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Summary 

Asphaltenes are normally present in the reservoir oil and for industry they are analogous to 
“cholesterol” since their precipitation stops the entire production and causes the loss of millions of 
dollars. Asphaltenes consist of “ill defined” components of high molecular weight (around 500-4000 
gm/mol) and are considered most polar in the oil compared to the other components. This polar nature 
of asphaltenes is imparted by heteroatoms (O, S, N, vanadium, nickel) present in their structure. 
Asphaltenes molecules associate with each other and precipitate at certain temperature, pressure and 
composition. Asphaltenes can easily precipitate as pressure is reduced but also if the oil is diluted by 
light hydrocarbons eg. A gas such as methane, CO2 or nitrogen. Ever since the introduction of 
enhanced oil recovery (EOR) method with gas, the asphaltene precipitation problem has become even 
worse. In addition, at refinery inlet, more than two crudes (degassed oil) are generally mixed to 
upgrade or downgrade the feedstock. This blending of different crudes may also cause asphaltene 
precipitation. However, prediction of these conditions, where asphaltenes precipitate out, is quite 
uncertain and detailed thermodynamic model and appropriate oil characterization is required. 

There have been several attempts to model asphaltene precipitation using various equations of state 
(EoS) and empirical models. In the past few years, the association models based on the Cubic Plus 
Association (CPA) and Statistical Associating Fluid Theory (SAFT) EoS are found to be promising 
models for the asphaltene precipitation study. However, there are different opinions in the literature 
and it is still unclear whether we can successfully model asphaltene precipitation. Therefore, a 
systematic study is important to model asphaltene precipitation and show what we can achieve with 
these models.  

In this PhD project, a modeling approach using the CPA and PC-SAFT EoS is developed to model 
asphaltene precipitation from reservoir oil and degassed crude considering asphaltenes as associating 
component/s. Several reservoir oils are studied in order to show that the developed approach can be 
used to predict gas injection and reservoir depressurization effect after calculating the model 
parameters from the required experimental data. The developed approach with Soave-Redlich-
Kwong (SRK) with classical mixing rule and SRK with Huron Vidal mixing rule is also studied 
considering asphaltenes as non-associating component/s. The well known approach from the 
literature based on the PC-SAFT EoS, where asphaltenes are considered non-associating component, 
is also been studied and found that it needs temperature dependency like the developed approach in 
this work to correlate asphaltenes onset conditions at different temperatures. In addition, asphaltene 
yield from crude oil during the addition of n-paraffin is also studied and concluded that the models 
cannot predict it but can only correlate the data. The CPA and PC-SAFT models are also studied to 
predict asphaltene onset conditions when more than two crudes are mixed. A MATLAB tool is also 
developed in order to use these models to study asphaltene phase envelope with or without gas 
injection. 
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Resumé 

Asfaltener er normalt til stede i reservoir olie, og for industrien virker de lige som ”kolesetrol”, da 
udfældning af dem kan stoppe hele produktionen, med tab af millioner af dollars som følge. 
Asfaltener består af ”ikke fuldt definerede” komponenter med høj molekylvægt ( omkring 500-4000 
g/mol), og er samtidig anset som de mest polære komponenter i olien. Denne polære natur af 
asfaltener skabes af tilstedeværelsen af heteroatomer (O, S, N, Vanadium and Nickel). Asfalten 
molekyler associerer med hinanden, og vil udfælde ved bestemte temperaturer, tryk og 
sammensætning. Asfaltener vil nemt udfælde når trykket falder, men også hvis olien er fortyndet med 
lette carbonhydrider for eksempel en gas som CO2 eller nitrogen. Siden introduktionen af forbedret 
olieudvinding (EOR) med gas er problemet med udfældning af asfaltener kun blevet større. 
Derudover vil mere end to råolier (afgasset) ofstest bliver blandet ved indløbet til et rafinaderi for at 
op- eller nedgradere råmaterialet. Denne blanding af forskellige råolier kan også inducere asfalten 
udfældning. Forudsigelsen af de forhold hvor asfaltener vil udfælde er i midlertid tæmmelig usikker, 
og en detaljeret termodynamisk model og passende olie karakterisering er nødvendig. 

Der har været flere forsøg på at modellere asfalten udfældning med flere forskellige tilstandsligninger 
(EoS) og empiriske modeller. I de sidste par år har associations modeller som Cubic Plus Association 
(CPA) og Statistical Associating Fluid Theory (SAFT) vist sig som lovende for undersøgelser af 
asfalten udfældning. Der er imidlertid forskellige meninger i litteraturen og det er stadig uklart om vi 
succesfuldt kan modeller asfalten udfældning. Derfor er et systematisk studie i modellering af asfalten 
udfældning vigtig og vil vise hvad vi kan opnå med disse modeller.  

I dette PhD projekt er en modellerings tilgang for modellering af asfalten udfældning fra reservoir 
olie og afgasset råolie, hvor asfaltenerne er betragtet som associerende, udviklet. Flere reservoir olier 
er studeret for at vise at den udviklede tilgang kan bruges til at forudsige effekten af gas injektion  og 
tryk reduktionen i reservoirer, eftter at model parametrene er beregnet fra det nødvendige 
eksperimentielle data. Den udviklede tilgang er også studeret med Soave-Redlich-Kwong (SRK) med 
klassisk blandingsregel og SRK med Huron Vidal blandingsregel, hvor asfaltenerene er betragtet som 
ikke associerende. Den velkendte tilgang fra literaturen for PC-SAFT, hvor asfaltener er betragtet 
som ikke associerende er også studeret og det er fundet at der er et behov for en 
temperaturafhængighed for at korrolere asfaltenernes udfældningspunkt ved forskellige temperature, 
i lighed med tilgangen udviklet i dette studie. Udover dette, er asfalten udbyttet fra råolie ved 
tilsætning af n-paraffin også studeret og det konkluderes at modellen ikke kan forudsige dette, men 
kun korrelere dataen. Forudsigelse af asfaltenernes udfældningsbetingelser når mere end to råolier er 
blandet er også studeret med CPA og PC-SAFT modelleren. Et MATLAB værktøj er også udviklet 
således at man kan bruge de nævnte modeller til at studere asfaltens ”phase envelope” med og uden 
gas injektion.  
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Chapter 1. Introduction 

1.1 Asphalenes: A Flow Assurance Problem 

Generally, oil contains hundreds to thousands of components. Among these components, lower 
molecular weight components (lighter components) can be separated out and defined in terms of its 
properties like vapor pressure, liquid density, critical temperature and pressure. The components with 
higher molecular weight (heavier components) cannot be separated out and defined. However, there 
is a way to define different fractions of these heavier components based on their solubility in different 
solvents.  The fraction, which is not soluble in n-pentane/n-heptane, is known as asphaltenes and is 
the heaviest fraction in the reservoir oil. It is an “ill defined” component of high molecular weight 
(around 500-4000 Da) and is considered most polar part in the oil compared to the other components 
[1]. This polar nature of asphaltenes is believed to be imparted by heteroatoms (O, S, N, vanadium, 
nickel) present in its structure. Asphaltenes molecules associate with each other and precipitate at 
certain temperature, pressure and composition. However, prediction of these conditions, where 
asphaltenes precipitate, is quite uncertain and detailed thermodynamic model together with 
appropriate oil characterization is required. Asphaltenes can easily precipitate as pressure is reduced 

but also if the oil is diluted by light hydrocarbons or gas eg. methane, ܱܥଶ or ଶܰ. Ever since the 

introduction of enhanced oil recovery (EOR) method with gas injection, this problem has become 
even worse. Moreover, when more than one crude oils are mixed in refineries, there may be possibility 
of asphaltene precipitation. For industry, asphaltenes are analogous to “cholesterol” since their 
precipitation stops the oil production and causes loss of millions of dollars. Asphaltenes constituents 
are generally soluble in liquids with a surface tension above 25 dyne/cm, for example pyridine, carbon 
disulfide, carbon tetrachloride and benzene [1] and therefore they can be used as inhibitors or to 
remove any asphaltene precipitation. The cost of installing and maintaining asphaltene mitigation 
equipment and chemicals is in the millions of dollars per year, but failure to anticipate asphaltene 
deposition can cost the operator even more in terms of remediation and production loss. Therefore, 
the ability to predict the occurrence and the magnitude of asphaltene deposition in wellbores and flow 
lines is the key in the flow assurance effort [2].  

1.2 Quantification of Asphaltenes by SARA analysis 

A reservoir oil (live oil), when reaches earth surface from the well, is flashed in a separator or series 
of separators. A typical separator unit is shown in Fig. 1.1. Pressures in the separators are optimized 
to increase the oil gravity and to decrease the gas formation volume factor [ratio of gas (composition 
yi) volume at reservoir T & P to gas (composition yi) volume at standard T & P] and oil formation 
volume factor [ratio of reservoir oil (composition zi) volume at reservoir T & P to heavy oil 
(composition xi, excluding gas yi) volume at standard T & P]. In other words, distribution of 
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intermediate components is very important between gas and liquid phases to increase oil gravity. The 
gas from the overhead is then measured in terms of volumetric flow rate and composition by 
flowmeter and gas chromatography respectively. The liquid oil (dead oil) from the separator is usually 
analyzed at ambient condition by so called SARA (Saturates Aromatics Resins Asphaltenes) analysis 
to determine quantity of saturates, aromatics, resins and asphaltenes fractions in terms of wt%. The 
molecular weights of individual fractions are not determined in this analysis. There are different 
techniques for SARA analysis [3-5]. Comparisons of SARA fraction measurements by different 
techniques, usually from different laboratories, can show large differences [6]. It should be noted that 
the composition of the reservoir oil (recombined oil) can be calculated from the information of gas 
and oil compositions and flowrates. 

 

HP 
Separator

MP 
Separator

LP 
Separator

Oil from 
Reservoir 

Well

Heavy Oil 
to Refinery

Gas

Gas

Gas

Gas Composition = yi

Heavy Oil Composition = xi

Resrvoir Oil Composition = zi

 

Fig. 1.1. Oil-Gas Separator System. 

