° 23°±2° 28°±2° 27°±7° 30°±4° 23°±1° 22°±2° 21°±2° 22°±2° 
Relative 0.16 0.37 0.34 0.21 0.39 0.26 0.29 0.21 0.39 0.42 0.45 0.42 
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adhesion behaviour. Thus, a threshold where a contact angle changes from zero to a given value 
may be considered as a limiting value for desirable surface activity of an enzyme 

Addition of carbohydrases did not change adhesion behaviour of the calcite, although the 
values of contact angles decreased by 32%, 19% and 16% in case of addition of 1%, 0.5% and 0.1% 
enzyme product, respectively. Similar behaviour was observed for oxidoreductases: for a 1% 
solution the reduction of contact angle values was 21% for NS81254 and 37% for NS44071, even 
though the same adhesion behaviour was maintained after addition of the enzyme. So carbohydrases 
and oxidoreductases had some impact on wetting properties of calcite, but not as significant as the 
group of esterases/lipases. It might be possible that by increasing the amount of carbohydrases and 
oxidoreductases the threshold concentration leading to absolute water state will be reached similar 
to esterases/lipases. However, this was not studied due to non-feasibility of application of larger 
amounts of the enzymes. 

For proteases and multicomponent enzyme products similar to esterases/lipases the contact 
angle corresponding to non-adhesion and temporary adhesion was 0°. The only exception was 
enzyme sample NS44053. At concentrations of 1% it demonstrated temporary adhesion with 100% 
reduction of contact angle, while decrease of enzyme content to 0.5% and 0.1% caused about 57%  
and 34% reduction of the contact angle, respectively, even though temporary adhesion was still 
observed. This observation proves that it is most likely that the transition zone with the threshold 
value of enzyme concentration at which calcite becomes absolutely water wet occurs within the 
temporary adhesion behaviour. 

Two commercial enzyme-based mixtures, Apollo GreenZyme™ and EOR-ZYMAX™, 
were included into the enzyme screening list. Decrease of contact angle after addition of EOR-
ZYMAX™ was not more than 29% (21% on average). Combined with the results of the adhesion 
behaviour test it might be concluded that EOR-ZYMAX™ had no effect on the wetting state of 
calcite mineral.  On the contrary, Apollo GreenZyme™ demonstrated absolute non-adhesion 
behaviour with a decline of the contact angle values by, on average, 60% (approximately 15°) for 
all the calcite minerals at all the investigated concentrations. Apollo GreenZyme™ was the only 
sample for which there was no correlation between contact angle measurements and adhesion 
behaviour. 

4. Results - reference experiments 

It was found that the group of enzymes representing esterases/lipases, can change wettability 
of the crude oil – SW – calcite system. However, the following questions should be answered in 
order to be certain of the conclusions from the experiments: 

1. What component of the enzyme products causes an alteration in wettability: pure enzyme or 
stabiliser? 

2. What are the possible mechanisms that underlie alteration of the wetting state of the calcite 
surface after addition of esterases/lipases?  
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Wettability is a function of the interfacial tensions between oil – brine, oil – rock and brine – 
rock. Hence, the following potential mechanisms of the enzyme action might be discussed a priori: 

1. Change of the oil composition. In the system, crude oil– [brine + enzyme]–rock, oil could act as a 
substrate, and water as a reagent. A specific enzyme might catalyse the hydrolysis reaction. For 
example, esterases represent a group of enzymes that potentially catalyse hydrolysis of ester 
fragments (which might be present in a particular crude oil) into the respective acids and alcohols. 
Consequently, application of the esterase in crude oil– [brine + enzyme]–rock system might 
produce an additional amount of surface active compounds. Alteration of the oil composition could 
result in changes to its properties (e.g. acidity) that could be reflected in a change of the type of 
interactions of the oil with the rock and with the brine solution. This might also change the oil 
viscosity. 

2. Adsorption of enzymes on the rock surface. Being of proteinaceous nature, enzymes are surface 
active molecules (Hlady et al., 1999). The adsorption potential of enzymes is due to the fact that 
their sites are physico-chemically very different, and some of them may be attracted to the mineral 
surfaces. To our knowledge, there is no data available on adsorption of enzymes on calcite, since 
most of the work on enzyme-mineral interactions has been focused on negatively charged mica 
(Demanèche et al., 2009; Zaidan et al., 2010), although there is an evidence of protein adsorption 
on the carbonate surface (Denisov et al., 2008).  

3. Adsorption of enzymes onto the oil-water interface. Surface activity of proteins can also result in 
formation of adsorbed protein films on the oil-water interfaces (Baldursdottir et al., 2010; Beverung 
et al., 1999). Hence, as with surfactants, enzymes might cause decrease of the interfacial tension 
between oil and brine, which could also change wettability. 

In order to answer these questions and to test hypotheses made a priori, reference 
experiments with purified enzyme, stabiliser, n-decane, protein and surfactant were carried out.   

4.1. Enzyme or Stabiliser? 

The enzyme products applied in this study were all formulated with stabilising components, 
identical to those that would be used when applying enzymes in any industrial process. Typical 
formulations consist of enzyme protein, water, one or more polyols and a biocide to prevent 
microbial growth. This stabilising formulation secures stability and shelf-life of the enzyme 
product. The enzyme products provided by Novozymes A/S typically consisted of enzyme (2-5% 
w/w), stabiliser (25-30% w/w), water (63-75% w/w), as well as 0.2% w/w biocide. In some of the 
experiments, the enzyme fraction that was capable of changing the wettability of calcite to an 
absolutely water wet state was as low as 0.002%. The concentrations discussed in Sections 3.2 and 
3.3 are those of the enzyme products, not of the enzyme proteins themselves. 

Since applied enzyme products are not purely enzyme, it is highly relevant to test whether 
the enzyme itself causes the positive effect, or whether it is an effect of the stabiliser system. In 
order to do that, experiments with purified enzymes (i.e. enzymes with no stabilising and biocide 
additives) were conducted. A protein solution of the purified NS 44034 enzyme corresponding to an 
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enzyme concentration of 1% of NS 44034 was applied. Both adhesion behaviour and contact angle 
measurements with the purified NS 44034 showed equivalent results compared to the corresponding 
enzyme product. These experiments confirm that the observed changes in the wettability of calcite 
were indeed caused by the enzyme. 

Wettability tests were also carried out with the stabiliser solution without enzymes (the 
amount of stabiliser corresponding to its content in a 1% enzyme solution). It was found that the 
stabiliser had no effect on the adhesion behaviour of calcite and had relatively minor influence on 
the value of the contact angle. The contact angle value for the crude oil – [SW+stabiliser] – calcite 
system was found to be 27°, whereas corresponding value for the pure SW was 38°. Considering 
that the stabiliser decreases contact angle by 11°, but does not affect adhesion behaviour, it can be 
concluded that it is enzyme that changes the wettability of calcite.  

For commercial mixtures, the composition of the stabilisers was undisclosed, and therefore 
it was not possible to check whether the wettability improvement due to application of Apollo 
GreenZyme  should be assigned to the enzyme or to the stabiliser.  

4.2. Crude oil – [SDS + SW] – calcite system 

The effect of a decrease of IFT on the wettability of crude oil – [enzyme + SW] – calcite 
system was tested by replacement of the enzyme with one of the most commonly used anionic 
surfactants (SDS). Behaviour of the crude oil – [SDS + SW] – calcite system (Figure 4a) was 
completely different compared to the performance of the enzyme systems. The only exception was 
Apollo GreenZyme™, whose behaviour resembled that of SDS (Figure 4).  

As illustrated in Figure 4, in the presence of SDS the oil drops became flat. Addition of 
Apollo GreenZyme™ did not cause strong flattening of the droplets, but their shape was not as 
round as those in the presence of enzymes. These observations are in good agreement with the IFT 
measurements. At concentrations corresponding to 1% enzyme product, Apollo GreenZyme™ and 
SDS demonstrated drastic IFT decrease, down to 5.9 mN/m and 0.8 mN/m, relatively, while for the 
enzymes no significant decrease of IFT was detected. As discussed in Section 2.2.3, the decrease in 
IFT results in a significant (and visible) contribution to buoyancy, meaning that the oil drops are 
pressed to the calcite surface.  

  

  
(a)                               (b) 

Figure 4: Oil drop shapes under the influence of IFT decreasing components added to the 
surrounding SW. a – SDS, b – Apollo GreenZyme . 

SDS Apollo GreenZyme  



Chapter 3. Study of Wettability of Calcite Surfaces using Oil-Brine-Enzyme Systems for Enhanced 
Oil Recovery Applications 

 35 

At concentrations higher than 0.05%, SDS turned calcite into a non-adhesion state, similar 
to that observed with the application of esterases/lipases and Apollo GreenZyme™ (Table 5). 
However, no substantial decrease of contact angles was observed (the maximum decrease was 29% 
compared to the initial value). It should be noted that at an SDS concentration of 0.003%, oil is 
adhering to calcite while some esterases/lipases at the corresponding enzyme protein concentration 
(0.1% of the enzyme product) provide a non- or temporary adhesion state. Simultaneous decrease of 
adhesion and invariability of contact angles means a proportional decrease of both liquid-liquid and 
liquid-solid tensions caused by surfactants. Interestingly, enzymes seem to affect only the liquid-
solid interactions. 

The reference experiments with SDS show that the mechanisms of the action of the most of 
enzyme mixtures are different from those of surfactants. An exception is the commercial mixture 
Apollo GreenZyme™ exhibiting a surfactant-like action, indeed most likely explained by presence 
of surfactant in the product. These experiments also indicate that the contact angle measurements 
and the adhesion tests should be used in combination in order to completely describe the 
phenomenon of wettability. In some cases, similar contact angles could be observed with the 
different adhesion behaviours. 

Table 5: Comparison of adhesion behaviour and contact angles when an SDS solution was 
applied as an aqueous phase. If standard deviation value is not given, it equals to zero. 
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0.5%   36°±4° 0.05  28°±2° 0.26  29°±3° 0.24 
0.05%   38°±4° 0  27°±5° 0.29  29°±3° 0.24 
0.003%   - -  - -  - - 

4.3. Crude oil – [BSA + SW] – calcite system 

In order to find out whether the effect of enzymes was due to their catalytic activity or due 
to their proteinaceous nature, reference experiments with the enzymes substituted by BSA protein 
were carried out. The results were similar to those obtained for esterases/lipases (Table 6). 
Adhesion behaviour and contact angle values for the system crude oil – [BSA + SW] – calcite were 
strongly dependent on the protein concentration: a lower protein content resulted in a decrease of 
the calcite ability to repel an oil drop from the mineral surface. Similar to esterases/lipases, the 
transient zone from adhesion via temporary adhesion to non-adhesion behaviour occurred at the 
pure protein content between 0.001 and 1%.   



Chapter 3. Study of Wettability of Calcite Surfaces using Oil-Brine-Enzyme Systems for Enhanced 
Oil Recovery Applications 

 36 

Formation of foams during preparation of the protein solution was also similar for BSA as 
for esterases/lipases. This serves as further evidence of the surface activity of BSA and the 
esterase/lipase group of enzymes, which most likely plays a significant role in altering the 
wettability of calcite. 

Table 6: Comparison of adhesion behaviour and contact angles when a BSA solution was 
applied as an aqueous phase. If standard deviation value is not given, it equals to zero. 
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1% ∼20%  0° 1  0° 1  0° 1 
0.1% ∼2%  0° 1   0° 1   0° 1 
0.05% ∼1%  0° 1  0° 1   0° 1 
0.01% ∼ 0.2%  20°±3° 0.47  6°±2° 0.84   10°±3° 0.74 
0.005% ∼0.1%   23°±4° 0.40   15°±3° 0.61  15°±3° 0.61 
0.001% ∼ 0.02  22°±3° 0.42  22°±4° 0.42  18°±2° 0.53 

4.4. n-Decane – [enzyme + SW] – calcite system 

In order to check the significance of the catalytic activity of enzymes, particularly of 
esterases/lipases, in one of the experiments n-decane was applied instead of crude oil. Using the 
enzyme as a catalyst requires the presence of specific bond types in the substrate (oil phase). For 
example, esterases/lipases require the esters, which while present in oil, are not found in a long 
chain alkane, such as n-decane. Therefore, if the hypothesis of esterases/lipases catalysing the 
hydrolysis of ester fragments of the crude oil is correct, no effect of change of wettability should be 
observed in those cases where n-decane was applied as the oil phase.  

According to the adhesion behaviour tests n-decane is relatively strongly adhered to the 
calcite in presence of brine. This is supported by the contact angle measurements (32˚±4˚), which 
corresponds to a weakly water-wet state and is comparable to that found for crude oil.  

Three enzyme samples were chosen for the reference experiments with n-decane: the best 
performing esterase/lipase samples NS 81249 and NS 44164, as well as an amylase sample NS 
81251 that did not cause any wettability alteration. The results on adhesion behaviour and contact 
angle values are summarized in Table 7. 



Chapter 3. Study of Wettability of Calcite Surfaces using Oil-Brine-Enzyme Systems for Enhanced 
Oil Recovery Applications 

 37 

Two out of three samples applied in the n-decane system (amylase NS 81251 and esterase 
NS 44164), gave the same results as if they were applied to crude oil, in terms of adhesion 
behaviour and contact angle values. However, the addition of lipase NS 81249 had a different effect 
in the cases of n-decane and crude oil. While wettability of crude oil – [SW + NS 81249] – calcite 
system was changed to absolutely water-wet state, the system of n-decane – [SW + NS 81249] – 
calcite maintained the original weakly water wet state with no change of adhesion behaviour and 
only a slight improvement of the contact angle value (33% on average). 

Based on the results obtained, two important conclusions can be made. First, the catalytic 
activity of the enzymes may be important and, therefore, composition of the oil may affect the 
experimental results. Secondly, a particular mechanism of action may depend on the type of the 
enzyme. Surface and catalytic activity may work separately or in parallel. For example, in our 
experiment using the esterase NS 44164, the surface activity played a key role in changing the 
wettability of calcite, while for lipase NS 81249 the catalytic activity appears to be the dominant 
factor. 

Table 7: Comparison of adhesion behaviour and contact angles when n-decane and crude oil 
were applied as an oleic phase. If standard deviation value is not given, it equals to zero. 

5. Discussion 

We have verified experimentally how addition of certain enzymes and their solutions 
modifies the adhesion properties of oil on a rock surface in a brine environment.  
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Amylase 
NS 81251 

n-Decane   24°±5° 0.24  31°±3° 0.02  29°±2° 0.11 

Crude Oil   29°±4° 0.23  31°±3° 0.18  24°±2° 0.36 

Esterase 
NS 44164  

n-Decane   0°  1   0° 1   0° 1  

Crude Oil   0° 1   0° 1   0° 1  

Lipase 
NS 81249  

n-Decane   20°±1° 0.37  24°±4° 0.26  20°±3° 0.37 

Crude Oil   0° 1   0° 1   0° 1  
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While the original rock surfaces have proven to be weakly water wet, all the studied 
enzymes either behaved neutrally or modified the surface towards higher water wettability. This is 
supported by the results of contact angle measurements (presented in Section 3.3). Such a 
modification of the surface is not always considered to be advantageous for EOR. For example, the 
studies of Jadhunandan and Morrow (1995) (for Berea sandstones) and of Skauge and Ottesen 
(2002) (for North Sea reservoir cores) indicate that the residual saturations may be lower for nearly 
neutral-wet conditions. One of the reasons for that may be suppressing the mechanism of snap-off. 

Hence a promising behaviour of an enzyme to improve the recovery would only be when it 
totally breaks bonds between the oil and the surface, thus overcoming the adhesion and making oil 
mobile in the flow. Apparently, the enzymes adsorb on the rock surface replacing oil. They are less 
active at an oil-brine interface (in contrast to surfactants). The possibility for an enzyme to make oil 
fully detach from the surface should be considered as the key property for its application to EOR, as 
well as for an explanation of the observed positive effect on recovery (Feng et al., 2007; He and 
Zhonghong, 2011; Moon, 2008; Nasiri et al., 2009; Ott et al., 2011).  Measurements of contact 
angles provide additional information: a minimum concentration at which the contact angle 
decreases to zero may be considered as a threshold value for enzymatic action. It is also important 
that an enzyme behaves consistently, producing a reproducible effect even at low concentrations.  

Only the group of lipases/estherases has been found to fulfil all these criteria. Moreover, 
only some enzymes of the group (like NS44164) have shown stable response under concentrations 
of the enzyme product as low as 0.5%. Such enzymes should be considered to be potentially 
suitable for practical applications. 

Apart from breaking the bonds between the oil and the surface, two other mechanisms of 
enzymatic action have been considered in the scientific literature. As mentioned previously, these 
mechanisms are: decrease of the surface tension between oil and water; and modification of the oil 
viscosity due to catalytic action of enzymes on some of the components. Our experiments indicate 
that the first mechanism is probably irrelevant. Enzymes modify solid-liquid interactions, while 
their action on the liquid-liquid interface and the corresponding decrease of the IFT is insignificant. 
Here is a basic difference between the action of enzymes and surfactants, which are capable of 
modifying not only solid-liquid, but also liquid-liquid interactions. 

Only one of the enzymes tested has shown an effect that might be interpreted as a 
modification of the oil composition (see Section 4.4). This effect might be more noticeable for 
viscous oils containing high amounts of extra-heavy components, but this effect needs a separate 
study.  

The presented analysis of the mechanisms of the enzymatic EOR is not comprehensive for 
the task of finding out whether enzymes may be practically used for oil recovery. While we have 
studied static (equilibrium) behaviour of enzymes, their dynamic behaviour may also be of 
importance. There are also additional factors to be studied, such as the interaction of the enzymes 
with bio-environment of the reservoirs or chromatographic separation of enzymes and co-solvents 
by porous rocks. Laboratory flooding tests (similar to those carried out by Nasiri (2011)) may be 
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required in order to confirm the efficiency of the chosen enzymes. Design of such tests (and others) 
will require the information about action mechanisms of enzymes, studied in the present work, 
which, thus, has an independent value. 