 

Since we are more interested in modeling than experimental techniques, we will not go into details 
of these different SARA techniques. A typical procedure of SARA analysis [1] is shown in Fig. 1.2. 
Adding around 40 volumes of n-heptane/n-pentane into 1 g of heavy oil, insoluble fraction is 
separated out, which is called as asphaltenes fraction. The fraction, which is soluble in n-heptane/n-
pentane, is further divided into three subfractions. To do so, mixture of n-heptane/n-pentane and 
soluble oil is passed through adsorbent beds of alumina. The polar compounds get adsorbed on 
alumina. An n-heptane/n-pentane wash on adsorbent bed verifies that no saturated non-polar 
components are present on the bed. Knowledge of the mass of used n-heptane/n-pentane, non-polar 
fraction, which is called “Saturates”, can be quantified. A toluene wash absorbs a fraction of adsorbed 
polar compounds, known as “Aromatics”. A pyridine (more polar than toluene) wash absorbs rest of 
the adsorbed fraction of polar compounds, known as “Resins”. 
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Fig. 1.2. Typical procedure of SARA analysis. STO=Stock Tank Oil (oil at ambient condition). 

 

1.3 Asphaltene Structure and Properties 

There is no specific structure of asphaltene molecules. It is believed that asphaltene molecule consists 
of a number of aromatic rings, alkyl chains and heteroatoms (eg. N, S, O). Depending upon the 
asphaltene structure, they create the colloid, oligomer or miscelle [7]. Asphaltene monomer molar 
mass is also a topic of debate. Different techniques have been employed to measure asphaltene molar 
mass and are discussed by Strausz et al [8]. Some of the modern techniques show that the asphaltene 
monomer molar mass is around 750 Da [9, 10]. The literature data shows that the asphaltene fraction 

has a solubility parameter between 19 and 24 ܽܲܯଵ/ଶ and density between 1.13 and 1.20 g/ml at 

room conditions [11-14]. In light crudes, asphaltenes, associated with resins, behave as a liquid phase 
with a solubility parameter close to that of liquid naphthalene. Purified asphaltenes have a strong 
tendency to aggregate and behave as a solid phase. The solubility parameter of purified asphaltenes 
is close to that of pyridine or quinoline [11]. The tendency of asphaltene constituents to vary with the 
solubility parameter of the hydrocarbon medium is related to the aromaticity and polarity of 
asphaltene constituents rather than to the molecular size or dimensions of asphaltene constituents [15-
18]. 

1.4 Asphaltene phase envelope 

A reservoir oil (live oil) is generally present at moderate temperature (e.g. 320-400 K) and high 
pressure (e.g. 250-1000 bar). As shown in Fig. 1.3, when oil travels up towards the surface, its 
pressure and temperature decrease. As oil pressure decreases (Point-A to B), asphaltenes may 
precipitate out at certain temperature and pressure (Point-B) for a given composition of oil. This 
temperature and pressure boundary is known as upper onset pressure (UOP) boundary. Below this 
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boundary, there are oil and asphaltene phases present. If pressure keeps decreasing (from Point-B to 
C), more asphaltenes precipitates out and maximum asphaltene precipitation occurs at bubble point 
(Point-C). Below bubble point, there are vapor, oil and asphaltene phases. If pressure keeps 
decreasing (from Point-C to D), more gas comes out of oil and asphaltenes starts dissolving into oil. 
At specific temperature and pressure (Point-D), there are only vapor and oil phases and asphaltene 
phase disappears. This boundary is known as lower onset pressure (LOP) boundary since above it, 
asphaltene phase appears. In short, asphaltenes are generally stable at high pressure or in heavy oil 
with less content of lighter (volatile) compounds. The Pressure-Temperature plot, shown in Fig. 1.3, 
is known as Asphaltene phase envelope (APE), Asphaltene Onset Envelope (AOE), or Asphaltene 
Deposition Envelope (ADE). If the gas-oil separator condition is outside of APE (Point-E), one 
cannot see any trace of asphaltene precipitation inside the separator but there could be asphaltene 
precipitation inside the wellbore. 

 

Fig. 1.3. Asphaltene phase envelope (APE). 

 

1.5 Literature Survey on Thermodynamic Models for Asphaltene precipitation 

There have been various models studied for asphaltene modeling for years in the literature. Generally, 
there are two types of thermodynamic modeling approach for asphaltene precipitation. The first 
approach assumes that asphaltenes are soluble in the oil and present as a true component. The second 
approach assumes that ashpaltenes present as a colloidal form whose stability depends upon the other 
constituents of the oil, temperature and pressure. In this section, we will discuss about the modeling 
approaches based on the Cubic Plus Association (CPA), Statistical Associating Fluid Theory (SAFT) 
and Cubic equation of state (EoS) from the literature. Our objective is to let the reader know about 
basic assumptions of these models and what kind of studies have been performed with them. 
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1.5.1 Ashpaltenes as True Components 

Ting et al [19] propose the modeling approach based on the Perturbed Chain SAFT (PC-SAFT) EoS 
for asphaltene precipitation modeling. It is assumed that the asphaltene precipitation is due to non-
polar van der Waals forces. They also concede that the hydrogen bonding interactions are also 
important in a few situations, however, they have not considered them in their modeling. In other 
words, asphaltenes are present as pre-aggregated molecules in the oil and there is no association 
between molecules during and after precipitation. Therefore, the association term is not included. 
They studied their model for a recombined oil (separator gas+liquid) and a model oil (1 g asphaltenes 
in 100 ml toluene) with methane gas injection. It is concluded that the modeling results are in good 
agreement with the experimental data. Gonzalez et al [20-22] studied the effect of gas injections and 
contamination of oil based mud into the live oil after modifying the approach from Ting et al. [19]. 
Later Panuganti et al [23] modified the modeling approach from Gonzalez et al [20-22] and studied 
the effect of gas injection in live oils using both the PC-SAFT and Soave-Redlich-Kwong (SRK) 
equations of state. They concluded that the PC-SAFT model is able to predict the gas injection effect 
while the SRK model cannot do so. Punnapala & Vargas [24] then modified the modeling approach 
from Panuganti et al [23] by reducing three adjustable asphaltene PC-SAFT parameters to two 
parameters and studied the gas injection effect in live oils. AlHammadi et al [25] studied both PC-
SAFT and CPA using modeling approaches from Panuganti et al [23] and Zhang et al [26] 
respectively. They compared the results with the experimental data and concluded that the PC-SAFT 
predictions for the effect of gas injections are better than the CPA predictions.  However, they have 
compared the asphaltene precipitation onset results only for one live oil and therefore their conclusion 
cannot be generalized for all fluids. Panuganti et al [27] and Tavakkoli et al [28] applied the PC-
SAFT EoS to model asphaltene precipitation from degassed crudes. For the PC-SAFT (without 
association term) model, discussed above, requires SARA analysis to characterize the oil. 

Li & Firoozabadi [29,30] propose the CPA EoS to model asphaltenes. The Peng-Robinson (PR) EoS 
is used as a physical part while the association term is used from Werthiem [31,32]. Asphaltenes are 
considered as an associating component and can cross-associate with resins or heavy fraction of oil. 
Two studied are presented; the first one is on heavy/degassed oil while the second one is on live oil. 
In the first article, seven different heavy oils and four model oils (10 kg asphaltenes in 1m3 of toluene) 
are studied. In the second article, seven live oils are studied. They have not studied the gas injection 
effect on upper onset boundary of asphaltene phase envelope. 

Zhang et al [26] compared the CPA and PC-SAFT EoS with respect to asphaltene modeling. The 
CPA model has the SRK EoS as a physical part and an association term is from Wertheim [31-32]. 
Self-association between the asphaltene molecules and cross-association between the apshaltene and 
resin molecules are considered. For the PC-SAFT, the same modeling approach is used as proposed 
by Gonzalez et al [20-22]. A total number of six live oils and one heavy oil are studied and concluded 
that the CPA EoS correlates the experimental data better than the PC-SAFT EoS, which contradicts 
the conclusion from AlHammadi et al [25], discussed above. 
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Shirani et al [33] also propose a modeling approach based on the CPA EoS. They compared both the 
PR and SRK EoS as a physical part in addition to an association part. The association term is the 
same as that used by Zhang et al [26] and Li et al [29,30]. Asphaltenes are considered to be self-
associating component. There is no cross association between resins and asphaltene molecules. Three 
live oils are studied and it is concluded that the SRK term in the CPA EoS is better than the PR term. 
They also concluded that the CPA model is better than Victorov et al.’s model [34] and Pan et al.’s 
model [35]. 

Hustad et al [36] compare the PC-SAFT (without association term) and SRK EoS based modeling 
approaches with respect to asphaltene precipitation. The experimental results of constant mass 

expansion (CME) of four samples with different amount of N2 are obtained. The ܥହ଴ା  aromatic 
fraction is considered to be the asphaltene fraction. The SARA analysis is not required for this 
modeling approach. It is concluded that the PC-SAFT model is better than the SRK model.  

Pedersen et al [37] also studied live oils with the SRK/PR EoS and concluded that the models can 
correlate the asphaltene phase boundary after tuning critical pressure and temperature of asphaltene 
component. However, they have not extensively studied the gas injection effect on the asphaltene 
phase boundary. 

Jamaluddin et al [38] studied the SRK EoS to describe two live oils. They could correlate asphaltene 
upper onset pressure boundary by tuning the model parameters and predict lower onset pressure 
boundary. However, they have not studied the gas injection effect on the asphaltene phase boundary 
extensively. 

Sabbagh et al [39] use the PR EoS to study asphaltene yield from the heavy oil. The deasphalted 
heavy oil (maltene) is divided into single component of saturates, aromatics and resins fractions. They 
divide the asphaltene fraction into multiple components of different molar mass in the range of [1800-
30000 Da] based on the gamma distribution function. They concluded that the PR model is not a 
universal predictor and not better than the previously developed regular solution model. 

1.5.2 Ashpaltenes as Colloids 

Wu et al [40,41] propose the modeling approach based on the HS-SAFT (Hard Sphere SAFT) EoS. 
Asphaltenes and resins are assumed to be present as colloids in the solvent (oil excluding asphaltenes 
and resins). The asphaltene precipitation is governed by the interactions between asphaltene-
asphaltene, resin-resin and asphaltene-resin molecules. The solvent is considered as a medium, which 
affects the van der Waal interactions among asphaltene and resin molecules through average pair-
dispersion energy. This pair-dispersion energy depends upon Hamaker constants of the medium, 
asphaltenes and resins. Asphaltene molecules are associating hard spheres while the resins molecules 
are chains of hard spheres. There can be cross association between asphaltene and resin molecules 
but no association between resins molecules. The PR EoS with Peneloux correction factor is used to 
calculate VLE since the oil density and composition is required to calculate Hamaker constant of 
medium. It is assumed that the asphaltene concentration is very small in oil and their precipitation 
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will not affect VLE. Different live and dead oils are studied and results are in agreement with the 
experimental data. 

Buenrostro-Gonzalez et al [42] also propose the same model like Wu et al [40,41], but with the VR-
SAFT (variable range SAFT) instead of the HS-SAFT. Asphaltenes and resins pair potential is given 
by the sum of hard sphere potential and variable range attractive potential, changing of which the 
shape of the attractive well is modified. Effect of this potential is considered in monomers interaction, 
chain formation and associating contribution to overall Helmholtz free energy whereas Wu et al 
[40,41] consider this potential (not variable but fixed range) in monomer interaction contribution only. 
Variable range potential can be given by either Square Well or Sutherland. It is concluded that there 
is not much difference in the results when using either Square Well or Sutherland since the asphaltene 
precipitation is governed by the association energy. Energy depth is given by Hamkar’s constants of 

asphaltnes (ܪ஺), resins (ܪோ) and solvent (ܪௌ) (oil excluding asphaltenes and resins). Solvent is 

considered structurless continuum, which screens out interaction between asphaltene-asphaltene, 
resin-resin and asphaltene-resin molecules. When density of solvent decreases (due to pressure drop 

or gas addition), ܪௌ decreases, which increases the difference between ܪ஺ and ܪௌ. It will result in 

increased interaction between asphaltene-asphaltene molecules, which leads to precipitation. ܪௌ is 

density dependent and therefore the PR EoS with Peneloux volume correction is used for VLE. Two 
different oils are studied and concluded that one set of parameters obtained from the experimental 
data is enough to predict the asphaltene precipitation at different temperature, pressure and 
composition. 

Fahim et al [43] also use the same approach as proposed by Wu et al [40]. Total Helmholtz energy is 
considered due to association contribution only and other contributions (ideal gas, hard spheres 
repulsion, van der Waals interactions, and resins chain formation) are neglected. Asphaltene 
molecules are considered self-associating and resins molecules are not self-associating. Resins 
molecules can cross-associate with asphaltene molecules. The SRK EoS is used to calculate phase 

equilibrium (in terms of ܲௌோ௄) considering all components and only binary mixture of asphaltenes 

and resins are considered to calculate the association effect on the phase equilibrium (in terms of 

ܲ௔௦௦௢௖). In other words the total pressure is given by the sum of SRK and association contributions 

(ܲ ൌ ܲௌோ௄ ൅ ܲ௔௦௦௢௖ ). Several live oils are studied but no reference to the experimental data is 

provided. There is no study done with respect to gas injection. 

The asphaltene modeling study can be categorized into modeling of asphaltene precipitation onset 
condition from live oil, gas injection effect on asphaltenes containing live/dead oil, asphaltene yield 
from dead oil, and asphaltene precipitation onset condition from blend of different crudes. Table 1.1 
shows the different equations of state modeling approaches studied for the different categories of 
asphaltene modeling study. 

Table 1.2 shows different experimental data used by the different modeling studies, mentioned above. 
It also gives us an idea about how different models could correlate or predict the experimental data.  
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For example, the experimental data of reference [44] are used in modeling studies with the CPA and 
PC-SAFT (without association term) EoS. 

Table 1.1. Equations of state used for different categories of asphaltene modeling study. 

EoS Reference 

Asphaltene Modeling Study 

Asp Onset 
from Live Oil 

Gas Injection 
Effect  

Asp Yield from 
Dead Oil  

Asp Onset from 
Blend of Dead 

Oils 

CPA 
 

[26] Yes Yes Yes No 
[29] No No Yes No 
[30] Yes No No No 
[33] Yes Yes No No 
[43] Yes No No No 

      

SAFT-HS 
[40] No No Yes No 
[41] Yes Yes No No 

      
SAFT-VR [42] Yes No Yes No 

      

PC-SAFT 
(w/o association term) 

[19] No Yes Yes No 
[20-25,36] Yes Yes No No 

[27-28] No No Yes No 
      
      

SRK 
[23,36] Yes Yes No No 

[37] Yes No No No 
      

PR 
[37] Yes No No No 
[39] No No Yes No 
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Table 1.2. Experimental data from the literature used by different groups to compare thier modeling results. 

Reference 
(Exp. Data) 

CPA 
 

PC-SAFT 
(w/o assoc. 

term) 
SRK PR SAFT-HS SAFT-VR 

This 
work 

[11] [26] [27, 28]   [41]  X 

[19]  [19, 20,27]     X 

[21]    [21]           

[23]  [23] [23]    X 

[24]  [24]     X 

[36]  [36] [36]     

[38]   [38]  [37]    

[39] [29] [28]  [39]    

[42]      [42] X 

[43] [43]       

[44] [26,30] [20,22]  [37]   X 

[45]  [22]      

[46]  [21]      

[47]        

[49] [30]      X 

 [50] [30]       

[51] [30]      X 

[52] [30]      X 

[53] 
[30] 
[33] 
[26] 

   [41]  X 

[54] [33]    [41]   

[55] [26]      X 

[56] [26]      X 

[57] [26]    [41]  X 

[58] [26]      X 

[59]   [37]     

[60]  [28]      

[61]       X 

[62]       X 

[63]       X 

[64]       X 

[65]              X 
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1.6 Scope of Research 

From the literature study, we came to know that the association models (e.g. SAFT, CPA) are 
theoretical models and have potential to represent asphaltene system. Li et al [30] propose simple 
modeling approach with the CPA EoS but do not show any result with gas injection effect on upper 
onset boundary. AlHammadi et al [25] concluded that the PC-SAFT (without association term) model 
is better than the CPA model. On the other hand, Zhang et al [26] also proposed a modeling approach 
with the CPA EoS and showed variety of results including gas injection. They also concluded that 
the CPA results are better than the PC-SAFT results, studying the modeling approach from Gonzalez 
et al [20-22] for the PC-SAFT (without association term). Therefore, there are two different opinions 
in the literature about asphaltene modeling results with the CPA and PC-SAFT. Tavakkoli et al [24] 
concluded that single set of parameters of the PC-SAFT model (without association term), used for 
saturation and upper onset pressure predictions, do not show a good match for the amount of 
precipitated asphaltenes. Hustad et al [36] showed that the PC-SAFT is better than the SRK.  
Panuganti et al [23] concluded that the SRK EoS is not able to predict the gas injection effect while 
the PC-SAFT (without association term) can predict it. Panuganti et al [23] also mentioned that an 
accurate SARA analysis is required to characterize the given oil.  There is no study about sensitivity 
of SARA analysis and model parameters in the literature. Also, there is no information about whether 
these models are reliable at temperature and pressure conditions away from the experimental 
conditions. In addition, there is no study, as shown in Table 1.1, on asphaltene precipitation from the 
blend of different dead oils using the association models. Nobody has ever tried the asphaltene 
modeling using the PC-SAFT EoS including the association term. 

1.7 Objectives of Thesis 

Motivated by the need and importance of reliable predictions of asphaltene precipitation in oil 
industries, this work aims to achieve the following objectives: 

(a) Develop a modeling approach for asphaltene precipitation based on the equations of state, 
which account for association forces between molecules, for example the CPA and PC-SAFT 
equations of state. The modeling approach should be as simple as possible and easy to be 
implemented into reservoir PVT simulation software. 

(b) Study several fluids and compare the results with experimental data in order to show the 
reliability of the modeling approach to predict asphaltene precipitation.  

(c) Study the modeling approach based on the PC-SAFT (without association term) from the 
literature and compare it with the modeling approach, developed in this work, in order to find 
out differences. 

(d) Check the sensitivity of SARA analysis and model parameters to the modeling approach. 
(e) Compare the developed model with the cubic EoS (eg. SRK or PR). 
(f) Apply the modeling approach to study the asphaltene precipitation from crudes. 
(g) Apply the modeling approach to study the asphaltene precipitation from the blend of crudes. 
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(h) Develop a tool based on the modeling approach, which can be disseminated to consortium 
member companies for the calculation of asphaltene phase envelope. 

1.8 Organization of Thesis 

This thesis is organized into following chapters. The work presented in each chapter is briefly 
described below. 

Chapter-1: There is a discussion about what asphaltenes are and how they are defined and quantified 
as per the standard procedure. Generally for reservoir fluids, asphaltene precipitation flow assurance 
problem is studied by Pressure-Temperature plot, known as Asphaltene Phase Envelop, which is also 
explained. A literature survey on asphaltene precipitation modeling with association equations of 
state is also presented and the scope of research is identified. Finally, objectives of this PhD project 
and organization of thesis are mentioned. 

Chapter-2: All equations of state (CPA, PC-SAFT, SRK, SRK with Huron-Vidal mixing rule), which 
are studied in this work, are described to understand the physics behind them and get an idea about 
model parameters. The reader can skip this chapter if he/she knows about them. 

Chapter-3: A modeling approach based on the CPA EoS is developed based on the inspiration from 
the literature. Several reservoir fluids are studied and results are compared with the experimental data. 

Chapter-4: The sensitivity of the modeling parameters are investigated and successfully shown that 
the modeling approach based on the CPA EoS can predict the gas injection effect. It is concluded that 
one model parameter (cross-association energy between asphaltene and heavy component molecules) 
is temperature dependent and the model results may not be reliable outside of the experimental 
temperature range. 

Chapter-5: The developed modeling approach is applied to the PC-SAFT EoS. The modeling 
approach from the literature based on the PC-SAFT (without association term) EoS is studied. The 
results from the CPA, PC-SAFT and PC-SAFT (without association term) are compared for several 
reservoir fluids. It is concluded that the literature approach based on the PC-SAFT (without 
association term) cannot correlate the upper onset boundary of certain reservoir fluids and needs 
temperature dependency. On the other hand, the PC-SAFT model, developed here, can correlate the 
one kind of data and predict the other kind of data like the CPA model. 