6. Conclusions 

We have studied the effect of enzymes on wettability of the surface of calcite representing 
the internal porous surface of a carbonaceous reservoir. Study of the contact angles of oil drops on 
the different mineral surfaces indicated that, while the original surfaces were found be weakly water 
wet, addition of an enzyme modified the wettability by changing it towards a more water-wetting 
state. Some enzymes from the group of lipases/esterases were found to be capable of fully detaching 
the oil drops, even at concentrations as low as 0.1% of enzyme product (0.002 to 0.005% of pure 
enzymes). These enzymes hold the biggest potential for application to enhanced oil recovery. The 
effects of enzymes on the surface tensions (unlike the surfactants and the studied commercial 
products) were found to be insignificant. Reference experiments have also made it possible to verify 
that it is the enzyme, rather than any other constituents of the enzyme products, that produce the 
effect of de-adhering of the oil. The developed procedure may be used for screening of the enzymes 
in terms of their applicability to further EOR tests, and for identification of the static mechanisms 
by which the enzymes may participate in the EOR. Further studies (like flooding of the reservoir or 
outcrop cores) should be directed onto the dynamic mechanisms of the enzymatic EOR. 
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Abstract 

 Enzymes have been considered as promising agents for enhanced oil recovery (EOR). Static 
adhesion tests and adsorption experiments on powders as well as dynamic flow-through 
experiments were carried out in order to assess the enzyme loss during their potential application to 
EOR. Amounts of adsorbed enzyme/protein were different in the various types of experiments, 
depending of the type of the solid substrate. The flow-through experiments have demonstrated 
significant loss of the enzymes due to the irreversible adsorption. This conclusion was confirmed in 
other types of tests, where the desorption times of enzymes were found to be significant. The chalk 
rock has demonstrated a higher affinity to the enzymes than the sandstone. Change of ionic strength 
and pH of the enzyme solution and displacing fluid, application of the various injection rates, as 
well as use of the enzyme stabiliser to desorb biomolecules did not decrease the adsorbed amounts. 
An alternative solution should be found in order to reduce protein loss in the rock and to make 
application of enzymatic EOR feasible on a field scale. A developed dynamic model, involving both 
reversible and irreversible adsorption, as well as normal and anomalous dispersion, demonstrated a 
reasonably good fit to the experimental flow-through data. The contribution of the anomalous 
dispersion was found to be insignificant. 

 Key words: enhanced oil recovery; enzymes; protein adsorption; dynamic model; chalk; 
sandstone.  

1. Introduction 

The microbial enhanced oil recovery (MEOR) is known since 1926 (see review in Ollivier 
and Magot, 2005). Recently a new branch of MEOR that applies enzymes, non-living derivatives of 
bacteria, was developed. Field and laboratory tests have been carried out, and the results have been 
quite promising (Feng et al., 2007; He and Zhonghong, 2011; Moon, 2008; Nasiri et al., 2009; Ott 
et al., 2011). Field tests include applications in China, Indonesia, Venezuela and USA (Apollo 
GreenZyme® official website; Feng et al., 2007; Moon, 2008; He and Zhonghong, 2011; Ott et al., 
2011). 

Laboratory displacement studies have confirmed that application of enzymatic enhanced oil 
recovery (EEOR) may result in up to 16% of additional oil recovery (Feng et al., 2007; He and 
Zhonghong, 2011; Moon, 2008; Nasiri et al., 2009). Nevertheless, the background mechanisms of 
the enzymatic action have not been well studied. This may create problems when transferring the 
laboratory results on the field scale. Among the mechanisms of enzymatic action reported in the 
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literature, there are: surface wettability improvement towards more water-wet state (Nasiri et al., 
2009); decrease of the interfacial tension between oil and enzyme solution and subsequent 
emulsification (Feng et al., 2007; He and Zhonghong, 2011; Moon, 2008; Nasiri et al., 2009); 
reduction of oil viscosity (He and Zhonghong, 2011; Moon, 2008); removal of high-carbon content 
paraffins (Moon, 2008). Feng et al. (2007) confirmed tolerance of the enzyme to the reservoir 
temperature, as well as to salts and bacteria contained in the produced water. However, some other 
potential problems related to enzyme application for EOR have not been studied in detail. One of 
them is the problem of enzyme retention by the porous medium. 

Retention is usually studied in the static and dynamic adsorption tests. The static tests 
involve adsorption/desorption tests on the flat surfaces of the minerals characteristic of a petroleum 
reservoir under study; or adsorption on the powders. The adsorption experiments may be combined 
with the adhesion tests of the oil drops on the surfaces or between the grains of a powder (Buckley 
and Morrow, 1990; Hlady et al., 1999). The dynamic adsorption tests involve the flow-through 
experiments of a single liquid (normally, brine) containing the active agent, and measurement of its 
recovery at the outlet of a rock sample. 

In the previous study (Khusainova et al., 2015) we used the static adhesion tests in order to 
select the group of enzymes that seems to be the most promising for the enhanced oil recovery. 
Adhesion of the oil drops on the mineral (calcite) surface in the environment consisting of the 
brine/enzyme solution was tested. Thus, the presumed mechanism of enzymatic action was 
changing the surface towards absolutely water wet and, correspondingly, detachment of the oil from 
the surface. The group of lipases/esterases was found to be the most promising for the wettability 
improvement. Other effects, like possible change of the oil-water interface or catalytic hydrolysis of 
the oil, were not detected. 

Such a mechanism of enzymatic action may create some problems when applied under 
reservoir conditions. Adsorption of enzymes on the solid surface may be irreversible, or the time of 
desorption to be very large, as confirmed by the previous studies of protein adsorption on the solid 
surfaces (Kirchman et al., 1989; Norde, W., 1986; J. Skujiņš et al., 1974). This may result in 
retention of the injected enzymes in the porous medium. Since the enzyme concentration is rather 
small, there is a risk that the entire injected enzyme will be lost on the first centimeters of the rock 
and have no effect on the oil production from the rest of the reservoir. Therefore, it is important to 
study the mechanisms of enzymatic adsorption and its reversibility. A large effort has been applied 
to investigation of adsorption of surfactants (Kwok et al., 1993; Wang et al., 2015) and polymers 
(Cohen and Christ, 1986; Zaitoun and Kohler, 1987). However, to the best of our knowledge, the 
only work related to EEOR that has discussed adsorption of enzymes was that of He and 
Zhonghong (2011). 

In the present work we carried out a number of static adsorption-desorption tests, as well as 
the flow-through tests in the outcrop rock samples of sandstone and chalk. Adsorption-desorption 
tests on minerals made it possible to examine times required for biomolecules to attach to and 
detach from the surface. Experiments with adsorption/desorption on powders were additionally 
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carried out, in order to check the effect of the high surface area. Adsorption-desorption of proteins 
was also studied in the oil-enzyme solution-powder environments, in order to investigate which 
interface, i.e. brine-rock or brine-oil, is more preferred by the proteins. Finally, penetration 
experiments in porous media produced information about, how enzymes/proteins propagate through 
the rock materials. Analysis of the production data was carried out on the basis of a model involving 
dispersion, as well as both reversible and irreversible adsorption of the enzymes. 

The paper is organized as follows. In Section 2, materials and methods used in the study are 
described. Section 3 describes the analysis of the dynamic adsorption tests. Section 4 presents 
results of static and dynamic experiments as well as results of analysis of the flow-through tests. In 
Section 5, we discuss how our findings can affect application of EEOR on the reservoir scale. 
Finally, summary of the main results is given in Section 6. 

2. Materials and Methods 

2.1. Materials 

2.1.1. Fluids 

Synthetic North Sea water (pH=7.78; composition as given in Table 1) was prepared for 
both static and dynamic adsorption experiments. Chemicals for seawater (SW) preparation were 
purchased from Fluka (purity ≥99.5%) and were not subjected to any further purification. The brine 
was prepared by diluting salts in distilled water (DW).  

Table 1: Composition of synthetic North Sea water used for experiments in present study. 

Salt   Concentration, g/l 
NaCl   
NaHCO3   
KCl   
MgCl2.6H2O   
CaCl2.2H2O   
Na2SO4   

18.01 
0.17 
0.74 
9.15 
1.91 
3.41 

Total dissolved solids 33.39 
 

 n-Decane (purity ≥99%) used for static adsorption-desorption tests in the systems of oil-
enzyme solution-particles and the Bradford reagent (product number B6916) used for quantification 
of proteins/enzymes were also purchased from Sigma-Aldrich. For adhesion tests light dead oil 
recovered from a chalk reservoir in the Danish sector of the North Sea was used.  

2.1.2. Enzyme/protein samples 

Bovine serum albumin protein (BSA, 98% purity) was purchased from Sigma-Aldrich. Two 
enzyme samples (NS81249 and NS44164) belonging to the class of lipases were kindly provided by 
Novozymes A/S as commercial products and also as purified enzymes. Enzyme/protein solutions 
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were prepared by dilution of a sample in SW. All the concentrations given below are weight-to-
weight percentage concentrations. 

NS81249 and NS44164 products consist of enzyme (2-5%wt), stabiliser (25-30%wt) and 
water (63-75%wt). The actual concentration of an enzyme in a commercial product was discussed in 
detail in our previous work (Section 4.1, Khusainova et al., 2015).  The purified enzyme samples 
had higher concentrations of the enzyme (10-25%wt) and almost no stabiliser (Novozymes personal 
information). The enzyme concentrations discussed in this work are those of the enzyme products 
(either commercial or purified), but not of the pure enzymes. Characteristics of enzymes/proteins 
used in this work are given in Table 2.  

Table 2: Characteristics of enzymes/proteins applied in this work (BSA characteristics were 
found from Ge et al. (1998) and Barbosa et al. (2010); characteristics of NS81249 and NS44164 – 
from private communication with Novozymes A/S)  

Protein/enzyme Molecular 
size 

Isoelectric 
point 

Dimensions, Å Working 
pH range 

BSA 66463 Da 4.7 140 × 40 × 40  4-9 
NS81249 ≈ 30000 Da 4.8-5 Not available 5-10 
NS44164 ≈ 20000Da 7 Not available  6.5-10 

 

2.1.3. Minerals 

A calcite mineral sample was used in this work to represent a chalk reservoir. A sample of 
quartz represented a sandstone reservoir. The calcite sample with the surface created after cleavage 
of a larger mineral was kindly supplied by Center for Arctic Technology, Technical University of 
Denmark (Lyngby, Denmark). The quartz sample was kindly provided by the Geological Museum 
of Copenhagen, Denmark. Detailed preparation and cleaning procedure for the minerals can be 
found in our previous study (Khusainova et al., 2015). 

2.1.4. Cores 

 To investigate effect of the mineral composition on ability of protein /enzyme to propagate 
through the porous media, the sandstone and chalk cores were used. All the samples were outcrop 
cores drilled from Stevns Klint chalk (Denmark), Nordhorn sandstone (Austria) and Obernkirchener 
sandstone (Germany) blocks. Characteristics of the cores are given in Table 3. 

2.1.5. Particles 

 Silica (5-10 µm) and carbonate (≤30 µm) particles were purchased from Sigma Aldrich 
(product numbers S5631 and 310034, respectively) and were not subjected to any further 
treatments. The silica particles were used to mimic a sandstone reservoir and the carbonate particles 
represented a chalk reservoir. 
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Table 3: Characteristics of the core samples used for the experiments in this work.  

Sample 
name 

Type Origin Diameter, 
mm 

Length, 
mm 

Weight of the 
dry core, g 

Pore 
Volume, 

ml 
C-13 Outcrop 

chalk 
Stevns Klint, 
Denmark 

37.17 71.59 110.53 35.61 

C-18 Outcrop 
chalk 

Stevns Klint, 
Denmark 

37.15 70.45 109.6 34.85 

C-57 Outcrop 
chalk 

Stevns Klint, 
Denmark 

36.97 75,77 118.09 37.03 

C-8 Outcrop 
chalk 

Stevns Klint, 
Denmark 

36.96 76.1 119.83 37.26 

S-145 Outcrop 
sandstone 

Nordhorn, 
Austria 

25.70 77.33 78.46 6.93 

S-149 Outcrop 
sandstone 

Nordhorn, 
Austria 

25.56 76.15 77.26 6.98 

S-153 Outcrop 
sandstone 

Nordhorn, 
Austria 

25.57 78.73 80.84 7.47 

S-01 Outcrop 
sandstone 

Obernkirchener, 
Germany 

37.91 90.24 220.99 17.70 

S-82 Outcrop 
sandstone 

Nordhorn, 
Austria 

25.48 77.2 78.06 7.35 

 

2.2. Methods 

 Three sets of experiments were conducted in this study. First, principal occurrence of 
adsorption-desorption was estimated by static adhesion tests on the mineral surfaces. Second, 
adsorption tests on solid particles under presence and absence of the oil phase were carried out to 
investigate competitive adsorption between fluid-solid and fluid-fluid interfaces. Finally, dynamic 
flow-through tests were carried out in order to assess whether enzyme/protein can travel through the 
porous media and if this is possible, how much can be recovered.  

2.2.1. Adhesion experiments 

The mineral was soaked in enzyme/protein solution for 30 minutes. Enzymes were applied 
both in the form of commercial products and as purified samples in order to exclude the effect of 
additional components that can be found in commercial products. After an enzyme/protein 
interacted with the mineral, the mineral was taken out from the vessel, and the bulk protein solution 
was gently removed with paper. The mineral was then placed on stands in a glass container and 
immersed in SW. Countdown was launched immediately after immersion. An adhesion state of the 
mineral surface started being assessed as soon as possible. Determination of the adhesion state was 
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performed according to the method developed by Buckley and Morrow (1990). The adapted 
detailed procedure was described in our previous work (Khusainova et al., 2015). Briefly, the drops 
of crude oil were formed by a syringe with an inverted needle and deposited on the lower crystal 
face. An oil drop was allowed to interact with the mineral surface for 2 minutes without detachment 
from the needle. Then the needle was moved down and, depending on a state of the mineral surface, 
three different events were observed: (A) The adhesion behaviour: the oil drop sticks to the mineral 
surface; (B) The temporary adhesion behaviour: initially the oil drop sticks to the surface, but upon 
lowering the needle it detaches and stays on the needle; (C) The non-adhesion behaviour: the drop 
stays on the needle, leaving clean mineral surface.  

All the experiments were accomplished under ambient conditions and checked for 
reproducibility.  

2.2.2. Static adsorption-desorption experiments with solid particles 

 The adsorption experiments were performed in the 15-ml plastic centrifuge tubes. 3 ml of 
commercial enzyme product solution of a desired concentration was added to 3 ml of n-decane 
and/or to 1 or 2 g of solid particles. The samples were mixed on a vortex mixer every 10 minutes 
for 1 hour at room temperature. The tubes were then centrifuged for 10-20 minutes at 4000 rpm and 
the enzyme concentration in the supernatant was measured using the Bradford assay (see Section 
2.2.4). The amount of the enzyme adsorbed on the solid particles was calculated from the material 
balance. The desorption experiments were conducted by diluting the water phase with 3 ml of pure 
SW, without replacement of the original water phase. All the experiments were checked for 
reproducibility. 

2.2.3. Flow-through tests 

2.2.3.1. Experimental set-up 

Dynamic protein adsorption tests were conducted on a coreflooding set-up (Figure 1). The 
experimental set-up consisted of the three main parts: the injection part, the coreholder, and the 
fraction collector.  

The injection part included three stainless steel cylinders that were filled with the saturating 
and the displacing fluids and with the enzyme/protein solution. A high precision Teledyne ISCO 
syringe pump was used to inject the fluids. A pressure transducer was installed in order to monitor 
the injection pressure.  

The Hassler type coreholder was used. A radial confining pressure was applied and kept 
constant by means of another Teledyne ISCO pump.  

The effluent was collected using the X-Y BioFrac fraction collector 741-0002EDU (Bio-
Rad Laboratories, Inc 2013).  

The data acquisition was accomplished by the 34972A Data Acquisition/Data Logger 
Switch operated by the Keysight BenchLink Data Logger software. 
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Figure 1: Coreflooding set-up used for dynamic adsorption experiments. 

2.2.3.2. Preparation of the core samples 

Prior to the experiments all the core samples were checked for integrity with the X-ray 
computed tomography scanner and then cleaned by flushing toluene and methanol. The cleaned 
samples were dried overnight at 90°C and scanned again. 

In order to estimate the extent of core saturation with the brine, true porosity of the cores 
was measured by the steady state gas permeameter and porosimeter (Poroperm, VINCI 
TECHNOLOGIES) using nitrogen. Saturation of a core with the synthetic brine was carried out in 
three steps. First, the core was saturated under vacuum. Then the core was placed into a stainless 
steel cylinder filled with SW and pressurized to 100 bar for 48 hours. After saturation under 
pressure the core was rapidly transferred into a rubber sleeve and assembled into the coreholder. 
Finally, at least 10 pore volumes (PV) of SW were flushed through the core with the flow rate of 
0.1 ml/min. The degree of saturation was then determined by the weight method. The results were 
compared with the value of the pore volume acquired by the porosimeter. A difference of less than 
5% was considered to be acceptable.  

2.2.3.3. Injection and displacement of an enzyme/protein 

Dynamic penetration experiments were accomplished using the BSA and the purified 
enzyme samples. The protein concentrations were slightly higher than for the wettability tests 
(Khusainova et al., 2015), in order to be able to quantify protein in the effluent. The flow-through 
experiments were started by flowing the BSA solution through a chalk core. The BSA was initially 
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Table 4: Injection and displacement conditions and schemes of the flow-through experiments. 

Experiment Enzyme/
protein 
tested 

Core 
sample 

Sleeve 
Pressure, bar 

Enzyme injection Displacing fluid injection 

    Solvent 
used to 
prepare 
enzyme/ 
protein 
solution  

Concentration of 
enzyme/protein 

solution 

Volume 
injected, 

PV 

Injection 
rate, 

ml/min 

Displacing 
fluid 

Injection rate, 
ml/min 

Volume 
injected, PV 

%wt mg/ml 
relative 

BSA 
A BSA C-13 20 SW 0.5 4.45 0.5 1 SW 1 20 
B BSA  C-18 20 SW 1 8.82 0.5 1 SW 1 10 
C NS81249 C-57 20 SW 5 3.51 1 1 SW/DW/ 

propylene 
glycol 

1 7/3/3 

D NS81249 C-8 20 DW* 5 3.70 1 1 DW* 1 8 
E BSA S-145 20 SW 0.5 4.41 11 0.2 SW 0.1 4 
F BSA S-149 30 SW 0.5 4.54 1 0.2 SW 0.1 4 
G NS81249 S-153 30 SW 5 3.60 1 0.2 SW 0.1 10 
H NS81249 S-01 50 SW 5 3.58 1 0.1 SW/3M 

NaCl 
0.1 5/8 

I NS44164 S-82 50 SW 5 0.99 1 0.1 SW 0.1 3 
J NS44164 S-82-

reused 
50 SW 5 0.87 1 0.1 SW 0.1 4 

*- DW + NaOH to adjust pH=8  
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used as a model protein, in order to develop experimental procedure. Then the results obtained with 
the BSA were compared with the enzymes.  

 The enzyme/protein was injected into a saturated core as a portion of 1 pore volume (PV). 
Then the enzyme/protein solution was displaced by SW or another displacing fluid. The results 
obtained during static adhesion tests were extended onto dynamic flow-through experiments: the 
flow rates were chosen based on the measured adsorption-desorption times. Injection and 
displacement conditions and schemes are given in Table 4. 

The effluent was collected in the portions of 1/7 to 1/6 PV. The tubes with collected 
effluent were moved to the fridge in order to exclude denaturation of diluted enzyme/protein 
solutions. All the experiments were conducted at room temperature. 

2.2.4. Quantification of the enzymes/proteins  

The enzyme/protein concentrations were measured by Bradford Assay (Bradford, 1976). The 
96 Well plate assay protocol from Sigma-Aldrich (2013) was followed. Briefly, 5 µl of the protein 
standards and unknown samples were added to separate wells. 250 µl of the Bradford reagent was 
added to each well. Afterwards the solutions were mixed on a shaker for about 30 seconds at room 
temperature. Then the samples were incubated at room temperature for 10 minutes and absorbance 
at 595 nm was measured. The protein-dye complex causes a shift in the absorption maximum of the 
dye from 465 to 595 nm.  

The standard curve was built for the standard BSA solutions. The enzyme/protein 
concentrations of the unknown samples were determined by comparing the Net A600 values against 
the standard curve. Therefore, the obtained enzyme concentration values are not the absolute 
concentrations, but the concentrations relative to BSA.  

Solutions of BSA for construction of the standard curve were prepared by dilution of the 
standard BSA in distilled water. It was found in advance that there is no interference from salts that 
were used to prepare the SW and there was no difference whether DW or SW was used to dilute the 
protein/enzyme samples. 

3. Analysis of the results of the dynamic adsorption tests 

Analysis of the enzyme/protein production history is necessary in order to evaluate 
characteristic parameters of their penetration through the porous media. Hence, a dynamic model 
accounting for important features of the observed experimental picture of penetration was 
developed. 

Qualitative experimental observations (see discussion below) show that: 1) Distribution of 
the produced enzyme is significantly “washed out”; 2) Maximum of the enzyme production is 
postponed compared to the carrying liquid; and 3) Not all the enzyme has been produced back, even 
after great many porous volumes injected.  
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The first observation indicates that enzyme/protein dispersion is important for the process. 
Hence, the model should consider dispersion of the enzymes/proteins in the flow. We have 
considered not only traditional diffusion-like dispersion, but also the anomalous dispersion of the 
travel times, of the type of “elliptic diffusion”, as described in works of Shapiro (2007), Shapiro and 
Bedrikovetsky (2008); although, as will be discussed later, contribution of the effect of anomalous 
diffusion has turned out to be insignificant. 

According to the second observation, reversible sorption of the enzyme/protein must take 
place. A delay of a protein molecule compared to the flow is explained by the fact that the molecule 
moves with the flux during a fraction of the time, while another fraction is spent on the surface, in 
the adsorbed state. We have incorporated equilibrium linear sorption characterized by the Henri 
constant . 

Finally, the fact that it is not possible to produce back the entire enzyme/protein may only be 
explained by its irreversible retention in porous medium. This retention may be described in a 
manner similar to the irreversible sorption, or the deep bed filtration. Simultaneous occurrence of 
both reversible and irreversible sorption has previously been detected for the polymer and surfactant 
solutions (Cohen and Christ, 1986; Kwok et al., 1993; Wang et al., 2015; Zaitoun and Kohler, 
1987). 

A linear flow equation incorporating all the mentioned effects has the form of (Shapiro and 
Bedrikovetsky, 2008): 

        (1) 

Here  is porosity,  the sorption constant rescaled to the porous volume,  concentration 

of the enzyme,  velocity of the flux,  the special and the temporal dispersion coefficients, 

and  the filtration coefficient taken per unit length. All the coefficients in Eq. (1) are presumed to 
be constants, to be adjusted on the basis of the experimental enzyme/protein production curves. For 
comparison, both data and equation have been reduced to the dimensionless form, with the 
dimensionless distance  in porous volumes, and time  in porous volumes injected (PVI): 
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Equation (2) requires initial and boundary conditions. The initial condition corresponds to 
the absence of enzyme/protein in the rock sample before the experiment. The boundary condition 

reflects injection of the protein during one porous volume with a constant concentration : 

         (4) 

Presence of the second derivative in Eq. (2) would require, in principle, the second, “final” 
boundary condition in time. However, it has been shown by Shapiro (2007), Shapiro and 
Bedrikovetsky (2008), that this boundary condition is not required if a solution that is bounded at 
infinity is selected. 

Eq. (2) with the boundary condition (4) allows for an exact solution, which is derived in 
Appendix A. The corresponding solution for the pure dispersion problem ( ) is described in 
Appendix B. The coefficients in these solutions have been optimized to fit the experimental curves. 
The minimization function  represented the deviations of the solution from the experimental 

values  taken at the different times (PVI)  from the production stream at : 

  

HereQ ,  are the total amounts of the injected enzyme/protein, calculated and 

experimental, correspondingly. The constant  was selected to be large enough in order to assure 
these amounts to be (almost) equal. 

4. Results 

4.1. Adhesion tests 

The adhesion experiments were conducted in order to get an idea about the characteristic 
times of adhesion and to predict some parameters for the dynamic adsorption tests. Based on the 
adhesion tests the flow rates and durations of the flow-through tests were estimated. 

Both crude oil-SW-calcite and crude oil-SW-quartz systems demonstrated the adhesion 
behaviour: the oil drops attached to the mineral surfaces and stayed there. The adhesion state was 
taken as a reference point, and any further change in wettability of the mineral surface was ascribed 
to its exposure to the enzyme/protein solutions. In agreement with the previously established data 
(Khusainova et al., 2015), enzymes/proteins used in this work could turn initial adhesion behaviour 
of the minerals to a non-adhesion state, mainly due to adsorption of the enzymes/proteins on the 
solid surface.  
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4.1.1. Crude oil-[SW+BSA]-mineral systems 

 Exposure of the calcite to the 1% BSA solution resulted in combined non-adhesion state due 
to adsorption of BSA molecules on the surface. Afterwards the calcite was immersed in the seawater 
and its wetting state was checked during 42 days (Table 5). No desorption of the protein was 
observed. In contrast, in case of application of 0.5% BSA solution there was rapid desorption of the 
protein with final desorption after 132 min.  It should be mentioned that complete desorption never 
occurs for the proteins (Norde, 1986;  Kirchman et al., 1989). By “final desorption” we mean not 
complete desorption, but desorption of the significant amount that affects stickiness of the mineral 
surface to the crude oil. 

These results can be correlated with the concentration dependent structure of the adsorbed 
protein layer and with the nature of the protein. When calcite was immersed into 1% BSA solution, 
there was an excessive amount of the protein molecules to cover the solid surface and adsorption 
occurred most likely in a multilayer mode. During desorption the molecules from the outer layers 
could detach, so that the adsorbed layer was loosened close to the surface. Due to the flexible nature 
of the BSA molecules, the molecules directly attached to the surface unfolded and bounded with 
each other via several sites preventing further desorption (Norde, 1986; Norde, 2008). This explains 
why complete desorption was not observed. For a lower concentration, there was a lack of protein 
molecules and the surface was only partly covered. Hence, temporary adhesion behaviour was 
observed when calcite was transferred to pure SW. After 132 min from the start of the experiment 
significant desorption of the BSA apparently happened. In this case, presumably, coverage of the 
surface was low and the adsorbed molecules could not form a network on the surface.  

 Experiments with quartz demonstrated different results compared to calcite. After the quartz 
surface with adsorbed proteins was immersed into the pure SW, the BSA molecules stayed adsorbed 
during the first forty minutes (Table 5). Then there was transition period, where the BSA started 
desorbing. Final desorption occurred after 75 min.  

Table 5: Adhesion behaviour of calcite and quartz immersed in BSA solutions. 

 1% BSA 0.5% BSA 

Calcite 
Adhesion 
behaviour 

   
  

Time 42 days 0 – 122 min 132 + min 

Quartz 
Adhesion 
behaviour 

   
N/A 

 
Time 0 – 40 min  45 – 70 min 75 + min N/A 

 

 - adhesion  - temporary adhesion  - non-adhesion 
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The adsorption-desorption results obtained for the BSA are in agreement with the expected 
electrostatic interactions between the BSA molecules and the calcite/quartz surfaces. The BSA is 
characterised by the isoelectric point of 4.7 (Ge et al., 1998). The seawater used in this study had pH 
of 7.78, which means that BSA was negatively charged. The surface of the calcite crystals has a 
positive charge in SW (Somasundaran and Agar, 1967), while the quartz crystals are negatively 
charged (Jada et al., 2006). Hence, due to electrostatic attraction the BSA bounds stronger to calcite. 
As a result, desorption of the adsorbed BSA layer cannot be reached, whereas electrostatic repulsion 
between the BSA and the quartz surface enhanced desorption process. 

4.1.2. Crude oil-[SW+NS81249]-mineral and crude oil-[SW+NS44164]-mineral systems 

 Adsorption-desorption patterns were quite similar for enzymes NS81249 and NS44164 
(Tables 6 and 7), but generally opposite compared to the BSA (Table 5). Desorption of the enzyme 
molecules from calcite occurred rapidly, once the mineral was placed in enzyme-free SW, as 
adhesion behaviour was observed from the first measurement. Unexpectedly, after 25 - 35 min the 
adhesion state changed to combined temporary/non-adhesion behaviour. This means that desorbed 
enzyme molecules adsorbed again making calcite surface non-oil sticky. The secondary enzyme 
adsorption lasted for 110 and 65 minutes for NS81249 and NS44164, respectively. Then continuous 
adhesion state was established, indicating final desorption of the enzymes. 

Table 6: Adhesion behaviour of calcite and quartz immersed in NS81249 enzyme solutions. 

 1% NS81249 (product) 5% NS81249 (purified) 

Calcite 
Adhesion 
behaviour  

 
 N/A 

 
Time 0 – 30 min 35 – 145 min 155 + min N/A 

 
Quartz 

Adhesion 
behaviour 

  
 

  
Time 48 days 0 – 83 min  92 +  min 

 

Table 7: Adhesion behaviour of calcite and quartz immersed in NS44164 enzyme solutions. 

 1% NS44164 (product) 5% NS44164 (purified) 

Calcite 
Adhesion 
behaviour  

 
 N/A 

 
Time 0 – 20 min 25 – 90 min 100 + min N/A 

 
Quartz 

Adhesion 
behaviour 

  
 

  
Time 39 days 0 – 202 min  215 +  min 

 No significant desorption of the enzyme products was observed from the quartz surface, even 
though experiments lasted for more than a month. In contrast, final desorption of the purified 
enzyme samples was reached after 92 and 215 minutes for NS81249 and NS44164, respectively. An 
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enzyme product differs from a purified sample by presence of the stabiliser. Previously it was shown 
that stabilisers alone do not affect adhesion behaviour (Khusainova et al., 2015). Moreover, the 
function of the stabiliser in the commercial product is to increase internal stability of the enzyme 
molecules to secure product shelflife. (Novozymes A/S private communication).  

Most likely, reversibility of the enzyme adsorption can be related to the enzyme 
concentration. The 1% enzyme product contained 0.02 - 0.05% of pure enzymes, while the purified 
enzyme samples contained 4 - 5 times more of protein molecules (Novozymes A/S, private 
communication). Since the concentration of the   purified samples was 5%, the concentration of pure 
enzymes in such samples was 0.4 - 1.25 %, that is comparable to concentration of BSA. Indeed, 
results obtained for purified enzyme samples are quite similar to data obtained for BSA.  

With regard to reversibility of adsorption, the results shown by enzyme solutions (Tables 
6,7) are opposite to the results for the BSA (Table 5). Enzymes produce adhesion, then non-adhesion 
or temporary adhesion, and then non-adhesion again of the oil drops on calcite, and temporary/non-
adhesion on quartz, while behaviour of the BSA solutions with regard to the calcite and quartz 
surfaces is opposite. It should also be noticed that the enzymes produce these effects in much 
smaller concentrations: while the combined temporary/non-adhesion state of the quartz surface was 
reached using 1% of the enzyme products, i.e. 0.02-0.05% of the pure protein, for BSA the same 
state was reached using 1% of pure protein. 

Both enzymes have isoelectric points below pH of the SW that means they are negatively 
charged in the solutions. Under presence of stabilisers, the enzymes possess strong internal stability 
and electrostatic interactions are the main factor governing adsorption-desorption processes, which 
means that the results should be similar to the BSA. The real picture of the interaction of the 
proteins with the ions in a solution is much more complicated, since different parts of the 
enzyme/protein molecules may have a different affinity to the different ions that are met in solution. 
The structures of the enzymes and BSA may also differ from each other. This probably explains the 
fact of varying behavior of the different proteins with regard to reversibility of adsorption, as 
described above. 

4.2. Static adsorption-desorption experiments with solid particles 

The results for static adsorption-desorption experiments with solid particles are summarized 
in Table 8. Different enzyme-particle ratios, as well as adsorption of enzymes on the particles under 
presence of the oil phase were examined. As expected, in both cases (with and without oil) the 
amount of the adsorbed enzyme on solid surface increased with increase of the enzyme 
concentration. Good reproducibility of the results was additionally confirmed by similar adsorption 
values obtained for 2:1 particles to enzyme ratio under the different concentrations of enzyme in 
solution (i.e. 2g of particles and 1% solution of NS81249 versus 1g of particles and 0.5% solution of 
NS81249).  

Some experiments were carried out without solid particles, but in presence of the oil. For 
such experiments the adsorbed amounts were calculated per gram of oil (Table 8). Reduction of  
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Table 8: Summary of the results for static adsorption-desorption experiments with solid particles (negative desorption values imply 
further adsorption of enzymes on solid particles when original water phase was diluted with 3 ml of pure SW).  

   No oil phase Oil phase present 

  
NS81249 

concentration, 
mg/ml 

Adsorption Desorption, 
mg/g-

particles 

NS81249 
concentration, 

mg/ml 

Adsorption Desorption, 
mg/g-

particles 
mg/g-

particles mg/m2 * mg/g-
particles mg/m2 * 

No 
particles 

1% NS81249 0.14    0.14    
 - - - - 0.12 0.033 - -0.036 

0.5% NS81249 0.06    0.06    
 - - - - 0.05 0.013 - -0.052 

1g of 
particles 

1% NS81249 0.14    0.14    
CaCO3 0.10 0.058 0.052 -0.081 0.10 0.054 0.043 -0.080 
SiO2 0.05 0.250 0.054 -0.038 0.07 0.207 0.045 -0.094 

0.5% NS81249 0.06    0.06    
CaCO3 0.05 0.045 0.041 -0.073 0.05 0.029 0.027 -0.059 
SiO2 0.01 0.142 0.031 - 0.03 0.096 0.021 0.144 

2g of 
particles 

1% NS81249 0.14    0.14    
CaCO3 0.11 0.043 0.039 -0.021 0.12 0.029 0.027 -0.043 
SiO2 0.02 0.173 0.038 -0.009 0.05 0.126 0.027 -0.042 

0.5% NS81249 0.06    0.06    
CaCO3 0.05 0.014 0.013 -0.044 0.05 0.014 0.013 -0.034 
SiO2 0.01 0.074 0.016 - 0.02 0.057 0.012 -0.022 

 

*- Surface area of calcium carbonate and silica particles for calculation of adsorption per unit of surface area was taken from Huber 
Engineered Materials and Vandeventer et al. (2012), respectively.  
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enzyme concentration in water in such experiments was comparable to the corresponding values for 
adsorption of the particles without oil.  This means that enzyme adsorption occurred both on solid-
water and oil-water interfaces and the extent of adsorption was quite similar.  

It might be expected that the adsorption values for the systems containing both oil and solid 
particles would be higher due to simultaneous adsorption on the two interfaces. However, as 
opposite, the total amount of enzyme adsorbed in such systems was slightly lower (Table 8). This 
phenomenon can be explained by formation of an n-decane layer on the particle surfaces (Brindza 
et al., 2010; Schmitt et al., 1988) and/or by formation of a layer of the particles on the oil-water 
interface (Fan et al., 2011; Sharp et al., 2014) that would prevent protein adsorption on solid-water 
and/or oil water interfaces, correspondingly. Microscopic photographs of the water-oil-particle 
emulsions (not shown here) confirm the second hypothesis: the particles tend to concentrate around 
water-oil interfaces. 

The amounts adsorbed per unit surface area were found to be independent of a type of solid 
particles, but only on the particle-enzyme ratio and presence of oil (Table 8). An amount adsorbed 
per mass unit for silica was always higher than for calcium carbonate, but this was only due to the 
difference in particles sizes and, consequently, due to the different surface areas.  

For all the studied systems no desorption was observed. Opposite, when the water phase was 
diluted with pure SW amount of the protein in the water phase decreased, which means further 
adsorption of enzymes occurred. This result is unexpected and needs further study. 

4.3. Dynamic adsorption experiments  

4.3.1. Filtration of enzymes/proteins through chalk 

4.3.1.1. BSA 

 No penetration of the BSA through the chalk rock, even with a doubled concentration, and 
even after 20 PV of seawater injected, could be achieved (experiments A and B, Table 9). Further 
increase of the protein concentration was not investigated, since it was economically non-feasible 
for real field applications. It was concluded that all injected BSA molecules were irreversibly 
adsorbed to the chalk pore walls and could not be desorbed by dilution using SW. Adsorbed amount 
of BSA in chalk could be quantified as ≥0.563 mg/g-rock. 

4.3.1.2. NS 81249 

Enzyme NS81249 could partly be recovered from chalk. Figure 2 (a) shows production 
histories for experiments C and D, which had different displacing fluids. Both profiles show the 
unimodal distribution with concentration maxima at around 1.45 and 1.34 mg/ml for experiments C 
and D, respectively. The ratio of maximum to initial concentration (cmax/c0) was below 0.5.  For 
Experiment C, the seawater was used as the initial displacing fluid. Displacement of NS81249 by 
SW (the black profile in Figure 2 (a)) resulted in 43.6% of the enzyme recovered. The first portion 
of enzyme in the effluent was detected after 0.6 PV of SW was injected. A major amount of the  



Chapter 4. Study of Enzyme/Protein Adsorption for Chalk and Sandstone Reservoir Rocks 

 58 

  

(a) (b) 

  

(c) (d) 
 

Figure 2: Production histories of injection of enzymes/proteins in chalk and sandstone cores and their following displacement using 
various displacing fluids.
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enzyme was recovered after 4 PV injected, but a long tail of the enzyme could be detected even 
after 6 PV of SW injected.  

Injection of the seawater in Experiment C was followed by injection of the distilled water (a 
solution with weaker ionic strength than the SW) and then by the enzyme stabiliser (propylene 
glycol). This was carried out in order to check possible ways of desorbing the enzyme, see analysis 
by Norde (1986). Injection of neither fluid has resulted in additional recovery of the enzyme. 

In Experiment C enzyme NS81249 was injected in high ionic strength SW solution, that is, 
under adsorption-favourable conditions. On the contrary, in Experiment D enzymes were injected in 
a low ionic strength solution and displaced by it, to minimize initial adsorption. NaOH was added to 
DW to adjust pH, which, along with the ionic strength, is one of the main parameters influencing 
the protein adsorption. Since maximum adsorption occurs at isoelectric point of the protein, pH of 
the solution should not be close to this value in order to reduce adsorption. SW used in this study 
had pH of 7.78, which is higher than isoelectric points of BSA, NS81249 and NS44164 samples 
(see Table 2) and pH requirements was met. Original pH of DW was 5.5 and it is close to isoelectric 
point of NS81249, so pH was increased up to 8. Theoretically it was also possible to reduce pH of 
DW towards more acidic, but this would cause dissolution of chalk. 