Chapter-6: The developed modeling approach is applied to the SRK (with classical mixing rule) and 
SRK with Huron-Vidal mixing rule (SRK+HV) EoS. The results from the CPA, SRK and SRK+HV 
are compared for several reservoir fluids. It is concluded that the SRK and SRK+HV models can 
predict the gas injection effect on asphaltene onset boundary only when the asphaltene molar 

composition in ܥ଺ାfraction is fixed to the reference value at which the binary interaction parameters 

of gas/n-alkane-asphaltene pairs are regressed. In other words, the SRK and SRK+HV models work 

only at the reference value of asphaltene molar amount in ܥ଺ା fraction. 
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Chapter-7: The CPA model is applied to degassed crude oil in order to model asphaltene yield and 
precipitation onset during the addition of n-paraffin. The asphaltene stability in the blend of more 
than two crudes is also studied. The results from the PC-SAFT (without association term) are also 
compared. It is concluded that both models cannot predict the asphaltene yield but can be fitted with 
a certain number of model parameters. The CPA model has potential to predict asphaltene stability 
in the blend of crudes. The CPA model needs only one model parameter to predict the amount of n-
paraffin at the onset conditions. 

Chapter-8: The thesis is concluded and possible future research tasks are recommended. 
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Chapter 2. Equations of State 

In this chapter, we will briefly discuss about equations of state (EoS), which are used in this thesis. 
For more details, the reader is requested to refer the respective references. If the reader is familiar 
with below equations of state, he/she can skip this chapter. The objective of this chapter is to 
familiarize the reader with the model parameters used by each equation of state. 

In thermodynamics, an equation of state represents the relationship between pressure, temperature 
and molar volume of the fluid. An equation of state can also be derived from the mathematical 
description of intermolecular forces. Van der Waal [1] proposed an equation of state to calculate 
different physical properties of the fluid. After van der Waal’s work, several equations of state have 
been proposed and studied. Among these equations of state, the SRK [2] and PR [3] equations of state 
are the most used equations in the petroleum industries. In late 20th century, Chapman et al [4,5] 
proposed an equation of state, known as Statistical Associating Fluid Theory (SAFT), based on 
statistical thermodynamic perturbation theory. They referred the work of Wertheim [6] in order to 
describe associating fluid. Afterwards, many researchers have modified the original SAFT EoS and 
proposed different versions. Among these versions, the most used version is the Perturbed Chain (PC-
SAFT) EoS, proposed by Gross and Sadowski [7]. Kontogeorgis et al [8] also combined the 
association term with the SRK EoS and proposed the Cubic Plus Association (CPA) EoS, which have 
been successful in describing many complex associating systems like glycols, alcohols. 

2.1 Cubic Plus Association 

The Cubic Plus Association (CPA) equation of state (EoS), proposed by Kontogeorgis et al [8], can 

be expressed for mixtures in terms of pressure	ܲ, as shown in equation (2.1). Please consult the “List 
of Symbol” section for the meaning of each symbols used in the following equations. The addition of 
the association term in the CPA EoS can fairly describe the polar and hydrogen bonding forces 
between molecules. The CPA EoS has been successful to describe the association system (e.g. glycols) 
[8]. 
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b x b   
2.4 

When the CPA EoS is used for mixtures, the conventional mixing rules are employed in the physical 
term (Soave-Redlich-Kwong: SRK) for the energy and co-volume parameters. The geometric mean 

rule is used for the energy parameter 	ܽ௜௝ሺܶሻ . The interaction parameter ݇௜௝  is the only binary 

adjustable parameter of CPA in the applications for self-associating mixtures, e.g. glycol with n-
alkanes. 

The pure compound energy parameter (ܽ௜) of the EoS is given by temperature dependency proposed 

by Mathias-Copeman [9], while co-volume parameter (ܾ௜) is temperature independent: 
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         

  2.6

where  ௖ܶ,௜ 	is the critical temperature of the ith component. 

The energy parameter temperature dependency proposed by Mathias-Copeman can be reduced to 
temperature dependency proposed by Soave [2] as below: 

2
1, 2, 3, 0.480 1.574 0.176 ;    0;i i ic c c        2.7

The key element of the association term is X୅౟ , which represents the mole fraction of site-A in 

molecule of component ݅ not bonded to other sites, while ݔ௜ is the mole fraction of component ݅. X୅౟ 

is related to the association strength ∆୅౟୆ౠ between two sites belonging to two different molecules, 
e.g. site A on molecule ݅ and site B on molecule j, determined from: 

1

1i i j

j

j

A A B

j B
j B

X
x X


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2.8

where the association strength ∆୅౟୆ౠ in CPA is expressed as: 
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where: 
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i j
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b b
b


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2.10

with the radial distribution function:  

  1 1
;       ;

1 1.9 4
g n b

n
  


  

2.11

In the expression for the association strength	∆୅౟୆ౠ , the parameters ߝ஺೔஻ೕ  and ߚ஺೔஻ೕ  are called the 
association energy and the association volume, respectively. These two parameters are used only for 

associating components, and along with the three additional parameters of the SRK term (ܽ଴,௜, ܾ௜, 

ܿଵ,௜), they are the five pure-compound parameters of the model. They are obtained by fitting vapor 

pressure and liquid density data. For inert components such as hydrocarbons, only the three 
parameters of the SRK term are required, which can either be obtained from vapor pressures and 
liquid densities or be calculated in the conventional manner (from critical data, acentric factor). 

Following are the combining rules (CR), which are required for cross-associating systems. CR-1 and 
Elliott CR are generally used. Modified CR-1 and Customized CR-1 are used for solvating systems 
only. 

(i) CR-1: 

;      ;
2

j ji i
i j i j j ji i

A BA B
A B A B A BA B    

    
2.12

(ii) Elliott CR: 

i j j ji i
A B A BA B      

2.13

(iii) Modified CR-1: 

Cross association volume β୅౟୆ౠ  is fitted to experimental data and CR-1 rule is used for cross 

association energy ε୅౟୆ౠ. 

(iv) Customized CR-1: 

Cross association volume β୅౟୆ౠ  and cross association energy ε୅౟୆ౠ	are fitted to experimental data. 

For an associating compound, the number and type of associating sites need to be determined before 
parameterize the five CPA parameters. Huang and Radosz [10] propose the association scheme for 
various compounds. They label the association scheme with a number (corresponding to number of 
sites) followed by a letter (A: any site can associate with any other, B: one site is positive/negative 
and other sites have opposite charge, C: two sites are positive/negative and other sites have opposite 
charge, and so on) [11]. Table 2.1 shows a few examples of the association scheme. 
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Table 2.1. Association Scheme for pure compound molecules as per Huang and Radosz [10] temrminology. 
Compound Formula Scheme Compound Formula Scheme 

Water 

 

4C 
(2+ve,2-ve) 

Alcohol 

 

3B 

(1+ve,2‐ve) 

Ammonia 

 

4B 
(1-ve,3+ve) 

Alcohol 

 

2B 

(1‐ve,1+ve) 

Benzene 

 

Non-
Selfassociating 
(solvating with 
single –ve site) 

     

 

2.2 Perturbed-Chain-Statistical-Associating-Fluid-Theory 

The Perturbed-Chain-Statistical-Associating-Fluid-Theory (PC-SAFT) EoS was developed by Gross 
and Sadowski [7]. It has its basis on SAFT EoS, which was originally developed by Chapman et al 
[5]. The PC-SAFT EoS uses hard-chain fluid as a reference for the perturbation theory while the 
SAFT EoS uses hard spherical segments. The PC-SAFT EoS can be written in terms of residual 

Helmholtz free energy (ܣ௥௘௦ሻ as shown in equation (2.14). Please consult the “List of Symbol” and 

“Greek Letters” sections for the meaning of each symbols used in the following equations. 

res hs chain disp assocA A A A A      2.14

where	ܣ௛௦, 	ܣ௖௛௔௜௡, ܣௗ௜௦௣ and  ܣ௔௦௦௢௖ are the Helmholtz free energy contributions for the hard sphere 
repulsion, hard chain formation from the hard spherical segments, dispersion forces and association 
contributions  between chains respectively. For more details of the PC-SAFT EoS, the reader is 
referred to literature [8,7]. There are five model parameters for a pure compound, (1) number of 

spherical segments per chain/molecule (݉ ) (2) temperature independent diameter of spherical 

segment (ߪሺܣሶሻ) (3) potential energy (߳/݇	ሺܭሻ) (4) association energy (ߝ/ܴ	ሺܭሻ) and (5) association 

volume	ࣥ. For non-associating pure compounds, only the first thee parameters are required while for 
associating pure compounds, all the five parameters are needed.  
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Conventional combining rules are applied to calculate the parameters for a pair of two different 
segments. 
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The universal constants (total 42) for the	a଴௜ ,	aଵ௜ ,	aଶ௜ ,	b଴௜ ,	bଵ௜ ,	bଶ௜  can be found from Gross and 
Sadowski [2]. These 42 constants are regressed from pressure-volume-temperature (PVT) data of 
pure n-alkane series. 
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Same combining rules, as mentioned in the section of CPA EoS, are applied for cross association 
energy and cross-association volume. 

2.3 Soave-Redlich-Kwong with Classical Mixing Rule 

The CPA EoS, described above, is reduced to the SRK EoS, as shown in equation (2.35), when 
association term is not considered: 

 
 m m m

a TRT
P

V b V V b
 

 
  2.35

Equations (2.2) to (2.7) are also applicable to SRK EoS. 

Unlike the CPA EoS, the pure compound energy (ܽ଴,௜) and co-volume (ܾ௜) parameters are calculated 

from the critical temperature and pressure: 
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2.4 Soave-Redlich-Kwong with Huron-Vidal Mixing Rule 

The Soave-Redlich-Kwong with Huron-Vidal mixing rule (SRK+HV) is the same as the SRK with 
classical mixing rule, described above, except the mixing rule for the energy parameter. 

The liquid activity coefficient models (like NRTL, UNIFAC) are generally temperature dependent 
(and not pressure dependent) and describe the liquid properties very well at ambient pressure. Huron-
Vidal [12] assumed that the excess Gibbs free energy value at infinite pressure from the Cubic EoS 
should be same as the excess Gibbs free energy value from the liquid activity coefficient model. The 
SRK+HV EoS can successfully describe the multicomponent system including both polar and non-
polar compounds but the SRK EoS with classical mixing rule cannot. 

Huron-Vidal [12] showed that the mixture energy parameter (ܽ) for the SRK EoS can be calculated 
as: 
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Huron-Vidal modified the classical NRTL [13] model as below: 
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0ji ji jiG G GT T    2.39

  

0 0 0ji ji iiG g g  ,  ji ji iiGT gT gT   2.40

 

The difference between the classical NRTL and modified NRTL, presented above, is the presence of 

co-volume parameter both in numerator (	b௝ ) and denominator (	b௞ ). The parameter 	g0௝௜  is the 

interaction energy between molecules of component-݅ and ݆. The parameter 	gT௝௜ is the temperature 

correction to interaction energy between molecules of component- ݅  and ݆ .The parameter 
ij  

represents the degree of randomness of molecules of component-݅ and ݆ in the binary system of 

component-݅ and ݆. When the value of ߙ௜௝ is zero, it means molecules are completely random and the 
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probability of finding the molecule of component-	݆  is the same as the probability of finding the 

molecule of component-	݅  around the molecule of component-݅ and ݆ respectively. 

The Huron-Vidal mixing rule can be reduced to the classical mixing rule when the interaction energies 

 :are calculated as (௜௝ߙ) and randomness factor (௝௜ܩ)

2
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Chapter 3. Modeling of Asphaltene Onset Condition 
using the CPA Equation of State 

Entire content of this chapter is from our journal article “Alay Arya; Nicolas von Solms; Georgios 
M. Kontogeorgis. Determination of asphaltene onset conditions using the cubic plus association 
equation of state. Fluid Phase Equilibria 2015, Vol. 400, pp. 8-19”. 

 

Abstract 

The Cubic-Plus-Association (CPA) equation of state (EoS) has already been proven to be a successful 
model for phase equilibrium calculations for systems containing associating components and has 
already been applied for asphaltene modeling by few researchers. In the present work, we apply the 
CPA EoS to determine asphaltene precipitation onset conditions for various reservoir fluids but with 
a different modeling approach than literature approaches. A simple oil characterization technique, 

based on SARA analysis, is adopted which divides the ܥ଺ା fraction of the oil into “heavy component” 

and asphaltene. Self-association between asphaltene molecules and cross-association between 
asphaltene and heavy component molecules are considered. Experimental data of several reservoir 
fluids are compared with model results and it is found that the temperature dependent cross-
association energy correlates asphaltene phase envelope quite well in agreement with the 
experimental data. Two experimental asphaltene onset points at different temperatures and one bubble 
point data of reservoir fluid are required in order to determine the temperature dependent cross-
association energy and critical pressure of heavy component respectively. The effect of gas injection 
on asphaltene precipitation is also correlated with experimental data by tuning a single binary 
interaction parameter of the injected gas component and asphaltene pair. 

3.1 Introduction 

Asphaltene does not have a specific structure but is defined as a solubility fraction, which is not 
soluble in n-pentane/n-heptane according to the ASTM D6560 and IP 143 but soluble in an aromatic 
solvent [1-3]. It is also the heaviest fraction of the oil. Resins can be defined as the fraction of the oil 
not soluble in ethyl acetate but soluble in n-heptane, toluene, and benzene at room temperature [2,4]. 
Asphaltene and resins are hetero-compounds and form the most polar part in the oil compared to other 
components [2,4]. Resins and to some extent aromatic compounds cross-associate with asphaltene 
molecules, which is believed to be the main reason for asphaltene solubility in the oil. Asphaltene 
precipitation and agglomeration is a significant problem in the oil production, transmission and 
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processing facilities. Asphaltene stability depends upon the composition of the oil, pressure, 
temperature and properties of asphaltene [2,4-6].  The effect of composition and pressure change on 
asphaltene stability is generally believed to be stronger than the effect of temperature change. 
Asphaltene precipitation does not depend upon the amount of asphaltene. For example, low 
asphaltene content such as 0.2 wt% of the heavy oil does not imply that precipitation will not cause 
any severe production problems [2]. On the other hand, asphaltene content more than 17 wt% may 
not create any deposition problems [7]. In addition asphaltene solubility may increase or decrease 
with temperature. Thus the mechanism of asphaltene deposition is very complex. 

The growing market of oil production and need for enhanced oil recovery by miscible displacement 
increases the risk of asphaltene deposition and hence loss of production and cost of remediation [4]. 
We cannot get a clear picture of the asphaltene precipitation conditions and related problems just by 
doing the limited experimental studies. Moreover, they often are not feasible economically and may 
not be possible in some cases.  Therefore, it is imperative to model asphaltene precipitation to predict 
the above issues with reasonable accuracy and minimal experimental measurements. 

There are two types of hypothesis about asphaltene precipitation. One type of hypothesis says that 
asphaltenes are dissolved in the oil in a true liquid state and may precipitate depending on the 
thermodynamic conditions of temperature, pressure and composition. The second type of hypothesis 
says that asphaltenes are insoluble and suspended in the oil whose stability depends on the interactions 
with resins molecules [5]. Some of the modeling approaches based on these two types of hypothesis 
are mentioned in Table 3.1.  

Table 3.1. List of models used for asphaltene phase equilibria in the literature. 

Asphaltene as soluble compound Asphaltene as insoluble compound 

Model Reference Model Reference 

CPA [8,9,17,16,18] SAFT-HS [23,24] 

PC-SAFT [3,10-15, 20] SAFT-VR [4] 

Flory-Huggins [2,21,22,26]   

AEOS [19]   

SRK/SRK-P [3,20]   

PR/PR-P [25]   

 
From the literature, we can observe that association models (e.g. SAFT, CPA) have been previously 
used and have potential to represent asphaltene system. Other models based on Flory-Huggins are not 
compared extensively for live oils asphaltene phase envelope with/w/o gas injection and they consider 
that precipitated material contains only pure asphaltene. In addition, Flory-Huggins theory based 
models calculate VLE from well-known EoS like SRK or PR followed by calculation of LLE using 
Flory-Huggins theory rather than calculating VLE and LLE simultaneously. Therefore their 
application in the industry might be limited. Model based on SRK and PR EoS have not been proved 
reliable. The SAFT-VR model [4] based on the colloidal approach requires more experimental data 
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to determine seven adjustable model parameters. On the other hand the SAFT-HS model [23-24] also 
based on colloidal approach requires only two adjustable model parameters. Both the SAFT-VR and 
SAFT-HS models are also promising approaches for asphaltene modeling but need further validation 
by applying them to calculate asphaltene phase envelopes (APEs) of a number of reservoir fluids. 
They have not been extensively used so far. One disadvantage with these colloidal based models is 
that, like Flory-Huggins theory based models, it needs an EoS to calculate VLE. Li et al [8] proposed 
a simple modeling approach with CPA considering that the asphaltene component is monodispersed 
but did not show any result with gas injection. On the other hand, Zhang et al [9] also proposed a less 
complicated approach with CPA considering asphaltene and resins components are polydispersed and 
showed a variety of results including gas injection. Li et al [8] do not predict any maximum while 
Zhang et al [9] predict the existence of a maximum in upper onset pressure-temperature curve at low 
temperature. Zhang et al [9] also concluded that CPA results are better than PC-SAFT results by 
studying six fluids, considering the modeling approach from Gonzalez et al [10-12] for PC-SAFT. 
Gonzalez et al [10-12] did not use association term in PC-SAFT EoS whereas Buenrostro-Gonzalez 
et al [4] mentioned that association contribution to the total free energy dominates over the mean-
attractive energy contribution in their use of SAFT-VR. Tavakkoli et al [13] concluded that a set of 
parameters (of PC-SAFT without the association term) used for saturation and onset pressure 
predictions, do not show a good match for the amount of precipitated asphaltene.  

Even though CPA EoS have been proposed earlier for asphaltene modeling, in this work we 
demonstrate how it can effectively be applied to calculate asphaltene onset conditions considering 
asphaltene phase behavior as liquid-liquid equilibrium. At the same time, inspired from Li et al [8], 
we make the modeling approach less complex using a simple fluid characterization. This approach 
requires fewer experimental measurements, and can easily be used by industry. Modeling results are 
compared with different types of experimental data of several reservoir live oils in order to check the 
reliability of the model. 

3.2 Modeling Approach 

There could be different ways to characterize the oil with asphaltene, however, in this work we 
characterize it based on SARA analysis. Ideally, we should have separator gas and oil molar 
compositional analysis, gas to oil ratio and SARA analysis to calculate the composition of reservoir 
oil. SARA analysis gives the composition of heavy oil as weight fraction. To convert it to molar 
fraction, we need molecular weight information of each fraction, which is generally not available or 
measured. In addition, asphaltene has tendency to cross associate with resins and partially with 
aromatics, which means that we need to determine cross associating energies for asphaltene-resins 
and asphaltene-aromatics pairs. Asphaltene molecules are self-associating, which means we need to 
determine one more parameter that is the self-associating energy for the asphaltene-asphaltene pair.  
To reduce the degree of freedoms (number of unknown model parameters to be determined), we 
merge three different fractions (Saturates, Aromatics, Resins) into a single fraction termed as heavy 
component (HC) in this work. We also assume that the amount of components lighter than n-hexane 
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in the heavy oil is negligible and therefore the composition of ܥ଺ା fraction is the same as the SARA 
composition. Asphaltenes are considered as monomeric molecules with four association sites and its 

molecular weight is assumed to be 750 Da [29,30]. Critical properties of asphaltene ( ௖ܲ ൌ
15.4	bar, ௖ܶ ൌ 1040	K,߱ ൌ 1.54ሻ  are also fixed based on its solubility parameter. Asphaltene 

solubility parameters are 19.14 MPa1/2 (	ߝ஺஺ ൌ 0) and 21.51 MPa1/2 (	ߝ஺஺ ൌ 3000) at 298K and 1 

atm. Self-association energy (ε୅୅/ܴ ൌ 3000	K) and self-association volume fraction of asphaltene 

(β୅୅ ൌ 0.05) are also fixed based on the preliminary calculations during this work. For the heavy 
component, one cross-association site is selected and the normal boiling point is calculated from 

Pedersen relationship [31]. Critical parameters ( ௖ܲ , ௖ܶሻ	and acentric factor ሺ߱ሻ	of HC are calculated 

from the Kesler–Lee relationship [32]. Critical pressure ( ௖ܲ) of HC is adjusted to match bubble point 

pressures of the oil. Cross-association energy (ε୅ୌ/ܴ) between HC and asphaltene is assumed to be 
temperature dependent and is calculated from experimental data of upper onset pressures at two 

different temperatures. Any change in the value of ε୅ୌ/ܴ does not have any effect on bubble pressure 

due to very small mole fraction of asphaltene. However, change in the value of ௖ܲ 	of HC does alter 

the onset conditions. Cross-association volume fraction (β୅ୌ ൌ 0.05) is also fixed. Table 3.2 shows 
a comparison of modeling parameters for this work, Li et al [8] and Zhang et al [9]. The main 
difference between the modeling approach of this work and that of Li et al [8] is the asphaltene 
parameters, cross-association parameters and number of pseudo-components. 