The history of enzyme production for Experiment D is shown in Figure 2 (d). The effluent 
concentration distribution is generally similar to that for Experiment C, but the two distinctions can 
be noted. First, the enzyme breakthrough occurs 0.4PV later than for Experiment C. Secondly, 
enzyme concentration decreases less rapidly. The total recovery of the enzymes, as well as adsorbed 
amounts were similar for both experiments (Table 9), hence, application of DW did not reduce the 
enzyme adsorption. 

4.3.2. Penetration of enzymes/proteins through sandstone 

4.3.2.1. BSA 

The BSA penetration profiles are presented in Figure 2 (b). Experiment F was a duplicate of 
Experiment E, and showed good reproducibility of the results. In contrast to chalk, the BSA can 
penetrate through sandstone with a relatively low irreversible adsorption (total recovery of BSA 
were 82.0% and 86.9%). The adsorption values were also low (0.070 mg/g-rock and 0.054 mg/g-
rock), while cmax/c0 ratios were rather high (0.8 and 0.87). It should be remarked that these values 
were obtained for relatively short samples, while on the reservoir scale the effect may be different 
(see analysis in the next section).  

BSA was first detected in the effluent after 0.86 PV of protein was pumped (Figure 2 (b)). 
Taking into account that 1PV of BSA was injected in total, early protein breakthrough means that 
some BSA molecules were travelling faster than the carrying fluid. A majority of BSA was 
recovered after about 1.5PV of SW was flooded. A relatively short tail of the protein could be 
observed. 
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Table 9: Summary of the results of dynamic flow-through experiments. 

Experiment  Protein/enzyme Core internal 
surface 

area*, m2 

Total 
enzyme/protein 

recovery, % 

Enzyme/protein 
recovery within 

first displacing PV, 
% 

cmax/c
0  

Irreversible 
adsorption 

  mg/g-rock 

Estimated 
irreversible 

adsorption mg/m2 

Chalk        
Experiment A BSA 221.06 0 0 0 ≥0.283** ≥0.141** 
Experiment B BSA 219.20 0 0 0 ≥0.563** ≥0.281** 
Experiment C NS81249 236.18 43.6 13.4 0.41 0.620 0.310 
Experiment D NS81249 239.66 37.7 0 0.36 0.769 0.385 
Sandstone        
Experiment E BSA 132.60 82.0 55.9 0.87 0.070 0.041 
Experiment F BSA 130.57 86.9 59.3 0.80 0.054 0.032 
Experiment G NS81249 136.62 87.2 71.2 0.79 0.040 0.024 
Experiment H NS81249 291.71 40.5 9.5 0.36 0.167 0.127 
Experiment I NS44164 131.92 78.7 60.7 0.59 0.016 0.009 
Experiment J NS44164 131.92 69.0 51.9 0.55 0.026 0.015 

 

* - Specific surface areas of outcrop chalk and sandstone core samples for calculation of adsorption per unit of surface area was taken from 
Puntervold et al. (2007) and Dubelaar and Nijland (2015), respectively.  

** - The exact value of adsorption could not be calculated, as all injected BSA was retained in the core.  
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4.3.2.2. NS 81249 

Penetration of NS81249 through sandstone was studied for two different sandstone cores: 
Nordhorn sandstone and Obernkirchener sandstone. The black profile in Figure 2 (c) demonstrates 
distribution of the enzyme in the effluent for filtration of NS81249 through the Nordhorn sandstone 
(Experiment G). The distribution is quite similar to the production history for injection of the BSA 
in sandstone. However, the NS81249 molecules were flowing even faster than BSA, and detection 
of the first portion of the enzyme in the effluent occurred after 0.6PV injected. The total enzyme 
recovery was the highest among all the experiments (87.2%). Adsorption was slightly less compared 
to BSA (0.040 mg/g-rock), while the ratio of cmax/c0 was almost the same as for Experiment F.  

Adsorbents with a higher internal surface are usually characterised by a higher adsorption 
capacity. To investigate how increase of internal surface area can affect amount of adsorbed 
enzymes, the Obernkirchener sandstone core (Germany) was used (Experiment H). The core had an 
internal surface area of 291.71 m2 compared to 136.62 m2 of the internal surface area for the 
Nordhorn sandstone (Experiment G). The production history of NS81249 is given in Figure 2 (c). A 
general shape of the distribution is similar to penetration of NS81249 through chalk (Figure 2 (a)) 
rather than to penetration of NS81249 through Nordhorn sandstone (Figure 2 (c)). The same applies 
for the amount of the recovered enzyme (Table 9). The history plot is unimodal with a maximum at 
1.30 mg/ml relative BSA. The ratio cmax/c0 is the same as for Experiment D. On the contrary, the 
adsorption value for the Obernkirchener sandstone was 3.6-4.6 times lower than for the Stevns Klint 
chalk, even though the sandstone core sample had an about 20% higher internal surface area (Table 
9). Comparison of the experimental results for Nordhorn and Obernkirchener sandstones reveals that 
about 2 times increase of the internal surface area leaded to about 4 times increase of adsorption.  Of 
course, this analysis is approximate, and a more precise analysis should be based on the results of 
modelling, as described in the next section. 

4.3.2.3. NS 44164 

The production histories for NS44164 enzyme through sandstone are shown in Figure 2 (d). 
Experiment J was a duplicate for Experiment I. This was the only set of experiments where the core 
sample was reused. Reuse of the core in which enzyme/protein was injected was restricted by 
potential irreversible adsorption of proteins on core surface, and difficulties with cleaning of the 
used samples from the proteins. However, for this set the enzyme recovery in Experiment I was 
rather high (Table 9), so it was acceptable to re-use the core in the duplicate Experiment J. The 
results (Figure 2 (d)) are comparable to the results for BSA and NS81249 penetration through 
sandstone (Figure 2 (b), (c)). The adsorbed amounts are the smallest among all the experiments and 
enzyme recovery values are rather high (Table 9). The early breakthrough of NS44164 was also 
observed after about 0.5-0.7PV injected (Figure 2 (d)). 

Comparison of Experiment I with Experiment J shows that reuse of the core leads to a 
slightly different enzyme concentration distribution in the effluent (Figure 2 (d)). However, the 
quantitative characteristics are similar for these two experiments (Table 9).  
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Experiment C Experiment D Experiment E 

   
Experiment F Experiment G Experiment H 

 

 

 

 Experiment I  
Figure 3: Results of fitting of the experimental data on enzyme production by the suggested model (red line – elliptic fitting, blue 

line – parabolic fitting). 
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4.3.3. The modelling results 

Production of enzymes has been analysed for seven experiments: the two experiments with 
the enzyme NS81249 injection into the outcrop chalk (Experiments C and D); the two experiments 
with BSA injection into the outcrop sandstone (Experiments E and F); the experiment where the 
enzyme NS44164 was injected into the outcrop sandstone (Experiments I); the experiment with 
NS81249 injection into the outcrop sandstone (Experiment G); and the experiment with a long 
sandstone core where enzyme NS81249 was injected (Experiment H). Parameters of the cores and 
injection schemes are listed in Tables 3 and 4, respectively.  

Comparison of the experimental data points and the model production histories, expressed in 
dimensionless time, as described in Section 3, is presented in Figure 3. The adjusted dimensionless 
parameters  are shown in Table 10, while recalculated dimensional values in Table 11. 
The model curves for the elliptic and parabolic fitting are similar, as well as the fitting parameters. 
The elliptic dispersion coefficients are of the order of few seconds, while the experiments last for 
hours. Hence, contribution of elliptic diffusion in this case (and on this scale) is insignificant. We 
bring only the data for elliptic fitting.  

Table 10: The adjusted dimensionless fitted parameters for elliptic fitting. 

        

Experiment C 0.0152 0.0030 0.5488 0.4644 
Experiment D 0.0185 0.0043 0.3930 0.3681 
Experiment E 0.0076 0.0015 0.8477 0.1667 
Experiment F 0.0201 0.0022 0.7642 0.1058 
Experiment G 0.0572 0.0023 0.9613 0.1212 
Experiment H 0.0159 0.0032 0.5062 0.4905 
Experiment I 0.1078 0.0023 0.8337 0.1737 

  

Table 11: Recalculated dimensional fitted parameters for elliptic fitting.  

 Γ , m-1 , 10-9m2/s  , s  
Experiment C 0.835 11.25 32.8 5.57 
Experiment D 1.563 12.40 56.4 11.18 
Experiment E 0.182 2.587 4.465 0.660 
Experiment F 0.312 1.795 13.07 1.039 
Experiment G 0.044 1.639 15.08 1.975 
Experiment H 0.989 10.813 4.216 11.743 
Experiment I 0.201 2.703 32.71 2.273 

 

 

, , ,x td d λΓ

xd td 1/ (1 )+Γ λ

Λ xD tD



Chapter 4. Study of Enzyme/Protein Adsorption for Chalk and Sandstone Reservoir Rocks 

 64 

Analysis of Figure 3 indicates that fitting of the experimental data on enzyme production by 
the suggested model is generally adequate, accounting for experimental imprecision. The data on 
the experiments with chalk cores are approximated less precisely than the data for sandstones. 
These data exhibit highly asymmetric production plots, unlike the standard diffusion models. 
Surprisingly, the anomalous diffusion expressed by the temporal dispersion term could not improve 
the model approximation. A step towards its further improvement could be implementation of the 
full-scale continuous time random walk models (Shapiro and Yuan, 2011). Alternatively, a 
nonlinear equilibrium or a non-equilibrium adsorption model could be checked. Since the goal of 
this work was to estimate the significance of the basic effects, but not to provide a full-scale model, 
we have restricted ourselves with the current model. 

The values of  are not high, but still substantial, so that the delay caused by the 
equilibrium sorption cannot be neglected. These values are higher for enzyme/protein adsorption on 
chalk than on sandstone cores, in agreement with the fact that the internal surface is higher for the 
chalk cores. The only exception is the long sandstone core. The equilibrium sorption is generally 
lower for BSA. 

A similar conclusion is valid for the irreversible sorption characterized by the values of Λ . 
The irreversible loss of the enzyme in chalk is much higher than in sandstone and as well higher 
than loss of BSA in chalk. The long sandstone core is the only exception. The obtained values of Λ  
are small to moderate on the laboratory scales, but they are rather large for the reservoir scales. The 
value of aeΛ  shows what fraction of enzyme is lost when it travels distance . For our laboratory 
scales ( 8 cm) this value varies from 1.15 to 2.7. However, already for the distance of 1m the 
value of varies from 5 to 75000. This indicates that all the enzyme will be retained on the first 
meters if injected into a petroleum reservoir. This makes it problematic to directly use the enzymes 
for enhanced oil recovery without additional technological adjustments, at least, with the rocks 
similar to those we have tested. 

The values of spatial dispersion coefficient   are similar for parabolic and elliptic models. 
They are higher than the characteristic values of molecular diffusion, which indicates the effect of 
mesoscale heterogeneity and convection. The values of temporal dispersion  are in this case 
insignificant, which indicates also stability of the results. As shown by Sin and Yuan (2011), the 
value of  affects mainly the deposition profiles, but not production histories, which is in 
agreement with the present observations.  

5. Discussion  

Three types of experiments were carried out in order to investigate adsorption of 
enzymes/proteins to the rock surface. As it can be seen from Table 12, the static adhesion tests are 
in good agreement with the dynamic flow-through experiments, while the results obtained for the 
adsorption-desorption experiments with particles are different. The most plausible cause for this 
observation is a different shape and state of the substrates used. The same protein can adsorb 
differently on a flat and fixed surface, compared to surfaces of moving particles (Kim and Yoon, 

Γ

a
a ≈

aeλ

xD

tD
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2002). The static adhesion tests produced closer results to the dynamic flow-through experiments, 
even though a powder possesses a larger surface area. It should be highlighted that the adhesion 
tests give only qualitative data on the protein adsorption; therefore flow-through experiments 
cannot be substituted by any static test.  

Table 12: Summary of static and dynamic adsorption experiments: + - complete desorption 
of enzyme/protein; +/– - partial desorption of enzyme/protein; – - no desorption of enzyme/protein, 
N/A – not available. 

 Static experiments Dynamic experiments 
Adhesion tests Adsorption on particles Flow-through experiments 

Quartz Calcite SiO2 CaCO3 Sandstone Chalk 
BSA + – N/A N/A +/– – 
NS81249  + + – – +/– +/– 
NS44164  + + N/A N/A +/– +/– 
  

The flow-through experiments confirmed that adsorption and retention of the proteins may 
be a serious obstacle on the way of application of the enzymatic enhanced oil recovery. The 
production histories and the total amounts produced demonstrate that both reversible adsorption and 
irreversible retention take place during enzyme/protein slug injection and the subsequent SW 
displacement. Burghardt and Axelrod (1981) reported that for BSA three modes of desorption 
occurred: irreversible, slowly reversible and rapidly reversible. This observation is in line with the 
multilayer theory of the protein adsorption. Irreversible attachment of a protein occurs when it 
directly interacts with the surface. The strength of the protein attachment in upper layers of the 
adsorbate decreases with increase of the distance between the layer and the surface. The very upper 
layer can be rapidly desorbed, while for the intermediate layers desorption will take a longer time.  

 Irreversible adsorption is not the only reason for loss of enzymes/proteins in porous media. 
Another reason is that at low bulk concentrations enzymes/proteins can undergo conformational 
changes that may lead to strong binding between biomolecules and substrate and, consequently, 
may lower ratio of the reversible and irreversible adsorption (Evers et al., 2008; Kirchman et al., 
1989). When an enzyme/protein is injected into a porous medium, a concentration gradient is 
formed along the core. This happens due to adsorption and dispersion of the protein (see the results 
above). Consider the stage where the already injected protein is displaced by brine. Its 
concentration just ahead of the displacement front is initially high. Hence, the adsorbed 
protein/enzyme exists as a multilayer film. As the displacing brine propagates, the upper layers get 
reversibly desorbed. With time, the water front becomes washed out due to dispersion, and the 
adsorbed film becomes thinner. The adsorption character changes towards more slowly reversible, 
and then to irreversible (according to the terminology of Burghardt and Axelrod (1981)). This may 
explain appearance of the long asymmetric tail on the production curve, which is not fully captured 
by the model described in Section 3. A more advanced model of nonlinear sorption is necessary in 
order to capture this phenomenon. 
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 As it was found previously (Khusainova et al., 2015), alteration of wettability of the rock 
surface is the main mechanism for enzyme as a successful EOR agent. The present study partly 
supports this conclusion. The enzymes/proteins demonstrate a high affinity to the solid rock surface.  
Only limited amount of enzyme should be injected in order to meet economic feasibility of the 
process. To minimize enzyme loss in the porous media, enzyme molecules should be able to adsorb 
and desorb continuously. During adhesion tests both NS81249 and NS44164 samples demonstrated 
secondary adsorption, which was considered as beneficial for the EOR purposes. However, 
additional technological advances are still needed in order to govern and to accelerate desorption of 
enzymes.  

 Apparently, the nature of a rock has also a certain effect on the enzyme adsorption and 
propagation rate. Comparison of the adsorption values (Table 9) demonstrates that significantly less 
adsorption occurs for sandstone compared to chalk, which means that adsorption capacity of 
carbonates is much higher. The maximum amount of enzyme adsorbed on chalk was 0.769 mg per 
gram of rock, which is 4.6 times higher compared to sandstone. The most plausible reason for that 
is the strength of the enzyme/protein-surface interactions. Apparently, interaction between 
enzymes/proteins and the chalk surface is much stronger than interaction with the sandstone 
surface, which, in turn, increases the ratio of the reversible and irreversible adsorption for chalk.  
Experiments with BSA support this hypothesis. BSA belongs to the group of soft proteins that are 
characterized with low internal stability. When BSA interacted with chalk it probably underwent 
conformational changes. Attachment of the biomolecules occurred via several sites, which 
enhanced irreversible adsorption. The conformational changes were so strong that BSA could not 
be desorbed at all. In contrast, when BSA was filtered through sandstone, interaction between 
protein and surface was not that strong and the BSA molecules could keep their structure. Hence, 
irreversibility was not that significant and majority of the protein molecules could desorb (Table 9). 
The value of the surface area had also some effect, but it was incomparable with the difference 
between the minerals. The enzyme adsorption on sandstone with about 20% higher internal surface 
area was 3.6-4.6 times less than on the Stevns Klint chalk (Table 9). 

 The enzyme adsorption values per gram of the sandstone are similar to those values for 
polymers and surfactants (Cohen and Christ, 1986; Wang et al., 2015), but application of enzymes 
can be more advantageous. The enzymes are environmentally friendly substances due to their 
biological nature. The enzyme concentrations required to detach oil from the mineral surface are 
much lower, compared to the surfactant concentrations used for chemical flooding (Khusainova et 
al., 2015). However, in present study it was found that, similar to surfactants, loss of enzymes 
during travelling through the reservoir rock is a large concern that should be taken into account.  

Several parameters that can inhibit adsorption and enhance desorption were studied. First, 
the high-ionic seawater, which was used as displacing fluid and as a solvent for enzyme/protein 
solutions, was substituted by the low-ionic distilled water. Second, pH of the distilled water was 
adjusted, so that pH of the solution was much higher than isoelectric points of the proteins. Third, 
the solution of enzyme stabiliser was injected to test whether it can desorb enzymes. The different 
flow rates were also tried. However, the enzyme/protein recovery values were still much lower for 
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chalk than for sandstone and, generally, much lower than required to avoid enzyme retention under 
reservoir conditions. More work is required in this direction in order to make the EEOR ready for 
practical applications. 

6. Conclusions 

 Static and dynamic adsorption tests were conducted in order to test potential of enzymes as 
an EOR agents. The extent of adsorption was found to be dependent on the type of the solid 
substrate. For EOR applications, the enzyme adsorption should be investigated only using dynamic 
flow-through experiments. Similar to surfactants, irreversible adsorption plays an important role in 
ability of protein molecules to travel through the rock porous media. During displacement 
experiments the ratio of reversible to irreversible adsorption of enzymes/proteins decreased with 
time, as the type of adsorption was strongly affected by the bulk protein concentration. This makes 
application of enzymes for EOR quite challenging, especially for the rocks with high internal 
surface and affinity to the proteins. The chalk rock demonstrated much higher retention rate than 
sandstone. Change of ionic strength and pH of the enzyme solution and the displacing fluid, 
application of various injection rates as well as injection of the enzyme stabiliser to desorb 
biomolecules did not decrease the amount of irreversibly adsorbed enzymes/proteins. An alternative 
solution should be found in order to reduce the protein loss in the rock and to make application of 
EEOR feasible at the field scale. The developed dynamic model demonstrated a reasonably good fit 
to the experimental flow-through data.  Accounting for only traditional diffusion-like dispersion 
turned out to be sufficient to model the concentration wash-out, while contribution of the 
anomalous diffusion was found to be unimportant.  
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Appendix A. Solution of the elliptic problem 

Consider elliptic equation (MainD) with the boundary condition (Boun). Substitution 

  

reduces the equation to the form of 
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Further, we rescale the variables 

 

in order to obtain the standard equation 

 

This equation is solved in the quarter-plane , . If it would be the whole plane, the 
fundamental solution (the Green function) of the equation would be expressed in terms of the 

modified zero-order Bessel function  (Shapiro, 2007) 

  

The Green function for the quarter-plane may now be obtained by the method of reflections. 