Table 3.2. Comparison of Modeling Approach of this work, Li et al [8] and Zhang et al [9]. 
Parameters  This Work  Li et al [8]  Zhang et al [9] 

No. of association site on 
Asp molecule 

 4  4  4 

Asp MW  750  1800  
Whitson Characterization 
Method 

 ୅୅/ܴ (K)  3000  2000  3000ߝ

 ୅୅  0.050  0.100  0.050ߚ

Asp Critical Parameters  
Based on Solubility 
Parameter of 18 MPa1/2 

 From Li et al [16]  
Based on Solubility 
Parameter of 18-21 MPa1/2 

Pseudo-components (PCs)  HC, Asp  
Multiple SCNsa, HC, 
Asp 

 
Multiple SCNs, Multiple 
resins, Asp 

Pseudo-components Critical 
Parameters 

 Lee-Kesler  Cavett, Firoozabadi  Lee-Kesler & Riazi 

Cross Association  Between HC and Asp  Between HC and Asp  Between resins and Asp 

No. of cross-association 
sites 

 1  4  2 

Tuned Parameter  with 
respect to Bubble Points 

 Pc of HC  Pc of HC  
Mathias Copeman/Accentric 
Factors of PCs 

Tuned Parameter with 
respect to two Onset Points 

 Temp Dependent ߝ୅ୌ/ܴ  Temp Dependent ߝ୅ୌ/ܴ  
Temp Independent ߝ୅ୖ/ܴ, 

 ୅ୖߚ

Cross-association volume 
fraction 

 is adjusted	୅ୖߚ  ୅ୌ= 0.100ߚ  ୅ୌ=0.050ߚ 

Tuned Parameter with 
respect to Gas Injection Data 

 ݇௜௝	of Asp-Gas  No results presented  not mentioned 

a There could be multiple SCN PCs in case of plus fraction (=HC+Asp) is considered above C7+. For example if the plus fraction is 
C12+ (=HC +Asp) then multiple SCN pseudo-components would be from C7 to C11. 
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Table 3.3 shows binary interaction parameter (݇௜௝ ) used in our CPA model.  Parameter k୧୨	of 

asphaltene-component pair is assumed to be the same as that of the benzene/toluene-component pair 

unless otherwise tuned. Parameter	ሺ݇௜௝)  of HC-component pair is assumed to be same as that of any 

heavy alkane-component pair for which data are available. 

 
Table 3.3. Binary interaction parameter (݇௜௝) used by CPA model. T is temperature in K. 

Component Nଶ CO2 H2S HCb Aspc 

Nଶ  0.10 0.24 

CO2 -0.06 0.10 0.10 

H2S 0.678-0.0018T 0.05 

methane 0.141-12.6448/T 0.0882* 0.0760*  0.01 

ethane 0.04 0.1335* 0.0847*  0.01 

propane 0.04 0.1522* 0.0917*  0.01 

isobutane 0.05a 0.1122a 0.0761*   

nbutane 0.05 0.1122* 0.0897*  

isopentane 0.06a 0.10a  

npentane 0.06 0.10    

* From reference [40,41] and others are estimated in this work. 
a Binary parameter with i-butane and i-pentane are assumed to be the same as that of with the n-butane and n-pentane 
respectively. 
b Binary parameter is assumed from binary of heavy alkanes (heavier than n-hexane) with given component unless tuned 
with respect to onset data. 
c Binary parameter is assumed from binary of benzene/toluene with given component unless tuned with respect to onset 
data. 

3.3 Results and Discussion 

We now perform the calculations for the different oil systems with the proposed modeling approach 
and compare them with experimental data of different reservoir oils mentioned in Table 3.4. 

Compositions of reservoir oils are reduced to ܥ଺ା fraction as per the modeling approach requirement. 

The information of amount of asphaltene in STO, MW and SG of STO or ܥ଺ା fraction should be 

available in order to characterize ܥ଺ା fraction. We also divide our discussion into two sections. In the 
first section, only one type of experimental data is available for the reservoir oil, for example, 
asphaltene phase envelope only.  In the second section, at least two types of experimental data are 
available, for example, asphaltene phase envelope and gas injection results or amount of precipitated 
asphaltene.  
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Table 3.4. Composition and SARA information of reservoir oils required for CPA model. 

 
Buenrostro 
 2004 [4] 

(Fluid C1) 

Buenrostro 
2004 [4] 

(Fluid Y3) 

Szewczyk 
1998 [33]

Fotland 
1997 [34]

Srivastava
1995 [35] 

Kabir 
1999 
[36] 

Jamaluddin 
 2002 [37] 

Yonebayashi
2009 [38] 

Fahim 
2007 
[39] 

Comp. mol% mol% mol% mol% mol% mol% mol% mol% mol% 

Nଶ 0.91 0.47 0.27 1.26 0.96 0.09 0.49 0.17 0.09 

CO2 1.57 1.59 4.07 0.23 0.58 1.02 11.37 1.75 1.02 

H2S 5.39 1.44 0 - 0.30 0.05 3.22 2.04 0.05 

C1 24.02 32.22 30.53 40.00 4.49 42.42 27.36 16.47 42.41 

C2 10.09 12.42 7.13 9.10 2.99 10.80 9.41 8.66 10.78 

C3 9.58 10.29 5.92 8.88 4.75 6.92 6.70 8.21 6.92 

iC4 1.83 2.03 2.43 1.34 0.81 0.96 0.81 1.35 1.55 

nC4 4.83 4.87 1.11 4.22 1.92 3.52 3.17 4.84 2.92 

iC5 2.27 2.22 0.82 1.46 1.27 1.21 1.22 1.88 1.47 

nC5 2.74 2.71 0.79 1.93 2.19 2.09 1.98 3.15 1.82 

 ଺ା 36.77 29.74 46.92 31.59 79.74 30.93 34.28 51.48 30.95ܥ

       

 ଺ା MW 302.4 256.9 239.7 207.1 230.0 204.4 236.3 205.2 198.1ܥ

 ଺ା SG 0.852 0.784 0.815  0.870 0.840 0.873 0.848 0.834ܥ

Saturates 
(wt%) 

54.67 55.14 - - 46.60 63.30 57.40 47.98 - 

Aromatics 
(wt%) 

28.89 30.73 - - 39.60 24.90 30.80 44.42 - 

Resins 
(wt%) 

12.66 10.88 - 2.80 8.90 11.30 10.40 6.29 7.30 

Asphaltenes 
(wt%) 

3.80 3.25 4.35 0.90 4.90 0.50 1.40 1.32 0.50 

 

Oils with a Single Type of Data 

Buenrostro 2004 

Buenrostro et al [4] studied two Mexican crude oils, Fluid-C1 and Fluid-Y3. A series of titration 
experiments were carried out to determine asphaltene precipitation amounts in tank oil samples with 
several n-alkanes. Using bottom-hole samples of the same oils, high pressure/temperature 
flocculation experiments were carried out to obtain the experimental APEs of these fluids.  As shown 
in Fig.3.1 & 3.2, CPA is able to correlate the experimental APEs quite well. Fig.3.1 shows that onset 
pressure decreases, below temperature of around 335 K, as temperature decreases. Fig. 3.2 shows that 
upper onset pressure increases as temperature decreases in agreement to the experimental data. Both 
Fluid-C1 and Fluid-Y3 have also been studied by Li et al [8] and their results are also in agreement 
with experimental data, however, there is no maximum in upper onset pressure curve for Fluid-C1. 
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Fig.3.1. Fluid-C1 upper/lower asphaltene onset pressures and bubble points vs temperature. Symbols (squares for upper 
onset, circles for bubble points) represent experimental data from Buenrostro et al [4] and lines for upper onset and 

bubble pressures are the correlations by CPA with / R  =1594+16166/T K and cP of HC =17.79 bar. Line for lower 

onset pressure is the prediction by CPA after determination of / R  and cP  of HC. No experimental data for lower 

onset pressure are available. 
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Fig. 3.2. Fluid-Y3 upper/lower asphaltene onset pressures and bubble points vs temperature. Symbols (squares for upper 
onset, circles for bubble points) represent experimental data from Buenrostro et al [4] and lines for upper onset and 

bubble pressures are the correlations by CPA with / R  =1507-5136/T K and cP of HC =23.91 bar. Line for lower 

onset pressure is the prediction by CPA after determination of / R  and cP  of HC. No experimental data for lower 

onset pressure are available. 

 

Szewczyk 1998 

Szewczyk et al [33] studied a sample of crude oil taken off at a pressure above the bubble point.  The 
amount of precipitated asphaltene and volume are measured at different pressure and a constant 
temperature of 303 K. Fig. 3.3a shows that CPA is able to correlate experimental data of relative 
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volume (ratio of the volume of liquid oil at given pressure to the volume of liquid oil at bubble point) 

after tuning the ஼ܲ		of HC. Fig. 3.3b shows that CPA is not able to correlate the fraction of precipitated 

asphaltene (ratio of the mass of precipitated asphaltene to the mass of asphaltene present initially) at 

pressures higher than around 250 bar after tuning the value of	ߝ୅ୌ/ܴ. This oil has also been studied 
by Li et al [8] and their results match the experimental data for pressure higher than around 70 bar, 
however, there is a poor agreement for the pressure range 10-70 bar. At this point it is good to know 
that as Tavakkoli et al [13] mentioned that a small experimental error during filtration procedure or 
gravimentric method for measuring the amount of precipitated asphaltene can lead to a significant 
difference between model and experimental results.  
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(a) (b) 
Fig. 3.3. Szewczyk 1998 crude oil: (a) Relative volume vs pressure at 303 K. (b) Fraction of asphaltene precipitated vs 
pressure at 303K.  Symbols represent experimental data from Szewczyk [33] and lines are correlations by CPA with 

/ R  =1690 K and cP of HC =16.85 bar. 

 

Fotland 1997 

Fotland et al [34] studied North Sea crude with respect to gas injection. Separator gas of flashed 
reservoir oil was injected in different amounts and then measured the onset pressures. It was found 
that there was asphaltene precipitation at 35 mol% of gas injection or more at 365 K. Hence we tuned 

 ୅ୌ/ܴ at this point. Fig. 3.4 shows that CPA is able to correlate upper onset pressures with differentߝ

amount of gas injection only after tuning k୧୨ of the binary pairs of methane, ethane, propane with 

asphaltene to the value of (-0.2). However, this value of k୧୨ is far from the default values of k୧୨ of n-

alkanes with asphaltene as mentioned in Table 3.3. We believe that more information on the 
asphaltene envelope would be required to check the reliability of the model. The composition of 
injected gas is given in Table 3.5. This oil has also been studied by Zhang et al [9] and their results 
also match the experimental data similarly to this work as Fig. 3.4b, however, there is no discussion 

about whether they use any 	݇௜௝ to match the data. 
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(a) (b) 
Fig. 3.4. Fotland 1997: Upper onset and bubble point pressure vs amount of gas injection at 365 K.  Symbols (squares 
for upper onset and circles for bubble points) represent experimental data from Fotland [34] and lines are correlations 

by CPA with / R  =1428 K and cP of HC =20.21 bar. (a) with default values of ijk  mentioned in Table 3.3 (b) when 

methane/ethane/propane-asphaltene pairs ijk  = (-0.2). 

 

Srivastava 1995 

Weyburn Oil-A2 was from the southeast Saskatchewan reservoir, Weyburn. The initial asphaltene 
content of the oils collected from the Weyburn pool was about 5 wt% and suggested the possibility 

of formation plugging and wettability alteration during COଶ	injection. Srivastava et al [35] undertook 

the laboratory study to find out the effect of COଶ	injection on Weyburn oil. It was heavy oil with 	

 ଺ା content of 79.74 mol%. Fig. 3.5a shows that CPA is able to correlate experimental data of bubbleܥ

point pressures at different COଶ	concentraitons at 332 K after tuning the 	 ௖ܲ 	of HC. Fig. 3.5b shows 

that CPA is also able to correlate the fraction of precipitated asphaltene (ratio of mass of precipitated 

asphaltene to mass of asphaltene present initially) after tuning the values of ߝ୅ୌ/ܴ at 160 bar and 
332 K. However, we feel that experimental data of APE is required to check the model reliability. 
This oil also been studied by Li et al [8] and their results are also in agreement with experimental 
data. 
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(a) (b) 

Fig. 3.5. Srivastava 1995 Weyburn Oil-A2: (a) Bubble point pressures vs mole fraction of 2CO at 332 K (b) Fraction of 

asphaltene precipitated vs mole fraction of 2CO  at 160 bar and 332 K.  Symbols represent experimental data from 

Srivastava [35] and lines are correlations by CPA with / R  =1652 K and cP  of HC =20.20 bar. 

 

Oils with Two & More Types of Data 

For a rigorous test or to check the reliability of the model, two types of experimental data of the same 
oil are encouraged. One type of data is used to determine model parameters and a second type of data 
is used for checking the model without adjusting any new parameters. 

Kabir 1999 

Kabir et al [36] studied an oil from south Kuwait’s Marrrat well (MG-OF4) in the Magwa area of the 
Greater Burgan field in order to mitigate production problems. A gravimetric technique was used to 
generate asphaltene phase envelope and an acoustic resonance technique (ART) is used for 
determination of both onset and bubble point pressure. Fig. 3.6a shows that CPA is able to correlate 

the upper onset and bubble points data well after tuning temperature dependent	ߝ୅ୌ/ܴ and	 ௖ܲ 	of HC 
respectively. Calculation of lower onset curve, where no parameter is adjusted, is in agreement with 
the data. On the other hand, Fig. 3.6b shows the calculation of asphaltene content in the oil versus 
pressure at 322 K. We get good match of the experimental data with minor deviations. These results 
indicate that CPA is able to calculate other type of data than those used in parameter estimation. This 
oil has also been studied by Zhang et al [9]. Their results also show maximum in upper onset pressure 

curve as we see in Fig. 3.6a. Fig. 3.6a also shows the effect of	Nଶ,	COଶ	and methane (C1) injection 
on upper onset pressure boundary. The amount of injected gas is 10 mol% (0.1 mol of gas per 0.9 

mol of reservoir oil). We see that, 	Nଶ		 is strongest precipitant followed by methane 

and	COଶ	respectively.   
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(a) (b) 
Fig. 3.6. Kabir 1999:  (a) upper/lower asphaltene onset pressures and bubble points vs temperature. Symbols (squares 
for upper onset, circles for bubble points, and triangles for lower onset) represent experimental data from Kabir et al 

[36]. Lines for upper onset and bubble curves (for oil without gas injection) are the correlations by CPA with / R  

=1257+81602/T K and cP of HC =19.97 bar. Line for lower onset curve and effect of 10 mol% of 2 N , 2CO and methane 

(C1) injections on upper onset pressures are the predictions by CPA after determination of / R  and cP  of HC. (b) 

Asphaltene content in the oil vs pressure at 322 K. Symbols represent experimental data from Kabir et al [36] and the 
line represents the prediction by CPA. 

 

Jamaluddin 2002 

The reservoir has been under production with primary depletion for more than 20 years and was 
expected to decline below the saturation pressure soon. Therefore, Jamaluddin et al [37] undertook 
the feasibility study to evaluate the potential of improved oil recovery by pressure maintenance using 
nitrogen. Fig. 3.7a shows that CPA is able to correlate upper onset and bubble points data in 

agreement with experimental results after tuning the temperature dependent	ߝ୅ୌ/ܴ and	 ௖ܲ 	of HC 

respectively. Calculation of lower onset curve, where no parameter is adjusted, is in agreement with 
the experimental data. Fig. 3.7b shows that CPA is also able to correlate onset pressure with different 

amounts of 	Nଶ		injection at 419 K but only after tuning the binary interaction parameter (k୧୨) of 

asphaltene-	Nଶ		pair to 0.24. Gonzalez et al [12] studied the same oil with PC-SAFT EoS and tuned 

the asphaltene-	Nଶ		pair k୧୨ to the value of 0.25. Li et al [8] and Zhang et al [9] also studied the same 

oil, however, Li et al [8] have not shown the effect of 	Nଶ	 injection and Zhang et al [9] have not 

mentioned anything about ݇௜௝. Hustad et al [20] performed the study of 	Nଶ		 injection on different oil 

with PC-SAFT and they also mentioned that the asphaltene-Nଶ	 pair k୧୨  has the value of 0.17. 

Therefore, the asphaltene-	Nଶ		pair k୧୨ value of 0.24 is quite reasonable and it is used as default value 

for all the oils studied in this work. In addition Zhang et al [9] show a maximum in upper onset curve 
whereas our results do not show any maximum in Fig. 3.7a. 
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(a) (b) 

Fig. 3.7. Jamaluddin 2002:  (a) upper/lower asphaltene onset pressures and bubble points vs temperature. Symbols 
(squares for upper onset, circles for bubble points, triangles for lower onset) represent experimental data from 
Jamaluddin et al [37]. Lines for upper onset and bubble curves (for oil without gas injection) are the correlations by CPA 

with / R  =1540+6339/T K and cP of HC =19.04 bar. Line for lower onset curve and effect of 10 mol% of 2N ,

2CO and methane (C1) injections on upper onset pressures are the predictions by CPA after determination of / R  

and cP  of HC. (b) Upper onset and bubble point pressure vs amount of 2N injection in mol% at 419 K. Symbols 

(triangles for upper onset, circles for bubble points) represent experimental data from Jamaluddin et al [37]. Lines 
represent the calculated trend by CPA. 

 

Fig. 3.7a also shows the effect of		Nଶ ,	COଶ	and methane (C1) injection on upper onset pressure 
boundary. The amount of injected gas is 10 mol% (0.1 mol of gas per 0.9 mol of reservoir oil). We 

see that 	Nଶ is strongest precipitant followed by methane, and	COଶ respectively.  Gonzalez et al [12] 

also performed the same study with PC-SAFT (without the association term) by injecting the same 

amount of gas (10 mol%) and also concluded that 	Nଶ is the strongest precipitant followed by methane 

and 	COଶ	respectively. However, they also concluded that for a given amount of 	COଶ	 injection, there 

is a cross over temperature, below which asphaltene becomes stable, for this oil. It implies from their 

results that the attraction between 	COଶ and asphaltene molecules becomes dominant below cross-

over temperature. More experimental data is needed for the validation of such results.  

Yonebayashi 2009 

This oil was from an offshore carbonate field in the Arabian Gulf, which was exhibiting asphaltene 
deposition inside the tubing of production wells completed in one of two main producible limestone 
reservoirs. EOR was planned and risk of enhancing the asphaltene problem was studied by 
Yonebayashi et al [38]. There are no experimental data on bubble point pressure and therefore tuning 
of the Pc of the HC is not possible. Fig. 3.8a shows that CPA is able to correlate the upper onset 

pressure of the oil without gas injection after tuning the temperature dependent	ߝ୅ୌ/ܴ. The same 
parameters are used to calculate the upper onset pressure boundary with different amount of gas 
injection. Fig. 3.8b shows that CPA calculation results have minor deviations from experimental data. 
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Table 3.5 shows the composition of injected gas. Zhang et al [9] also studied the same oil and showed 
a maximum in upper onset curve with and without gas injection, whereas our results do not show any 
maximum. 
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Fig. 3.8. Yonebayashi 2009: (a) Lower Onset and bubble point pressures vs temperature without gas injection. Upper 
onset pressure vs temperature with/w/o gas injections. Symbols (square for 0 mol% gas, circle for 2.9 mol% gas, upward 
triangle for 5.4 mol% of gas, downward triangle for 10.7 mol% gas, star for 14.1 mol%, plus for 22.6 mol%)  represent 
experimental data of upper onset pressure from Yonebayashi [38]. Lines for upper onset (with 0 mol% gas injection) and 

bubble pressure are the correlations by CPA with / R  =1597+24786/T K and cP of HC =16.91 bar. While lines for 

lower onset curve and effect of gas injections on upper onset pressures are the predictions with CPA after determination 

of / R   and cP  of HC.  (b) Upper onset temperature vs amount of injected gas in mol% at 278 bar. Symbols represent 

experimental data of upper onset pressure from Yonebayashi [38]. Solid line is the calculation by CPA. 