Assume all the values  are positive, and consider the reflected radii 

 

The Green function  consists of the solution  and its three reflections: 

  

The Green formula for this region reads: 

 

The second integral is equal to zero due to the boundary conditions. The first integral is simplified 

due to that, first, derivative of  is ; and second, at the boundary   we have  and 

. The solution in the transformed coordinates is: 
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Performing the back-transformations, we obtain finally: 

 

Variables  are found from the previous equations by back-substitution. 

Appendix B. Solution of the pure dispersion problem 

Consider equation (2) with the zero temporal dispersion term: 

         (5) 

The boundary conditions (4) remain valid for this equation. Its solution could probably be obtained 
from the solution of the corresponding elliptic problem (as described in the previous appendix) by 

tending  to zero. However, such a limiting transition is difficult. It is easier to solve directly Eq. 
(5) by the method similar to that applied in Appendix A. 

Substitution 

 

reduces the original equation (5) to a standard form 

 

The boundary conditions are transferred correspondingly. Solution with the corresponding Green 
function results in (Tikhonov and Samarsky, 1963) 

 

The final answer is obtained by back-substitution of : 
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Chapter 5. Emulsion and Crude Oil-Brine Interaction Study 

Formation of emulsions is one of the main mechanisms that might result in enhancement of 
oil production. In order to check whether this mechanism might be relevant for enzymatic enhanced 
oil recovery (EEOR), formation and stability of enzyme/protein-stabilised emulsions were studied. 
This part of the work was conducted in collaboration with master student, Jakub Benicek, and in 
Section 1 of the chapter only the key findings are presented. For further details the reader is 
referred to the student’s master thesis: Benicek, J., 2015. Application of emulsion-forming enzymes 
for enhanced oil recovery. 

The second part of the chapter presents results from the crude-oil brine interaction 
experiments. It is an independent part that was conducted simultaneously with coreflooding 
experiments (Chapter 6). The experiments were inspired by the formation of black filter-cake 
observed during the oil displacement tests in chalk (Figure 2, Chapter 6). An initial hypothesis was 
that the formation is the viscous emulsion resulted from the interaction of crude oil and enzyme-
containing brine under conditions similar to the reservoir conditions. Eventually, formation of the 
black substance was found to be, most likely, due to corrosion-induced asphaltene precipitation, but 
the crude oil-brine interaction experiments revealed some important findings presented in Section 2 
of current chapter. 

1. Emulsion Study 

  An experimental study of enzyme/protein-stabilised emulsions was carried out. 
Reproducible preparation of emulsions was found to be quite a challenging task. Therefore, a 
methodology of preparation of protein-stabilised emulsions allowing for handling a large number of 
samples and providing reproducible results was developed at the initial stage of the investigation. n-
Decane was used as an oil phase in most of the experiments. Fraction of saturates was verified to be 
the main part of the crude oil involved in formation of the protein-stabilised emulsions. Long-chain 
alkanes provided formation of more stable emulsions, while short-chain alkanes were responsible 
for formation of the emulsions characterised by smaller drops. 

 Screening of several enzyme groups demonstrated that the group of lipases/esterases 
possessed the highest surface-active properties at the oil-water interface. The most stable emulsions 
were formed when lipases/esterases were applied as emulsifying agents. Of all the tested enzymes, 
proteases produced least emulsions. As it was expected, enzymes that belong to the same group 
formed similar emulsions.  Results obtained in emulsion screening were in a good agreement with 
the wettability tests. 

 Emulsions stabilised by a surfactant (sodium dodecyl sulfate) were less stable than those 
stabilised by proteins. Emulsifying properties of the enzyme products were proved to originate 
mostly from the enzyme molecules, rather than from the stabilising ingredients. However, 
propylene glycol (the main stabilising ingredient) demonstrated some insignificant contribution to 
the surface activity of the enzyme products. 
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 A possible role of enzymes in enhanced oil recovery (EOR) is acting as catalysts (Chapter 
2). This possibility was tested by addition of an ester (ethyl decanoate) to the oil phase. The 
emulsions formed in ester-added systems were less stable compared to the emulsions in the 
corresponding ester-free systems. It was concluded that destabilising effect of the ester was more 
pronounced than the stabilising effect of the carboxylic acid and alcohol that were formed due to 
enzymatic hydrolysis of the ester. 

Re-shaking of the samples after three months resulted in formation of the emulsions 
possessing a higher stability. Reasons for such behaviour might be long diffusion times and also a 
longer period required the for protein conformational changes that occur during emulsification. This 
finding was quite important in the framework of the coreflooding experiments, since it 
demonstrated importance of the incubation periods. The stage of incubation was included in several 
coreflooding tests. 

Combined application of enzymes and solid particles was tested at the last stage of the work. 
More stable and tighter emulsions were formed when calcium carbonate or silica particles were 
added to the enzyme solutions. Effect of silica particles was more pronounced, but, most likely, 
might be related to the size of the particles. The size of silica particles varied between 0.5 and 
10µm, while the size of calcium carbonate particles was ≤30 μm. The silica particles covered the 
drops providing stabilising effect. A smaller amount of the calcium carbonate particles was kept at 
the interface. Even though addition of solid particles resulted in the formation of larger volumes of 
more stable emulsions, the drop size distribution was not affected by addition of the particles. 

2. Crude Oil-Brine Interaction Study 

2.1. Materials and Methods 

2.1.1. Materials 

Light crude oil recovered from the chalk reservoir was used as an oil phase. The brine was 
synthetic seawater (SW); composition can be found in Chapters 3, 4 and 6.  

Only enzyme NS81249 was applied in crude oil-brine interaction experiments. Novozymes 
A/S kindly provided the sample in the form of commercial product and as a purified enzyme. 
Concentration of the product solution used in the experiments was 1%wt, while a higher 
concentration of 5% wt was chosen in case of the purified sample in order to bring the experiment to 
the extreme condition. Solution of the enzyme stabiliser (without the enzyme) was imitated using 
propylene glycol (Sigma-Aldrich, purity ≥99.5%), as it was the main component of the stabilising 
ingredients. Typical Novozymes enzyme product consists of 2-5%wt of enzyme, 25-30 %wt of the 
stabilisers is, 0.2%wt of the biocide and the rest is water. So 1% solution of the enzyme product 
contains 0.3%wt of propylene glycol. This was one concentration applied; another concentration of 
10%wt was chosen to bring the experiment to the extreme condition.  

Nano-silica with the size distribution of 10-20nm and calcium carbonate particles (≤30µm) 
were purchased from Sigma-Aldrich and were not subjected to any further treatments. The 
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concentration of the nano-silica was 300ppm as in the coreflooding experiments (Chapter 6). The 
mass of the calcium carbonate was 1g. Effect of calcium carbonate was studied as formation of the 
filter-cake was only observed in chalk cores, so presence of calcium and/or carbonate ions might be 
a condition for formation of such filter-cake. 

2.1.2. Methods: Crude oil-brine interaction experiments 

12ml of crude oil was mixed with 12ml of SW containing enzyme product, purified enzyme 
or propylene glycol. Nano-silica and calcium carbonate particles were added to the 
enzyme/propylene glycol solutions to test effect of the presence of solid particles. Table 1 contain 
various investigated compositions of the water phase. The samples were placed in a shaker and 
mixed during 24 hours at 60°C (the temperature was chosen to be the same as in the coreflooding 
experiments). The obtained mixture was filtered through PTFE 0.45µm filters with the vacuum 
filtration technique. In order to keep constant temperature throughout the experiments, the filtration 
was accomplished in the oven. For the crude oil - 5%NS81249 (purified) in SW system the filter 
cake was analysed under the optical microscope. All the experiments were checked for 
reproducibility. 

 2.2. Results 

Table 1: Summary of the results of crude oil-brine interaction experiments. 

Set of 
experiments 

System Formation on the filter 

1 

Crude Oil - 1% NS81249 in SW Gel-like structure in small 
amounts 

Crude Oil - 1% NS81249 in SW - SiO2 
nanoparticles 

Gel-like structure in large 
amounts  

Crude Oil - SiO2 nanoparticles  None 
Crude Oil - 1% NS81249 in SW - SiO2 
nanoparticles - CaCO3 particles 

Gel-like structure in large 
amounts 

2 
SW - NS81249  None 
Crude Oil - NS81249  None 

3 

Crude Oil - 5%NS81249 (purified) in 
SW 

Viscous emulsion 

Crude Oil - 0.3% propylene glycol in 
SW 

Gel-like structure in small 
amounts 

Crude Oil - 10% propylene glycol in 
SW 

Gel-like structure in large 
amounts 

Crude Oil - 0.3% propylene glycol in 
SW - SiO2 nanoparticles 

Gel-like structure in large 
amounts 

The summary of the results of crude oil-brine interaction experiments is presented in Table 
1. The first set of the crude oil-brine interaction experiments consisted of four different systems 
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(Table 1). Only for the crude oil - SiO2 nanoparticles system the filter was left clean. During the rest 
of experiments a white semi-transparent gel-like filter cake was formed (Figure 1). In cases where 
there were particles (silica or calcium carbonate) the precipitation was larger. 

 

Figure 1: The gel-like formation obtained during crude oil-brine interaction experiments.  

As an explanation, it was initially suggested that protein denaturation occurred, since the 
obtained structures looked very much like an egg white after boiling. However, this was rejected 
after the second set of the experiments (Table 1). In order to achieve extreme conditions, the 
enzyme product was mixed with the crude oil without diluting in SW. The crude oil-brine 
interaction tests for NS81249 - SW and NS81249 -crude oil systems did not show any filter cake 
formation. Thus, formation of the gel-like precipitation cannot be solely attributed to the enzyme-
SW or enzyme-crude oil interactions.  

  As discussed in Chapter 3, the enzyme products contain 20-30% of the stabilisers, which 
consist mainly of propylene glycol. Therefore, formation of the gel-like structure could also be 
attributed to interaction between propylene glycol, SW and the crude oil. It should be noted that 
formation of such filter cake requires presence of the SW, as nothing similar was observed when the 
enzyme product was directly mixed with the crude oil without dilution in SW. To test viability of 
the hypothesis, the third set of experiments was carried out (Table 1). In these experiments the 
purified enzyme with almost no stabilisers and propylene glycol was mixed with oil. These 
experiments confirmed that the gel-like filter cake was indeed formed of propylene glycol and not 
of the enzyme. The amount of the gel increased with the increase of the propylene glycol 
concentration and also when the nanoparticles were present.   

 An unexpected filter cake was obtained for the crude oil with 5% NS81249 (purified) in SW 
system (Figure 2a). The filter cake was found to be a viscous oil-in-water emulsion (Figure 2b). 
Microscopic images of the emulsion revealed two remarkable features. First, the oil drops had 
asymmetric shapes. Second, some oil-lined structures (the structure was very similar to the fly 
wings) were formed in SW.  
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(a) (b) 

Figure 2: Viscous emulsion obtained after interaction and filtration of crude oil - 
5%NS81249 (purified) in SW system. (a) - the emulsion left on the filter; (b) - microscopic images 
of the emulsion. Two circles on Figures (b) show asymmetric drop and some lined structures. 

2.3. Discussion 

The crude oil-brine interaction experiments revealed two more important findings that make 
it difficult to consider enzymes as EOR agents. First, interaction of the enzyme product with crude 
oil in the presence of SW can cause precipitation of the propylene glycol, which is the main 
constituent of the enzyme product stabiliser. Separation of the stabiliser from the solution may 
cause loss of the internal stability and even denaturation of the enzyme molecules. Stabilisers 
should hinder adsorption of an enzyme onto the rock surface (Evers et al., 2011; Koo et al., 2008; 
Timasheff, 1993). In the absence of the propylene glycol in the solution enzyme molecules would 
tend to adsorb even more, while irreversible adsorption onto the solid substrate was found to be a 
serious obstacle for the enzyme molecules to travel through porous medium. Therefore, enzyme 
products that are going to be used for petroleum industry applications should be thoroughly checked 
for stability after interaction with the crude oil, to ensure process-life of the product.  

The structure of the gel-like filter cake was not studied in detail. It was only established that 
the filter cake consisted mostly of propylene glycol. The structure of the filter cake looked like gel, 
but it could also be the emulsion of the propylene glycol in SW, of a rather high viscosity. Such 
emulsion was formed only where the crude oil was present in the system, so apparently some crude 
oil component(s) served as emulsifier(s). The amount of the filter cake increased with increase of 

50 µm 

50 µm 
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the propylene glycol concentration and when nano-silica particles were present. The latter was most 
likely due to ability of solid particles to stabilize and enhance formation of the emulsions  
(Hassander et al., 1989; Hunter et al., 2008). 

 If the propylene glycol behaves in a similar way in the core during oil displacement 
experiments, formation of the gel/viscous emulsion can also contribute to the additional oil 
recovery. The formation could plug some water-bearing zones and redirect water to the trapped oil. 
Since the used cores were rather homogeneous, the effect of the plugging was not significant, which 
is in a good agreement with the pressure data and, consequently, with the observed low additional 
recovery values (Chapter 6).  

 The second important finding of the crude oil-brine interaction experiments was that a very 
viscous oil-in-water emulsion was formed when the purified enzyme interacted with crude oil. The 
shapes of the oil drops were random, while some net structures were also present (Figure 2b). Both 
characteristics of the formed emulsion, viscosity and oil drop shape, hinder the process of oil 
extraction. Thus, creation of such emulsions can be a disadvantage. On the other hand, 
emulsification could result in one-phase-like flow facilitating the recovery. 

2.4. Conclusions 

The crude oil-brine interaction tests revealed that interaction between crude oil and brine 
containing enzyme product causes precipitation of the propylene glycol, forming gel or a very 
viscous emulsion. This in turn might destabilise the enzyme molecules, as propylene glycol is the 
main constituent of the enzyme product stabilisers. Moreover, when the purified enzyme was used 
in the crude oil-brine interaction tests, formation of very viscous oil-in-water emulsion was 
observed. The oil drops had unusual asymmetric shapes; also some net structures were detected. 
The findings discover new limitations on the way of application of enzymes as EOR agents. 
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Chapter 6. Experimental Investigation of Enzymatic Enhanced Oil 
Recovery 

The chapter has been prepared for a publication in Journal of Petroleum Science and Engineering: 

Alsu Khusainova, Alexander Shapiro. Experimental Investigation of Enzymatic Enhanced Oil 
Recovery. 

Abstract 

 Core flooding experiments were carried out under conditions similar to the conditions of the 
petroleum reservoirs, in order to check potential of the enzymes for enhanced oil recovery (EOR) 
application. Sandstone and chalk cores were used as reservoir material, light crude oils as an oil 
phase. Two types of the enzymes, lipase and amylase, were selected for testing, based on the static 
wettability and emulsion formation experiments. The enzymes were applied only during the tertiary 
recovery stage; various injection scenarios were tested. No significant enhancement of the oil 
production was observed due to the injection of the enzymes: the recovery factor for the stage of 
tertiary oil production was only 0.23-1.69% relative to original oil in place in sandstone, and no 
additional oil was recovered from chalk. Low recovery factors were combined with a delayed oil 
production. Change of wettability was proposed as the primary mechanism that governs enzymatic 
EOR, while formation of the emulsions plays most likely less important role. Overall, the enzymes 
performance demonstrated their low potential as EOR agents for sandstone and carbonate reservoirs 
containing light crude oil. 

Key words: enhanced oil recovery; enzymes; tertiary recovery; core flooding; chalk; sandstone. 

1. Introduction 

Enzymes have been quite extensively used in the petroleum industry in the following areas: 
enzyme pre-treatment of biopolymers, gel breaking, desulphurization and enzyme-based production 
of acid (Harris and McKay, 1998). However, only recently they have been introduced as enhanced 
oil recovery (EOR) agents. Both laboratory and field studies demonstrated large improvement of 
the oil recovery after enzymes application (Feng et al., 2007; He and Zhonghong, 2011; Moon, 
2008; Nasiri et al., 2009; Ott et al., 2011). The recovery factor was increased by up to 16% in the 
laboratory displacement studies and up to 269 barrels of oil per day more were produced in the field 
applications (Feng et al., 2007; Moon, 2008; Nasiri et al., 2009; He and Zhonghong, 2011).  

The mechanisms responsible for the enhancement of the ultimate oil recovery have been 
reported to be: improvement of the rock surface wettability towards more water-wet state (Nasiri et 
al., 2009); emulsification due to decrease of the interfacial tension (Feng et al., 2007; He and 
Zhonghong, 2011; Moon, 2008; Nasiri et al., 2009); oil viscosity reduction (He and Zhonghong, 
2011; Moon, 2008); removal of high molecular weight paraffins (Moon, 2008). However, these 
mechanisms require some verification with regards to the ingredient that causes improvement of the 
oil recovery process parameters. In almost all the studies, commercial mixtures of the enzymes 
were used; to the best knowledge, only in the works of Nasiri (2009, 2011) pure lipase was applied. 
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Such mixtures, apart from the enzymes, contain surfactants and stabilisers (see for example, Apollo 
GreenZymeTM Material Safety Data Sheet; Feng et al., 2007). These ingredients can also attribute to 
the recovery.  

This paper continues investigation of the applicability of enzymes for EOR. Previously 
various enzyme groups were screened to determine the group with the highest potential for EOR 
purposes (Khusainova et al., 2015). Adhesion behaviour tests as well as contact angle 
measurements were employed. The group of lipases/esterases showed ability to detach the crude oil 
from the mineral surface and was selected for a more detailed investigation. Adsorption of the 
enzyme molecules onto the mineral surface and the related change of wettability were proposed as 
the main mechanism for the recovery improvement. It was also confirmed that enzyme molecules 
themselves, not stabilising ingredients, caused the change of the wetting state towards more water-
wet conditions. Such mechanism could potentially have a significant disadvantage: retention of the 
protein molecules in porous medium. This was checked during the adsorption study (Chapter 4) that 
included both static and dynamic experiments. It was established that the adsorption capacity of 
chalk was much higher compared to sandstone. Simultaneously, emulsification studies were carried 
out, in which ability of the enzymes to form emulsions with crude oil was investigated (Chapter 5). 
The group of lipases showed positive results. Overall, conducted experiments revealed the principal 
mechanisms that might underlie enzymatic enhanced oil recovery (EEOR) and pointed out to the 
potential problems that might appear during field applications. 

In this study the core flooding experiments were carried out in order to see how the results 
from the static experiments correlate with the dynamic tests of the enzymes application and to 
verify applicability of enzymes for enhanced oil recovery. The experimental procedure was 
developed in a way to approach more realistic conditions, to meet economical feasibility and to 
analyse the problems that might rise during the tertiary enzyme injection.  

The paper is organized in the following way. In Section 2, materials and methods applied in 
the study are described. In this section we explain also the choice of the experimental plan, 
according to hypotheses to be tested. In Section 3 key experimental results are presented, while 
their analysis and general evaluation of the enzymes as EOR agents are given in Section 4. Finally, 
the main results are summarized in Section 5. 

2. Materials and Methods 

2.1. Materials 

2.1.1. Fluids 

For the core flooding experiments two types of light dead oil were used. One crude oil was 
recovered from a sandstone reservoir and was used for the experiments with sandstone, while 
another oil was from a chalk reservoir and was used in the experiments with chalk.  

Synthetic North Sea water (pH=7.78; composition as given in Table 1) was applied as 
formation brine and displacing fluid in core flooding experiments. Chemicals for the preparation of 
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the SW solution were purchased from Fluka (purity ≥99.5%) and were not subjected to any further 
purification. To prepare the brine the salts were diluted in distilled water and the solution was 
mixed until all the salts were dissolved.  

Table 1: Composition of the synthetic North Sea water used in the core flooding 
experiments. 

Salt   Concentration, g/l 
NaCl   
NaHCO3   
KCl   
MgCl2.6H2O   
CaCl2.2H2O   
Na2SO4   

18.01 
0.17 
0.74 
9.15 
1.91 
3.41 

Total dissolved solids 33.39 

2.1.2. Enzyme/protein samples 

Two types of enzymes that were kindly supplied by Novozymes A/S were evaluated in this 
work (Table 2). Both enzymes were provided in the form of commercial products, and NS81249 
was additionally provided as a purified sample. Apart from the pure enzyme, standard Novozymes 
A/S enzyme products contain stabilisers, biocide and water. Actual concentration of the enzyme in 
such products is only 2-5%wt, concentration of the stabilisers is 25-30 %wt, concentration of the 
biocide is 0.2%wt and the rest is water. In the purified sample concentration of the pure enzyme was 
4-4.5 times higher compared to the commercial product, and this sample was almost free of the 
stabilising ingredients (Novozymes A/S private communication). In order to exclude 
misunderstandings, we would like to stress that the term “enzyme concentration” used below 
implies concentration of the enzyme products (either commercial or purified), but not the 
concentration of a pure enzyme. 

Table 2: Types and working parameters of the enzymes used in this study. 

Enzyme name Enzyme type Enzymatic action Working 
temperature 

range 

Working pH 
range 

NS81249 Lipase 
(esterase) 

Hydrolysis of ester 
bond in lipid 30-85 ºC 5-10 

NS81251 Amylase 
(carbohydrase) Hydrolysis of starch 30-100ºC 5-9 

The enzyme solutions were prepared by direct dilution of the enzyme product in SW. The 
commercial enzyme products were applied as 1% wt solutions in the core flooding tests. For the 
purified product, concentration was 1% wt.  

The Bradford reagent (product number B6916, Sigma-Aldrich) was used for determination 
of the enzyme concentration in the effluent obtained during the core flooding experiments.  
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2.1.3. Cores 

 In order to check potential of EEOR for various types of petroleum reservoirs, homogeneous 
sandstone and chalk cores were used. The sandstone samples were outcrop cores drilled from an 
Obernkirchener sandstone block (Germany), while the chalk samples were obtained from a Danish 
North Sea reservoir. Characteristics of the core samples used in the work are presented in Table 3.  

Table 3: Characteristics of the core samples used in the core flooding experiments (N/A - 
not available).  

Sample 
name 

Diameter, 
mm 

Length, 
mm 

Weight of 
the dry 
core, g 

Klinkenberg 
permeability, 

mD 

True pore 
volume 

Actual pore 
volume, 

ml 
S-2 37.31 77.02 184.46 2.309 14.96 14.52 
S-1 37.28 78.00 187.60 2.479 14.64 14.31 
S-5 37.34 76.63 185.34 4.088 14.18 13.70 
S-4 37.30 77.00 183.55 6.897 15.01 14.71 
S-3 37.94 89.90 218.95 N/A* N/A* 18.82 
C-1 37.60 62.90 127.18 0.523 23.84 23.65 

* - The sample was too long to be assembled into the porosimeter and the permeameter. 

2.1.4. Nano-particles 

 In the Experiment D application of the enzymes was combined with the application of the 
nanopowder. The silica powder with the particle size distribution of 10-20nm was purchased from 
Sigma-Aldrich and was not subjected to any further treatments. The concentration of the nano-silica 
was 300ppm. This concentration was found to be optimal for the enhancement of oil production in 
Berea sandstone (Skauge et al., 2010). The nanopowder was mixed with the 1% NS81249 enzyme 
solution. The obtained solution was thoroughly shaken and then placed into the ultrasonic bath for 
10min.  

2.2. Methods 

2.2.1. Core flooding experiments 

Figure 1 shows the scheme of the set up that was used to carry out the oil displacement 
experiments. The Hassler-type coreholder was used for accommodation of the rock core samples. 
Confining pressure was created by Teledyne ISCO pump and was chosen to be 50bar throughout 
the experiments. Saturation and displacing fluids were placed in stainless steel cylinders with 
pistons. Injection was also accomplished using one syringe Teledyne ISCO pump. An X-Y fraction 
collector consisting of the automatically changing tubes was placed at the outlet of the coreholder to 
gather continuously the effluent. The effluent volume in each tube was 1/6-1/5 of pore volume 
(PV). Once the oil volume per tube was less than 0.2-0.3ml, the fraction size was increased up to ½ 
PV to increase accuracy of the oil volume measurements. 
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Figure 1: The scheme of the core flooding set up. 

Detailed description of the experimental procedure is given in Appendix 1. Briefly, each 
core went through the stage of preparation, which consisted of CT-scanning to check an integrity 
and a homogeneity, cleaning and measuring porosity and permeability. The saturation with SW was 
carried out in three steps: under the vacuum (at ambient temperature), under the pressure of 100bar 
(at ambient temperature) and by injecting SW after the core was assembled into the coreholder (at 
60ºC, which was the experimental temperature). Original water and oil saturations were established 
by injecting the crude oil in the SW-saturated core. The injection speed was 0.1ml/min for all the 
fluids throughout the work. If aging had to be performed during the experiment, the flow rate was 
reduced to 0.002ml/min after the irreducible water saturation was reached, and the crude oil was 
injected at the low flow rate for three weeks. 

Oil and water saturated cores were first waterflooded with synthetic SW until the residual 
oil saturation was achieved. Then 1 PV of the enzyme solution slug was injected (enzymes were 
always injected as tertiary agents). In Experiments B and C for the stage of incubation with addition 
of the enzyme the pulse size was 2 PV. Different injection schemes were applied during the tertiary 
recovery depending on the hypotheses tested (Table 4). 

The oil content in the effluent was determined visually by reading volume marks on the 
graduated tubes (if the oil volume was more than 0.5ml) and using ultraviolet (UV) 
spectrophotometry (if the oil volume was less than 0.5ml) (Evdokimov et al., 2003; Katika et al., 
2015). During EEOR, in addition to the oil phase, the produced water was also analysed for the 
protein content using Bradford assay (Bradford, 1976). The cores were discarded after the 
experiments, since the irreversible adsorption of the enzymes onto the rock surfaces was found to 
be quite large. 
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Table 4: Hypotheses tested and injection schemes applied in the experiments.  

 Core Enzyme  Methods applied Injection scheme during tertiary recovery 
Experiment A S-2 NS81249 1. Injection of the lipase as an EOR 

agent; 
2. Injection of two enzyme pulses. 

1PV enzyme injection - SW injection (until no more oil 
was produced) - 1PV enzyme injection - SW injection 
(until no more oil was produced)  

Experiment B S-1 NS81249 1. Injection of the lipase as an EOR 
agent; 

2. Incubation of the enzyme 
solution in the core 

1PV enzyme injection - SW injection (until no more oil 
was produced) - Incubation without injection of 
additional enzyme (1.5 months) - SW injection (until no 
more oil was produced) -2PV enzyme injection - 
Incubation (1month) - SW injection (until no more oil 
was produced)  

Experiment C S-5 NS81251 1. Injection of the amylase as an 
EOR agent; 

2. Incubation of the enzyme 
solution in the core. 

1PV enzyme injection - SW injection (until no more oil 
was produced) - Incubation without injection of 
additional enzyme (1.5 months) - SW injection (until no 
more  oil was produced) - 2PV enzyme injection - 
Incubation (1month) - SW injection (until no more  oil 
was produced) 

Experiment D S-4 NS81249 Injection of the enzyme solution in 
the aged core. 

1PV enzyme injection - SW injection (until no more oil 
was produced) 

Experiment E S-3 NS81249 1. Injection of nano-silica particles 
in the enzyme solution. 

2. Injection of the nano-particle-
enzyme mixture in the aged core. 

1PV enzyme+nano-silica injection - SW injection (until 
no more oil was produced) 

Experiment F C-1 NS81249 Injection of the purified enzyme. 1PV enzyme injection - SW injection (until no more oil 
was produced) 



Chapter 6. Experimental Investigation of Enzymatic Enhanced Oil Recovery 

 85 

2.2.2. Experimental plan: motivation and background 

The previous works on EEOR attempted to establish a principal possibility to produce more 
oil with the enzyme flooding. We have tried to approach more realistic conditions and to identify 
the problems that might arise during application of EEOR on a field scale. That is why smaller 
concentration and injection of 1 PV of the enzyme solution flushed by water were used and the 
enzyme production was checked along the tertiary recovery stage. 

The concentration of the enzyme solution was 1%wt in all core flooding experiments except 
Experiment F. The concentration was previously found to be sufficient to improve wettability of 
calcite from weakly water-wet to absolutely water-wet state (Khusainova et al., 2015). Higher 
concentrations were not examined due to economic unfeasibility. Pulse-type injection of the 
enzyme was also employed in order to minimize the enzyme consumption. 

 During the tertiary recovery aqueous phase of the effluent was analysed for the presence of 
the enzymes. The protein content analysis was carried out to find out how presence of the crude oil 
affects ability of the enzyme molecules to travel through the porous medium. Some manufacturers 
(e.g. Apollo Separation Technologies Inc) claimed that enzyme solution is not consumed during 
EEOR and the solution can be reused after the process of oil production. This had to be verified. 

 The experimental study started with the application of sandstone as a porous medium and all 
main hypotheses were checked using sandstone core samples. Irreversible adsorption of the 
enzymes onto the rock surface was much lower for sandstone than for chalk (Khusainova and 
Shapiro, submitted). Therefore, it was considered to be more reasonable to start dynamic testing of 
EEOR for sandstone rocks. 

 The injection scenarios varied from one experiment to another (Table 4). This was done as 
the recovery values were quite low and we tried to change various parameters to increase 
effectiveness of the enzyme application and to establish an optimal injection scheme. 

 In the first part of Experiment A the simplest injection scheme, i.e. injection of the enzyme 
pulse followed by SW, was implemented. Then the second pulse of the enzyme solution was 
pumped in order to check whether the amount of the additionally produced oil depends on the 
volume of the injected enzyme solution.  

 Experiment B started as a duplicate of Experiment A. However, it was paused for 1.5 
months for incubation after the first enzyme injection, while all the experimental conditions such as 
temperature and pressure were kept. There were two hypotheses behind carrying out the stage of 
incubation. First, in our previous adsorption study it was shown that the desorption time of a protein 
from the rock surface can be rather long. It might be assumed that during the injection scheme when 
enzyme injection was followed by immediate SW displacement, most of the enzyme molecules 
became adsorbed to the rock surface at the entrance of a core, and there was not enough time for 
them to desorb and to move further. Second, in the emulsion study it was also found that samples 
that were re-shaken after more than two months of storage created more emulsions with smaller 
mean size drops. This could be caused by a long diffusion time required for the protein molecules to 
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reach the oil-water interface. Therefore incubation of the enzyme solution in the core might be 
required in order to form an emulsion of the small drop sizes and to mobilise the trapped oil.  

The first incubation was relatively successful even without additional injection of the 
enzyme, so it would be expected that incubation with freshly injected protein might be even more 
effective. Once there was no more oil production, 2 PV of the NS81249 enzyme solution was 
injected and the experiment was paused for 1 month at the experimental conditions (the second 
incubation). 

The next tested possibility was application of the amylase NS81251. The group of 
lipases/esterases, unlike carbohydrases and, particularly, amylases, was claimed to be the most 
promising for EOR applications based on the wettability studies (Khusainova et al., 2015). This 
finding was in a good agreement with another investigation (Nasiri, 2011). In contrast, the group of 
carbohydrases demonstrated very poor ability to change the wetting state of the calcite, which might 
mean low adsorption rate of the enzyme molecules onto the mineral surface. This in turn might 
mean a lower enzyme loss in the porous medium and a higher chance for the enzyme molecules to 
travel through the rock to longer distances. At the same time, emulsification studies revealed that 
under certain conditions (after incubation) carbohydrases could form very stable emulsions with 
micro size drop distribution. Therefore, application of carbohydrases, particularly, amylases might 
have been successful in terms of EOR. The injection scheme for the amylase NS81251 (Experiment 
C) was similar to injection of lipase in Experiment B. 

For Experiment D it was decided to test how aging of a core can affect the overall 
performance of the lipase. Since the loss of the enzyme due to the irreversible adsorption was 
proposed as the main factor limiting improvement of the oil recovery, it was suggested that this loss 
could be much lower in an aged reservoir material as the pore walls will be “coated” with the 
surface active components deposited from the crude oil. 

Overall, avoiding or decreasing extent of the irreversible enzyme adsorption was found to be 
quite challenging task. Hence, in the Experiment E occurrence of such adsorption was used as an 
advantage. Nano-EOR, i.e. injection of nano-particles such as nano-silica, was reported as a quite 
successful alternative to the traditional EOR techniques (Ragab and Hannora; 2015; Skauge et al.; 
2010). At the same time, adsorption on solid substrate is one of the methods of support based 
protein immobilisation (Brady and Jordaan, 2009). Therefore, combination of nano- and enzymatic 
EOR by using enzyme-coated nano-silica particles could potentially result in a synergetic effect of 
the two methods. 

It was also decided to test application of EEOR on chalk cores. In the two oil displacement 
experiments conducted in chalk some precipitation was observed at the inlets of the cores (Figure 
2). The recovery values obtained in these experiments were considered to be unreliable and are not 
presented in this work. In the first experiment injection of 1 PV of 1% purified enzyme was 
followed by SW, while in the second experiment the injection scheme applied was injection of 1PV 
of the enzyme solution with silica nanoparticles followed by SW displacement. The precipitation 
was initially attributed to the viscous emulsion, potentially formed by the enzymes and crude oil, 
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placed in the core. In order to check this hypothesis, crude oil-brine interaction experiments were 
carried out. Even though the black formation was most likely to be caused by corrosion-induced 
asphaltene precipitation, the crude oil-brine interaction experiments revealed some important 
findings, which are presented in Chapter 5. 

 

Figure 2: Black precipitation formed at the inlet of the cores in oil displacement experiments 
when using chalk as core material. 

Finally, one more oil displacement experiment was carried out using chalk to test potential 
application of enzymatic EOR in carbonate reservoirs (Experiment F). Prior to this experiment all 
parts of the core flooding that potentially could introduce asphaltene precipitation were changed. In 
the experiment a solution of the purified enzyme product was applied as an EOR fluid, and 
concentration of the pure enzyme was higher than in the previous experiments where commercial 
product solutions were injected. This was done in order to check an effect of the increased pure 
enzyme concentration, to eliminate effect of the propylene glycol stabiliser precipitation and to 
improve stability of the enzyme molecules. No precipitation, as shown in Figure 2, was formed, so 
it was concluded that the black formation in the previous two experiments was due to asphaltene 
precipitation.  

3. Results 

Eight core flooding experiments, five with sandstone and three with chalk, were carried out 
within the framework of the study. Summary of the experimental results is given in Table 5 and the 
recovery plots are presented in Figure 3.  

Figures 3 (a) and (b) show oil production profiles for Experiments A and B. Application of 
1% NS81249 solution did not result in a significant production of the additional oil. Results from 
both Experiments A and B were in a good agreement with each other. After the first enzyme 
injection 1.4% of additional oil relative to the residual oil after waterflooding was produced, while 
the recovery factor was below 1% of OOIP (Table 5). For both experiments the first portion of the 
additional oil was observed only after 4.71PV and 9.84PV of SW injected, for the Experiments A 
and B, respectively. This can be considered as a much delayed oil production. After the second 
enzyme injection in Experiment A, the recovery factor was twice less than for the first enzyme  
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(a) Experiment A (b) Experiment B (c) Experiment C 

  
(d) Experiment D (e) Experiment E 

Figure 3: Production histories for the Experiments A - E.  
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Table 5: Summary of the results of oil displacement experiments* (OOIP - original oil in place).  

 Enzyme 
used 

Original 
saturations 

Secondary 
Recovery 

Tertiary Recovery Total oil 
recovery, 
%OOIP   swi soi Recovery, 

%OOIP 
EOR action The PV of SW 

injected when 
the first 
portion of oil 
was detected 

Additional 
recovery, % 
residual oil 

Additional 
recovery, 
%OOIP 

Total additional 
recovery, %OOIP 

Experiment A NS81249 0.36 0.64 37.59 
First enzyme slug injection 4.71 1.38 0.86 

1.21 38.8 
Second enzyme slug injection 6.41 0.56 0.35 

Experiment B NS81249 0.65 0.35 48.92 

Enzyme injection 9.84 1.41 0.72 

1.69 50.61 
Incubation without additional 
enzyme injection 

10.96 1.30 0.65 

Incubation with additional 
2PV enzyme injection 

4.19 0.64 0.32 

Experiment C NS81251 0.51 0.49 55.82 

Enzyme injection 8.13 0.40 0.17 

0.73 56.55 
Incubation without additional 
enzyme injection 

11.23 0.72 0.32 

Incubation with additional 
2PV enzyme injection 

9.82 0.55 0.24 

Experiment D NS81249 0.54 0.46 38.43 Enzyme injection (aged core) 4.89 1.45 0.89 0.89 39.32 
Experiment E NS81249 0.51 0.49 59.35 Injection of nano-silica–

enzyme mixture (aged core). 
5.15 0.56 0.23 0.23 59.58 

Experiment F NS81249 0.39 0.61 87.12 Purified enzyme injection  - 0 0 0 87.12 
* - the results for only one core flooding experiment using chalk are presented as iron-induced asphaltene precipitation was 

observed during the first two experiments and their results were counted as unreliable. 
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injection (Table 5). Visual analysis of the effluent showed that oil after enzyme injection was 
produced as “flakes” (Figure 4) 

 

 

 

 

 

 

 

 

Figure 4: Oil produced after the enzyme injection. 

In Experiment B the amount of the produced oil after the first incubation was comparable to 
the recovery factor after the first enzyme injection: 0.65% relative OOIP and 1.30% relative 
residual oil. So the step of incubation can be important and should be taken into account for the 
EEOR technology development (provided that a significant additional recovery could be achieved). 
However, after the second incubation and following SW displacement, the amount of the recovered 
oil was only 0.32% relative OOIP and 0.64% relative remaining oil, which is twice less than after 
the first incubation. Moreover, oil production was delayed compared to the SW flow: oil was first 
detected in the effluent after 4.19PV of SW was injected. Hence, the second incubation was not as 
effective as the first incubation.  

Application of the NS81251 solution followed by immediate SW displacement (Experiment 
C) also resulted in very low additional recovery (Table 5). After the first incubation (no additional 
enzyme injected) recovery factor increased almost twice, but still the amount of the recovered 
oilwas too small to consider the amylase as a successful EOR agent. The second incubation (with 
additional enzyme injected) did not improve oil recovery to a large extent. The recovery factors 
were 0.24% relative OOIP and 0.55% relative remaining oil, again lower compared to the first 
incubation. Similar to the lipase, oil produced due to the amylase injection was collected in the form 
of flakes (Figure 4) that might be the evidence for the formation of the oil-amylase complexes. 
Overall, the results were even lower for the amylase compared to the lipase. 

In case of application of the aged sandstone core (Experiment D), additional oil recovery 
after the enzyme injection did not increase significantly and was only 0.89% OOIP. Application of 
the combined nano-enzymatic-EOR in aged core (Experiment E) did not make a big difference, 
either: the amount of the additional oil recovered was the lowest among the experiments with 
sandstone (Table 5). 
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For the chalk core samples (Experiment F), injection of the purified enzyme did not result in 
any additional amount of produced oil. The recovery factor after the secondary waterflooding was 
87.12%. 

For all the experiments water phase was analysed for the presence of the enzymes. 
However, only trace amounts of the proteins were detected. Another observation relevant for all the 
experiments is that there was no significant increase of the pressure drops across the cores. 

 4. Discussion 

The results obtained in the study are different from the results of the previous works, in 
which recovery factors for the laboratory oil displacement tests were rather high - up to 16% (Feng 
et al., 2007; He and Zhonghong, 2011; Moon, 2008; Nasiri et al., 2009). However, in most of these 
studies enzymes were applied as components in commercial mixtures. Apart from the proteins, 
these mixtures contained other surface-active components that could also affect an amount of the 
additionally recovered oil. The observed effect was most likely synergetic and cannot be solely 
attributed to the enzymes. To the best knowledge of the authors, the work of Nasiri (2011) is the 
only where an enzyme (esterase/lipase) was applied without additional surface-active compounds. 
The recovery factors in Nasiri’s work were 3% OOIP for sandstone and 1 to 7.3% OOIP for 
carbonate cores. These values are much higher than recovery values obtained in this study. The 
most probable reason for such a difference is the implemented injection schemes. We used pulse-
type injection of the enzyme, when 1 PV of the enzyme solution was displaced by SW, while in the 
work of Nasiri the enzyme solution was continuously injected in tertiary mode (up to 13PV of 1% 
enzyme solution was pumped in). Continuous injection of the enzyme solution was not tested in our 
work due to economical unfeasibility of such an injection scheme. Since the enzymes in our work 
and in the work of Nasiri were similar (he also applied a sample obtained from Novozymes A/S), 
the difference in recoveries may only be attributed to the amounts injected. 

Based on the static experiments change of wettability and formation of emulsions were 
proposed as the main mechanisms for EEOR (Khusainova et al., 2015; Chapter 5). The results 
obtained during the core flooding experiments demonstrate that additional oil produced after the 
enzyme injection can rather be attributed to the change of wettability than to formation of the 
emulsions. The problem is that enzyme molecules become entrapped in the porous space instead of 
the released oil. Our initially proposed mechanism for EEOR implies that after release of the oil 
enzyme molecules should desorb and travel further detaching more oil from the rock surface. 
However, the irreversible protein adsorption was quite pronounced, so amount of the released oil 
was very low even though the NS81249 sample demonstrated high ability to form the emulsions. 

Compared to the adsorption study, concentration of the pure enzyme in the core flooding 
experiments was much lower (Khusainova and Shapiro, submitted). It has been well established that 
low concentrations facilitate protein adsorption on solid surfaces (Evers et al., 2008; Kirchman et 
al., 1989). Meanwhile, the emulsion study of the oil-brine-enzymes systems revealed that enzymes 
could form very stable emulsions, which means that enzymes also adsorb to water-oil interface 
(Chapter 5). In case of the oil displacement experiments, both oil-water and water-rock interfaces 
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were present and competitive adsorption took place. The enzymes would have better chance to 
travel through the porous media if they would prefer the oil-water interface. Then the main 
mechanism of the EEOR would be similar to surfactant flooding.  

However, protein adsorption on the rock pore walls prevailed over the adsorption on the oil-
water interface. This was supported by the second enzyme injection in Experiment A, for which the 
recovery factor was twice less than for the first enzyme injection (Table 5). When the first slug of 
the enzyme entered the core, enzyme molecules could access both the rock and the water-oil 
interfaces. So the oil could be mobilised both due to adsorption of the enzyme molecules, which 
detached the oil from the rock surface, as well as due to formation of the oil-enzyme structures in 
water. The mechanism of oil substitution by the protein molecules is in a line with static wettability 
tests (Khusainova et al., 2015). Visual analysis of the effluent showed that after enzyme injection 
the oil was produced as “flakes” (Figure 4). Similar structures were detected during the emulsion 
study (Chapter 5). Hence, the emulsion formation most likely also took place. When the second 
pulse of the enzyme was injected more rock surface was available at the inlet part of the core (as 
some oil was released), so more enzyme molecules adsorbed to the pore walls and less enzyme 
could penetrate through the core and reach the oil phase. This explains a lower recovery factor after 
application of the second enzyme slug. Even though some enzyme-oil structures can be formed in 
the rock, their formation is limited by the protein adsorption on solid substrate, so that the enzyme 
molecules simply cannot reach the oil in sufficient amounts. 

Prevalence of the enzyme adsorption mechanism is supported by the results of the 
experiment with amylase. Previously, no significant adsorption was observed for the NS81251 
amylase (Khusainova et al., 2015), while ability to form the oil-water emulsion was rather high. 
Hence, it was expected that the amylase could perform better than the NS81249 lipase. However, 
the recovery factor after the application of the amylase was even lower than for the lipase. This 
evidences that for the enzymes formation of the emulsions is not the main mechanism for the EOR 
applications. 

Predominance of the wettability change over emulsion formation explains why no additional 
oil was produced in the experiments with chalk after incubation (Experiment F). Chalk 
demonstrated much higher adsorption capacity (Khusainova and Shapiro, submitted) and even 
though 1% of purified NS81249 solution that contained about 4-4.5 times more pure enzyme was 
used, production of additional oil was not observed. 

Out of the various recovery attempts, the highest effect was observed after the stage of 
incubation during 1.5 months without addition of enzyme. Surprisingly, the second incubation after 
injection of the additional enzyme was less effective. It should be noted that the first incubation was 
longer. It appears that time plays more important role than even injection of the additional portion 
of the enzyme. It could also be that the first incubation resulted in recovery of almost all the 
additional oil, which could be recovered at all by this method. In further studies of enzymatic EOR, 
incubation should be taken into account as an important step. Anyway, so far amount of the 
additionally produced oil for sandstone during enzymatic tertiary recovery was relatively small. 
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EEOR trials in the aged core did not reveal any effect of the aging. However, it should be 
highlighted that only the light crude oils were applied in this study. The fractions of the heavy 
components in these oils were relatively low compared to the light fraction of saturates. Probably, 
there was not enough material to “coat” the pore walls to such extent that it would prevent the 
protein adsorption. Importance of the aging might become more apparent for heavier oils, where 
amount of the deposited heavy fractions could be much more significant.  

As was pointed out by some enzyme product manufacturers (e.g. Apollo Separation 
Technologies Inc), one of the advantages of application of enzymes as EOR agents is regeneration 
of the enzyme solutions. However, analysis of the water phase showed that only trace amounts of 
the proteins were contained in the effluent. Adsorption of enzymes prevented their regeneration and 
reuse. Another potential reason for the loss of the enzymes that was not checked in the framework of this 
work could be interaction with the crude oil. The oil is quite aggressive liquid from the biochemical point of 
view, while enzymes are biological substances sensitive to the solvents. Therefore, enzyme/protein-crude oil 
interactions could potentially cause degradation of the enzyme molecules. In the adsorption study the 
enzyme content was measured after the solution interacted with the crude oil. Reduction of the concentration 
was 14-17% and it was attributed to the enzyme adsorption onto the oil-water interface. However, further 
studies need to be conducted to establish effect of the long-term interaction between crude oil and enzyme-
containing brine on enzyme molecules stability at elevated pressures and temperatures. 

5. Conclusions 

The results obtained during the study show that that the probable application of enzymes as 
EOR agents may be doubted, at least under conditions close to the experimental conditions of the 
present work. Application of neither lipase nor amylase could not provide large enhancement of the 
ultimate oil recovery. For the sandstone the recovery factor during tertiary oil production varied 
from 0.23% OOIP up to 1.69% OOIP, while no additional oil production was observed when chalk 
sample was used. Apart from the small recovery factors, oil production after application of the 
enzymes was always much delayed.  

Change of wettability was confirmed to be the main mechanism that governs EEOR, while 
formation of the emulsions might be the secondary mechanism. However, loss of the enzymes due 
to the irreversible adsorption onto the rock surface limits successful implementation of the EEOR 
technique.  
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Chapter 7. Conclusions 

 The study of the enzymes for enhanced oil recovery (EOR) applications was carried out. 
The main question addressed in the investigation was whether enzymes can be utilised as effective 
EOR agents. To answer the question, the project was accomplished in four steps: the wettability 
study, the adsorption study, the emulsion and crude oil-brine interaction study and the core flooding 
study. In the wettability study, a number of enzyme groups was screened in order to select the most 
promising samples. The possible mechanisms of enzymatic EOR were proposed. In the adsorption 
study, the enzyme behaviour at water-rock interface was investigated. Production problems that 
might arise during field application of enzymatic EOR were revealed. During the emulsion and 
crude oil-brine interaction study, formation of the enzyme-stabilised emulsions was tested. Finally, 
in the core flooding study the enzyme performance under conditions similar to reservoir conditions 
was investigated.  

Wettability Study 

• The group of lipases/esterases was found to be the most promising for further investigations in 
terms of EOR, since they are capable of changing the wetting state of calcite surface from weakly to 
absolutely water-wet state. For some esterases/lipases the threshold concentration of enzyme 
product from which they were capable to improve wettability to absolutely water-wet state was as 
low as 0.1%wt, which corresponds to 0.002 – 0.005 %wt of pure protein.  

• Influence of the stabilising compounds of the pure enzyme product on improvement of 
wettability was excluded and effect of the enzyme was confirmed. 

• Possible mechanisms underlying wettability alteration under influence of esterases/lipases are 
adsorption of enzymes onto the mineral and/or formation of additional interfacially active oil 
compounds. 

• Proteases also had some ability to improve wetting state of calcite, however, the effect could be 
non-uniform depending on the impurities in the calcite. 

• Carbohydrases, oxidoreductases and EOR-ZYMAX™ had no effect on wettability of calcite at 
concentrations of enzyme product from 0.1 to 1%wt. 

• The commercial product Apollo GreenZyme™ improved wetting state of the calcite minerals at 
the whole range of investigated concentrations, but results could be produced by both enzyme and 
other components of the mixture (presumably, surfactants).  

• Adhesion behaviour tests in conjunction with contact angle measurements may be applied as a 
screening tool for selection of the enzymes capable of changing the wetting properties of calcite. At 
investigated concentrations, results on adhesion behaviour and contact angle measurement are 
strongly dependent on the type of enzyme. 
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Adsorption study 

• Irreversible adsorption significantly hinders the enzyme propagation in the rock material.  

• Extent of irreversible adsorption increases with time, as the ratio of reversible to irreversible 
protein adsorption is strongly dependent on the bulk protein concentration. Such dependence might 
become a serious obstacle for the protein transport in the reservoir rocks that are characterised by 
both high internal surface and strong affinity to the protein. 

• The retention rate of chalk was much higher than of sandstone. So sandstone possesses 
better quality from the enzymatic EOR application point of view. 

• None of the applied methods (change of ionic strength and pH of the enzyme solution and 
the displacing fluid, application of various injection rates and injection of the enzyme stabiliser) 
was able to promote desorption of the enzymes. For the development of viable EEOR technology, 
an alternative solution that is able to keep reasonable balance between reversible and irreversible 
adsorption should be established. 

• Application of various substrates such as minerals, particles and outcrop core rocks, 
demonstrated that the amount of the enzyme adsorbed was dependent on the type of the solid 
substrate. In order to obtain the most reliable results for EOR applications, enzyme adsorption 
behaviour should be estimated using dynamic flow-through experiments. 

• A reasonably good agreement between the model results and the experimental flow-through 
data was achieved. Addition of the anomalous diffusion to the traditional diffusion-like dispersion 
did not result in any significant improvements of the model. 

Emulsion and crude oil-brine interaction study 

• Fraction of saturates was found to be responsible for the formation of protein-stabilised 
emulsions.  

• The group of lipases/esterases demonstrated the best performance as emulsifying agents. 
High surface activity of the lipases/esterases at oil-water interface was in a good agreement with the 
wettability tests results. 

• When an ester was added to the oil phase and the esterase was applied, the emulsion was 
less stable than for ester-free system. Destabilising effect of the ester overweighed stabilising effect 
of the carboxylic acid and alcohol that were formed due to enzymatic hydrolysis of the ester.  

• Incubation of the oil-enzyme systems results in formation of more stable emulsions. 
Therefore, the stage of incubation should be taken into account when the methodology of the core 
flooding experiments is designed. 

• Enzyme molecules themselves, not stabilising ingredients, possess surface-active properties 
that result in formation of the emulsions. 
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• Combined application of an enzyme and solid particles resulted in creation of more stable 
and tighter emulsions compared to the application of enzymes alone.  

• Methodology of protein-stabilised emulsions preparation was developed. The method allows 
handling large number of samples and provides reproducible results. 

• The crude oil-brine interaction experiments revealed that exposure of the enzyme solution to 
the interaction with crude oil causes precipitation of the propylene glycol (main stabilising 
ingredient) in the form of gel/viscous emulsion.  

• A very viscous oil-in-water emulsion was formed when the purified enzyme in higher 
concentration was applied in the crude oil-brine interaction test. The oil drops had unusual 
asymmetric shapes; also some “net structures” of oil in water were detected. 

Core flooding study 

• The study determined relatively low potential of enzymes as EOR agents, at least under 
conditions close to the experimental conditions of the present work 

• Application of neither lipase nor amylase did not result in significant improvement of the 
ultimate oil recovery. However, in general, performance of the lipase sample was better than of the 
amylase. 

• Additional recovery after application of the enzymes in tertiary mode varied from 0.23% 
OOIP up to 1.69% OOIP in sandstone, while no enzyme effect on oil recovery was observed for 
chalk.  

•  Change of wettability has been a primary mechanism of EEOR. Formation of the emulsions 
was not that pronounced, but it might be the secondary mechanism that is responsible for the 
enhancement of oil recovery after application of enzymes. 

•  Effective realisation of the wettability mechanism is strongly limited by the loss of the 
enzyme molecules due to the irreversible adsorption. Permanent deposition of the enzyme 
molecules on the porous rock surfaces was claimed to be the main restriction for successful 
implementation of the EEOR technique. 



Chapter 8. Recommendations for Future Work 

• If enzymes are going to be further developed as EOR agents, the first problem that needs to 
be solved is reduction of the enzyme irreversible adsorption onto the rock surface and increase of 
the ratio of the reversible to irreversible adsorption. Among others this might be achieved by (a) 
addition of stabilising co-solvents, e.g. glycerol and sucrose (Evers et al., 2011; Koo et al., 2008; 
Timasheff, 1993); (b) varying amount/addition of kosmotropic (e.g. (NH4)2SO4 and Na2SO4) and 
chaotropic (NaSCN and Ca(SCN)2) salts (Evers et al., 2009); (c) injection of polymers prior 
enzyme slug injection (similar to polymer pre-treatment during surfactant flooding (Wang et al., 
2015)) . 

• Only light crude oils were applied in the study. EEOR might perform completely in a 
different way for heavy oils. For example, asphaltenes and lipids have similar structures; therefore 
there is some chance that lipase NS81249 would interact with the asphaltene fraction of the crude 
oil. Therefore, crude oils with various properties should be tested for EEOR applications. 

• In order to realise catalytic properties of the enzymes, an enzyme that can interact with 
crude oil (or a certain fraction of the oil) should be selected/designed/”built”. A chemical reaction 
that would be facilitated with the enzyme injection should be beneficial from the EOR point of 
view. For example, it can be the chemical reaction that can “break” asphaltenes into smaller 
hydrocarbon molecules and an enzyme that will catalyse this reaction. This process can serve as in-
situ crude oil refining and could probably be applied in heavy oil reservoirs. 

• More crude oil-enzyme solution interaction experiments should be carried out in order to 
find out long-term effect of the crude oil on enzyme stability, activity and molecular structure. The 
experiments should be conducted under the conditions similar to the reservoir conditions (i.e. 
elevated temperature and pressure). 

• Combined application of the enzymes and nano-particles did not result in large amount of 
additionally produced oil. This was only the first trial. A more detailed investigation should be 
carried out in order to test the synergetic effect of enzymes and nano-particles on the oil recovery 
and to establish an optimal particle concentration. 

• The established mechanisms underlying EEOR are based on the surface activity of the 
enzymes and are determined by their protein nature. The catalytic effect was not observed so far. 
Therefore, further investigations may be focused on application of proteins, which, in turn, might 
also be more economically feasible. To the best of our knowledge, there is only one study that has 
presented application of a protein (particularly, of the aqueous solution of a common bean protein, 
Phaseolus vulgaris Linn) for improvement of oil production (Gbonhinbor and Onyekonwu, 2015).  

• The following improvements are suggested for a better performance of the core flooding set-
up:  
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(a) As described in Appendix 1, after change of an injection fluid, the pressure of the 
ISCO-pump raised up to P1 (P1 is the injection pressure shown by the ISCO-pump at the end of 
injection of the previous fluid) before opening the inlet valve of the coreholder. This was done in 
order to exclude entering the fluid from the core to the injection cylinder as the pressure in the 
coreholder is always higher than the atmospheric pressure. However, this adjustment of the 
pressures using pressure recordings of the ISCO-pump was sometimes quite rough, and pressure 
fluctuations were observed at the beginning of the experimental stage. This can be avoided, if a 
pressure transducer can be incorporated into the coreholder inlet line. Then, when an injection fluid 
is changed the injection pressure should first increase up to the value of the pressure in the 
coreholder inlet line, and only afterwards the inlet valve of the coreholder should be opened. 

(b) The methodology that was used to measure small quantities of crude oil in the 
effluent (see Appendix 1, Section 8b) was quite time- and labour-consuming. For conduction of a 
large number of oil displacement experiments, application of an automated crude oil detector may 
be quite beneficial. An oil content meter using the solvent extraction/infrared analysis method that 
is widely used for the oil content measurements during oil spills and wastewater treatment is a good 
example of the device that can be adapted for the analysis of the effluent from core flooding 
experiments (Global Environment Centre Foundation website). The basic principle of the oil 
content meter is similar to the methodology that was used during the study. However, the steps of 
solvent addition, mixing, separation of the solvent phase and oil concentration measurements are 
accomplished automatically, that makes the process of oil content determination more effective. 
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Appendix 1. Step-wise Description of an Oil Displacement Experiment 
and What We Have Learned along the Experimental Journey 

1. General overview 

An oil displacement experiment can be divided into five steps: selection and preparation of a 
core, saturation with a synthetic brine, saturation with a crude oil, secondary, and tertiary recovery 
(Figure 1). Most of the steps comprise of sub-steps and will be discussed in details below. Dynamic 
adsorption tests (flow-through experiments) discussed in Chapter 4 were carried out in a similar 
way, but excluding the step of saturation with a crude oil.  

 
Figure 1: Flowchart of Oil Displacement Experiment. 

2. Preparation of the coreflooding set-up 

Since our experiments implied use of enzymes, which are biological substances, an attention 
was paid to the cleanliness of the equipment. A coreflooding set-up (including injection cylinders) 
was cleaned with toluene and ethanol prior to every experiment. Description of the set-up can be 
found in Chapters 4 and 6. 

 The lines going to pressure transducers were always filled with distilled water. It was found 
that use of sea water (SW) in these lines could interfere pressure readings. 

3. Selection of a core 

Depending on the aim of an experiment and type of the rock required, the core samples were 
taken from outcrop or a reservoir. The outcrop samples were used at the beginning of the study, 
where general methodology was at the stage of development. In order to investigate the effect of the 
different rock types sandstone and chalk cores were used. It was found that use of the outcrop chalk 
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preparation of 

the core 
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samples for oil displacement experiments is limited due to their fragile nature. Our in-house 
protocol suggests three steps of saturation (see Section 5) that introduce a rather long rock-brine 
interaction. As a result, we experienced several tests where outcrop chalk cores were fractured 
during the experiment. So for chalk only reservoir cores were used in the oil displacement 
experiments. 

All the cores were initially dried in the oven for several days (at least overnight) and then 
CT-scanned in order to check integrity and homogeneity of the core and discard fractured samples 
as application of fractured cores was out of the scope of the work. For each core scans of three 
cross-sections were done: two along the longitudinal axes and one along the lateral axis (see 
example on Figure 2). This combination and number of cross-sections were found to keep good 
balance between number of pictures required and amount of information that can be extracted. 

 

   
                   (a)                    (b)                     (c) 

 

Figure 2: Pictures obtained from the CT-scanner for one of the reservoir chalk cores. (a) and 
(b) are cross-sections obtained along the longitudinal axes and (c) is the cross-section obtained 
along the lateral axis. The red circle highlights a high-density inclusion; the yellow ovals 
demonstrate high-density layers, while the blue oval shows a low-density layer. Overall, these 
pictures show that the sample is heterogeneous. 

4. Preparation of the core 

a. Cleaning of the core samples 

Both chalk and sandstone core samples were cleaned with toluene and methanol. Toluene 
was used to remove organic compounds, which might be present in the rock, while methanol was 
used to remove polar compounds and toluene (as those two solvents are very miscible). Besides, 
methanol was used after the toluene, as it is more volatile compared to toluene that makes it easier 
to remove the cleaning solvent from the core sample. At the beginning of the study ethanol was 
used instead of methanol. However, solubility of sodium chloride that is the main component of the 
naturally occurring brine in the rock is 25 times higher in methanol than in ethanol (Pinho and 
Macedo, 1996). Therefore, it was decided to use methanol despite its high toxicity.   

A cleaning apparatus was a simplified coreflooding set-up (Figure 4). A core was placed 
into the rubber sleeve and then in the coreholder. The sleeve pressure of 20 bars was applied both 
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for chalk and sandstone samples. Toluene and methanol were injected in 3 cycles with the flow rate 
of 1 ml/min (Table 1). If the effluent was colourless and contained no Cl- ions at the end of the third 
cycle, cleaning was stopped. Otherwise, additional cycles were run until there was no colour and no 
Cl- ions in the effluent. Presence of Cl- ions was checked by adding AgNO3, which is a reagent for 
qualitative analysis of chloride ions. The cleaned sample was removed from the coreholder and 
dried at 90ºC at least overnight, up to a constant weight. The CT-scans of the core were taken again 
in order to make sure that the core could keep the integrity during the cleaning process. If no 
fractures/damages were created during the cleaning procedure, it was assumed that the core is 
strong enough to withstand further experimental procedure. 

Table 1: Solvents injection scheme for cleaning of the cores. 

Rock Type Cleaning Scheme 
Chalk First cycle 300 ml of toluene followed by 300 ml of methanol 

Second cycle 200 ml of toluene followed by 200 ml of methanol 
Third cycle 100 ml of toluene followed by 100 ml of methanol 

Sandstone First cycle 200 ml of toluene followed by 200 ml of methanol 
Second cycle 100 ml of toluene followed by 100 ml of methanol 
Third cycle 50 ml of toluene followed by 50 ml of methanol 

 

b. Porosity and permeability measurements 

 True porosity and Klinkenberg permeability of the core were measured by the steady state 
gas permeameter and porosimeter (Poroperm, VINCI TECHNOLOGIES), using nitrogen. The true 
porosity was used for further estimation of the extent of saturation with the brine. 

5. Saturation with the synthetic brine 

The process of saturation of the core consisted of three stages. The first stage was five-step 
saturation under vacuum; the second stage was saturation under the pressure; and finally, dynamic 
saturation with a constant flow of the brine was carried out. In the original in-house protocol the 
saturation consisted of only dynamic saturation. However, it was found that for some samples, 
especially for Nordhorn sandstone (Austria), the overall brine saturation was below 60% when the 
core was saturated only by injecting brine. The following parameters were changed in order to 
approach complete saturation of the core: increase of the injection pressure; different directions of 
the flow and vertical injection; decrease of the flow rate. However, none of these modifications 
helped to improve the degree of saturation. Therefore, the procedure of saturation under the vacuum 
was investigated. At the beginning the cores were fully covered with the brine and saturated during 
different periods of time. Nevertheless, the difference between true porosity and the porosity 
relative SW was still quite high. Air bubbles trapped in the middle of the core were suggested to be 
the main reason for incomplete saturation. Therefore, a five-step saturation under the vacuum was 
proposed. This procedure provides gradual saturation of the sample with the brine, while there is 
always some path for the air to be removed. As a result, a sufficient brine saturation (close to true 
porosity) could be reached. 
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a. Five-step saturation under the vacuum 

1. A cleaned core sample and SW were deaerated separately for 2 hours (Figure 3, a) 

2. One third of the degassed core was immersed into the degassed SW for 1.5 hours (Figure 3, b) 

3. Two thirds of the degassed core were immersed into the degassed SW for 1.5 hours (Figure 3, c) 

4. Almost full coverage of the core with SW for 1.5 hours (Figure 3, d) 

5. The core was turned upside down and fully covered with SW overnight (Figure 3, e) 

 

 

 

 

 

(a)                        (b)                               (c)                                (d)                                    (e) 

Figure 3: 5-step saturation under the vacuum. 

 

After saturation under the vacuum the core was weighed and its pore volume was 
determined based on the weight method: 

𝑃𝑉 = 𝑚(𝑐𝑜𝑟𝑒 + 𝑆𝑊) −𝑚(𝑐𝑜𝑟𝑒)
𝜌(𝑆𝑊)  

 The level of saturation was determined by comparing the pore volume obtained by the 
weight method with pore volume value acquired by the porosimeter. 

b. Saturation under the pressure 

After the saturation under the vacuum the core was put into a stainless steel cylinder to be 
pressurized under 100 bars in SW for 48 hours (the surrounding SW was pre-degassed for 2 hours). 
The reason for saturation under high pressure is that if there any air bubbles were still left in the 
core, under high pressure they became smaller and it was easier for them to be released from the 
porous media. It was experimentally observed that for chalk this step is more important than for 
sandstone. For the chalk cores, saturation under the pressure can give up to 5% of additional brine 
in a core, while for the sandstone this value was below 1%. At the end of saturation under pressure 
the core was weighed again and the level of saturation was established. The difference between true 
and actual pore volume of less than 5% was counted as acceptable. The actual pore volume (PV) 
calculated in this step was assumed to be final and was used for all further calculations. 

c. Dynamic saturation with the constant flow of the brine 

After saturation under pressure the core was quickly transferred into the rubber sleeve and 
assembled in the coreholder (Figure 4). For chalk cores, stainless steel filters were put on both sides 

1/3 
2/3 

2-3 mm 
2-3 cm 
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in order to exclude indentation of the end caps of the coreholder into the cores and to provide 
uniform distribution of the injecting fluid. The sleeve pressure applied was 50bar for outcrop 
sandstone and reservoir chalk and 20bar for outcrop chalk. 

The coreholder’s heating jacket was switched on. The working temperature was 60ºC in all 
the oil displacement experiments, as this is the most optimal temperature for the applied enzymes 
(see Chapter 6), The system was left with no flow for 24 hours. This was done in order to establish 
uniform temperature in the core and to equilibrate the system. After that at least 3 PV and 7 PV of 
SW were run through the core with the flow rate of 0.1 ml/min for chalk and sandstone, 
respectively. Injection and differential pressures were monitored; their stabilities were used as an 
indication that the core kept its integrity. Just before stopping brine injection the pressure of 
injecting ISCO-pump was observed and written down as P1.  

 
Figure 4: Coreflooding set-up used for dynamic adsorption experiments. 

6. Saturation with crude oil – establishment of original water saturation 

Prior the crude oil injection the inlet line from the injection cylinder up to the inlet valve of 
the coreholder was filled with the crude oil to reduce the dead volume. The outlet line connecting 
the outlet valve of coreholder with the fraction collector was cleaned from SW and left empty. 
These two actions were always made when the injected fluid was changed. Before opening the inlet 
valve of the coreholder the pressure was raised up to P1. This was done in order to exclude SW 
entering the injection cylinder with the crude oil as the pressure in the coreholder is always higher 
than atmospheric pressure. The pressure adjustment was always done when injecting liquid was 
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changed or injecting pump was refilled (this will not be mentioned for the further steps). Then the 
flow rate was set to be 0.1ml/min and crude oil was injected until no more SW was produced. The 
effluent was collected using the X-Y fraction collector with the fraction size of 14ml. Similar to 
brine saturation, injection and differential pressures were monitored.  

The original water saturation and the volume of oil in place were calculated from the 
volume of SW produced, taking into account dead volume of the coreholder. SW volumes above 
0.5ml were determined by reading volume graduation on the tube (all the tubes for the effluent 
collection in all steps were with volume graduation). For the samples with SW below 0.5ml the 
volume of water phase was determined by comparison, i.e. similar tubes with pre-known volume of 
SW were prepared and compared to the tubes filled during crude oil injection.  

If there was no aging according to the experimental plan, the pressure P1 was noticed again 
at the end, and the crude oil injection was stopped.  

7. Aging (if applicable) 

After the original water saturation was established, the flow rate was changed to 
0.002ml/min and the core was aged for 3 weeks under dynamic flow. At the end of the aging step 
the core was re-flooded with the flow rate of 0.1ml/min for 24 hours.  

8. Secondary waterflooding – SW waterflooding 

a. Oil displacement  

The SW was injected until no more oil was produced. The applied flow rate was 0.1ml/min. 
In cases where the injection pressure was too high, the flow rate decreased up to 0.01-0.05ml/min. 
The fraction size was 3ml (1/6-1/5 PV) at the beginning, to be able to detect the point of water 
breakthrough. Once the amount of oil in the effluent was less than 0.2-0.3ml, the fraction size was 
changed to 0.5 PV of the core, so that there were at least two points for every pore volume injected. 
This was done to reduce amount of the samples to analyse and also to increase accuracy of the oil 
content measurements.  

In practice it was found to be impossible to reach a complete stop of an oil production. The 
line connecting the outlet valve of the coreholder and the fraction collector was made of transparent 
plastic. It could be noticed visually that a small fraction of the crude oil was stuck to the walls. 
When no more oil could be produced as a secondary recovery, some oil in the effluent was still 
observed. This was found to be oil from the outlet tube walls.  Therefore after some time when the 
amount of produced oil stabilised to trace amounts, the outlet plastic line was cleaned with 3ml of 
toluene (the toluene effluent was collected and kept, see 8b) and ethanol (the effluent was 
discarded) and dried. Then SW injection continued overnight to confirm that there was no more oil 
production from the core. Before cleaning the line, injection and differential pressure profiles 
should be checked. If they are stable, trace amounts of the produced oil are most likely to be the oil 
that detaches from the tube walls, as discussed above. However, if there are some fluctuations in 
pressure profiles, the core is probably fractured.  
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b. Analysis of the effluent 

The oil volume in the effluent tubes was determined visually (i.e. using graduation on the 
tube) when the volume of oil produced was more than 0.5ml. The rest of the samples were analysed 
using the UV-vis method adapted from Evdokimov et al. (2003). This method was found to be 
applicable and reliable for analysis of the oil produced during coreflooding experiments (Katika et 
al., 2015). 

It was found that the oil content and the optical density (OD) of the oil solution in a certain 
amount of toluene are linearly dependent (Katika et al., 2015). 3ml of toluene was chosen as a fixed 
toluene volume. First, the two calibration curves for the oil content determination were built using 
samples with pre-known oil volumes. Due to stickiness of the oil that caused difficulties during oil 
transferring, the mass of the oil was measured and then converted to the volume. The first curve 
was built for the samples that contained up to 1ml of crude oil, while second curve was for 0-100 µl 
volumes (Figure 5). A reason for building the “micro” calibration curve was that for this range the 
slope of Net absorbance=f(oil content) graph was slightly sharper than for the 0-1ml range. For both 
cases, three replicates were performed in order to minimise the experimental error. Moreover, for 
the case of the “micro” curve an additional version that used enzyme solution as water phase was 
constructed. This was done in order to confirm that enzymes do not interfere to the absorbance 
measurements. Standard curves were built once at the beginning of the experimental work and then 
they were used for the whole work.  

 
Figure 5: The “micro” calibration curve for oil volume determination. 

The experimental steps for an OD measurement were as follows. 3ml of toluene was added 
to a vial containing oil. The solution was thoroughly shaken in order to dissolve all the oil and left 
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for a few minutes until two phases were completely separated. Then toluene phase was transferred 
to the glass cuvettes and net absorbance at 750nm was measured. OD of the solutions was always 
measured within 10-15 min after solution preparation; otherwise net absorbance values were 
decreasing and unstable over time. Three values of net absorbance for each sample were 
determined. 

A toluene solution obtained from tube washing (see Section 8a) was analysed in a similar 
way. The obtained oil volume was added to the volume of the oil in the first effluent tube. 

9. Tertiary waterflooding – Enzymatic Enhanced Oil Recovery 

a. Injection of enzyme pulse, incubation (if applicable) and displacement with SW  

 In all the oil displacement experiments enzyme was injected as a 1 PV pulse of the 1%wt 
enzyme product solution (more details about enzyme concentration can be found in Chapter 3). The 
solution was prepared by dilution of the enzyme product in the same synthetic SW that was used 
throughout the experiment. The flow rate of 0.1ml/min was applied (unless injection pressure was 
too high), the size of the effluent was 0.5 PV of the core. A small amount (5-10ml) of the original 
enzyme solution was kept for the Bradford assay to determine initial enzyme concentration (see 
Section 9b). In experiments where effect of incubation was investigated, enzyme was injected as 2 
PV pulse and was left in the core for 1 month.  

 Injected and incubated (if applicable) enzyme was displaced with SW until no more oil was 
produced. During tertiary production the process of oil production was captured by a web camera 
applying the Yawcam software. This method was introduced by Halim et al. (2015) and was used in 
order to be capable of establishing precisely when the first portion of additional oil was produced. 
As it was discussed in section 8a, oil stuck to the walls of the plastic tube that connected outlet 
valve of the coreholder and the fraction collector. This issue became quite significant during tertiary 
recovery as up to 1% of original oil in place (OOIP) could be retained in the tube. Therefore, the 
production history was built based on the photo data. At the end of tertiary waterflooding the outlet 
plastic tube was washed with 3ml of toluene. This amount was equally distributed during 
production time.  

During tertiary recovery both water and oil phases were analysed. Oil phase was analysed 
according to the Section 8b, while water phase was checked for enzyme content (see Section 9b). 
For cases, where both oil and water phases were present, 3ml of water phase were first sampled 
using syringe with the needle (to make sure that toluene did not destroy potentially present enzyme 
molecules). Afterwards 3ml of toluene was added in a way, so oil attached to the sampling needle 
was washed into the toluene solution.  

b. Analysis of the water phase of the effluent 

Enzyme concentrations were measured using Bradford Assay (Bradford, 1976). Standard 
Sigma-Aldrich protocols were used in this work. At the beginning the standard 3.1ml Bradford 
assay (that utilises 1:30 protein - Bradford reagent ratio) was chosen, however, no enzyme was 
detected in the effluent solutions. Therefore, the method was switched to the Micro 2 ml Assay 
Protocol, which can determine protein concentration in the range of 1–10 µg/ml. Briefly, the 
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standard curve covering protein range of 1–10 µ/ml was built using a BSA standard. Therefore, all 
the determined enzyme concentrations were concentrations relative to BSA. In contrast to the 
standard curve for oil content analysis, the BSA standard curve (Net absorbance = f(protein 
concentration)) should have been rebuilt for every set of measurements.1ml of an unknown sample 
(or a BSA standard sample) and 1ml of the Bradford reagent was mixed in a falcon tube using 
vortex. The mixture was incubated at room temperature for about 10min. Then the sample was 
transferred to the cuvette and absorbance at 595nm was measured. The enzyme concentration was 
determined by comparing the net absorbance values against the standard curve. Presence of certain 
salts in the solution might interfere to the absorbance measurements. The produced SW containing 
enzymes was a high ionic solution containing six different salts. However, it was established that 
these salts do not affect final results, and SW was used as a buffer solution. 

10. Recovery plots 

The recovery plots expressed cumulative percentage of the oil produced as a function of 
pore volume of displacing fluid injected (Figure 6). Two features should be kept in mind, when 
constructing the recovery plot. First, the pore volume value that should be used is the one that was 
determined after the step of saturation with SW under pressure (see Section 5b). Second, during 
determination of the effluent volume the dead volume should be subtracted. This should be done 
after each change of the injected fluid.  

 
Figure 6: Recovery plot for the Experiment A (see Chapter 6). 
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