 

Table 3.5. Injected Gas Composition. 

Components 
Fotland 1997 

Composition (mol%) 
Yonebayashi 2009 

Composition (mol%) 
H2 - 0.21 
H2S - 7.28 
CO2 0.43 4.37 
N2 2.36 0.42 
methane 67.50 39.71 
ethane 12.79 20.79 
propane 9.73 21.41 
i-butane 1.22 1.66 
n-butane 3.03 2.49 
i-pentane 0.82 0.62 
n-pentane 0.76 0.42 
n-hexane 0.62 0.21 
n-heptane 0.76 0.21 
 ା - 0.21଼ܥ
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Fahim 2007 

Fahim [39] presented the experimental data of upper onset, lower onset and bubble point pressures 
data for the different crude oils, most of them are from Middle East. He presented the asphaltene 
envelope data of the reservoir oil for two values of asphaltene amount. Fig. 3.9a shows that CPA is 
able to correlate the upper onset and bubble point pressures after tuning the temperature 

dependent	ߝ୅ୌ/ܴ and	 ௖ܲ 	of HC respectively while the prediction of lower onset curve deviates from 
experimental data when asphaltene amount is 0.5 wt% in the heavy oil. Fig. 3.9b shows that CPA is 
able to calculate upper and bubble point pressures in agreement with experimental data, however 
lower onset pressure calculation shows minor deviations, when asphaltene amount is changed from 
0.5 wt% to 0.4 wt%. No parameters are adjusted while generating Fig. 3.9b. Li et al [8] also studied 
this oil and concluded that upper onset pressure were overestimated when the asphaltene content is 
0.4 wt%. However, our results are in agreement as shown in Fig. 3.9b. Li et al [8] also concluded that 
asphaltene becomes less stable above 400 K whereas our results show that asphaltene becomes more 
stable with temperature. 
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(a) (b) 
Fig. 3.9. Fahim 2007: Asphaltene phase envelope (a) when asphaltene in heavy oil is 0.5 wt% (b) when asphaltene in 
heavy oil is 0.4 wt%. Symbols (squares for upper onset, circles for bubble points, and triangles for lower onset) represent 
experimental data from Fahim [39]. (a) Lines for Upper onset and bubble curves are the correlations by CPA with 

/ R  =1368+47643/T K and cP of HC =20.33 bar. Line for lower onset curve is the prediction with CPA after 

determination of / R   and cP  of HC.  (b) Lines are the predictions with CPA after determination of / R   and 

cP  of HC. 

 

Ting 2003 

Ting et al [14] prepared a model oil by dissolving 1g of asphaltene in 100 ml of toluene. Titrating 
different n-alkanes with model oil, the volume fraction of each n-alkane was found at the onset of 
asphaltene precipitation. Methane was then injected isothermally and upper onset and bubble point 
pressures were found. We assumed cross-association between toluene and asphaltene and then 
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calculated the cross-association energy (ߝ୅୘/ܴ) from the onset data with different n-alkanes. Fig. 
3.10a shows that CPA is able to correlate experimental data. We used the same parameters to check 
the effect of methane injection. Fig. 3.10b shows that CPA is able to calculate results in agreement 
with experimental data. Ting et al [14] used PC-SAFT (without the association term) and could also 
correlate the experimental data. However, they tuned total three asphaltene pure component 
parameters and we tuned only one parameter from Fig. 3.10a. Since the difference between the two 

experimental temperatures is not large, we kept the ߝ୅୘/ܴ as temperature independent parameter and 
this results to minor deviations in the upper onset pressure results at 339 K.  
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(a) (b) 

Fig. 3.10. Ting 2003: (a) Volume fraction of different n-alkane at the onset of asphaltene precipitation at 293 K and 1 
bar vs carbon number of respective n-alkane. Circles represent experimental data from Ting et al [14] and cross marks 

represent the correlation by CPA with / R  =2132 K. (b) Upper onset and bubble point pressures vs amount of 

methane injected in terms of  mass fraction. Symbols represent experimental data and lines are the predictions with CPA. 

 

Hirschberg 1984 

Hirschberg et al [2] carried out a series of titration experiments on heavy oil. The onset of asphaltene 
precipitation upon the dilution of the oil with various liquid alkanes and gases was determined. The 
amount of n-pentane insoluble asphaltene in the heavy oil was 3.9 wt%. MW and SG of heavy oil 
were 221.5 g/mol and 0.875 g/cm3 respectively. Onset measurements with different n-alkanes are 

used to calculate ε୅ୌ/R	and ஼ܲ 	of HC and the correlation between experimental data and CPA results 
can be seen in Fig. 3.11. The results of lower onset pressure with different gases at different 
temperatures are calculated by the model, without adjusting any parameters, and compared with 
experimental data in Table 3.6. In most cases, results are in agreement with the experimental data. In 
some cases the oil was diluted with n-decane in order to decrease the lower onset pressure to keep the 

pressure reading in the measurement range of the apparatus used. We kept ߝ୅ୌ/ܴ as temperature 
independent since the experimental temperature variation is not large. 
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Fig. 3.11. Hirschberg 1984: Amount of n-alkane (in cm3) per g of oil at the onset of precipitation vs n-alkane number at 
295.15 K and 1 bar. Symbols (solid circles) represent experimental data from Hirschberg et al [2] while symbols (cross 

marks) are the correlations by CPA with / R  =1730 K and cP  of HC =20.98 bar. 

 

Table 3.6. Comparison of lower onset pressure between experimental data and CPA predictions for propane, methane 
and CO2 as precipitants. 

Precipitant 

Dilution 

(cm3 n-decane/g of tank 

oil) 

Temp. 

(K) 

Experimental onset 

P 

(bar) 

CPA onset 

P 

(bar) 

RDa in Onset 

P 

(%) 

Propane 0 295.15 7.9 6.65 15.8 
 0 313.15 12.3 9.99 18.8 

 0 334.15 >21 15.06 - 
 0.49 297.15 5.3 5.06 4.5 

 0.49 310.15 9.1 6.65 26.9 
 0.49 333.15 13 10.13 22.1 

 0.49 333.15 14 10.13 27.6 
 0.98 297.15 4.2 2.74 34.8 

 1.41 297.15 1.8 1.14 36.7 

Methane 0 295.15 >200 485.51 - 

 0.98 295.15 >200 70.93 - 

CO2 0 296.15 >53 305.69 - 

 0.49 296.15 40 47.31 18.3 
 0.98 297.15 29 26.37 9.1 

 1.41 295.15 31 1.29 95.8 

a Relative Deviation ൌ
ห௉೐ೣ೛ି௉೎ೌ೗೎ห

௉೐ೣ೛
ൈ 100 

 
 

Table 3.7 shows the calculated values of ߝ୅ୌ/ܴ and ௖ܲ	of HC for all the oils studied in this work. One 

can observe that for most of the oils, ߝ୅ୌ/ܴ is decreasing with temperature and for Fluid Y3 it is 
increasing with temperature. We suspect that some of the upper onset pressure data for Fluid Y3 may 
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be in error. One can also observe that ௖ܲ	of HC varies around 20 bar and is always above 	 ௖ܲ		of 
asphaltene (15.4 bar). 

Table 3.7. Value of cross-association energy / R   (K) and cP of HC after tuning for all fluids studied. 

Fluid / R   (K) cP of HC (bar) 

Kabir 1999 1257+81602/T 19.97 

Jamaluddin 2002 1540+6339/T 19.04 

Yonebayashi 2009 1597+24786/T 16.91 

Fotland 1997 1428 @365K 20.21 

Buenrostro 2004 (Fluid C1) 1594+16166/T 17.79 

Buenrostro 2004 (Fluid Y3) 1507-5136/T 23.91 

Fahim 2007 1368+47643/T 20.33 

Szewczyk 1998 1690 K @303K 16.85 

Srivastava 1995 1652 @332K 20.20 

Ting 2003 2132 K @ 293K - 
Hirschberg 1984 1730 K @ 296 K 20.98 

 
Table 3.8 shows SARA analysis of five reservoir fluids, ratio of amount of resins (R) to aromatics 

(A) and calculated value of ߝ୅ୌ/ܴ  (K) at 298 K. We considered only five fluids because of 

availability of SARA analysis and APE data. Since heavy component is a lumped component of 
saturates, aromatics and resins fractions, cross association energy of heavy component towards 
asphaltene decreases with amount of saturates and increases with amount of resins and aromatics. 
Out of resins and aromatics, resins contribute more to cross association energy compared to aromatics. 

Fig. 3.12 shows that calculated  ߝ୅ୌ/ܴ (K) at 298 K depends upon both amount of saturates and R/A 
ratio. In other words, if amount of saturates increases and at the same time there is considerable 

increase in R/A ratio (points 1 & 2 in Fig. 3.12) then change in ߝ୅ୌ/ܴ (K) may not be significant. 

One can also observe that value of ߝ୅ୌ/ܴ (K) for Fluid Y3 (point-5 with triangle symbol) is not 

consistent with the values of ߝ୅ୌ/ܴ (K) of other fluids, which further corroborates our suspicion of 

wrong onset data in addition of negative sign in temperature dependency of ߝ୅ୌ/ܴ (K). 

Table 3.8. SARA analysis and cross-association energy / R   (K) at 298 K for five reservoir fluids. 

 

 Kabir 
1999 

Yonebayashi 
2009 

Jamaluddin 
2002 

Buenrostro 
2004 

Fluid C1 

Buenrostro 
2004 

Fluid Y3 
Saturates (S) wt% 63.3 47.98 57.4 54.67 55.14 

Aromatics (A) wt% 24.9 44.42 30.8 28.89 30.73 

Resins (R) wt% 11.3 6.29 10.4 12.66 10.88 

Asp wt% 0.5 1.32 1.4 3.8 3.25 

R/A wt/wt 0.45 0.14 0.34 0.44 0.35 

 ୅ୌ/ܴ @298K K 1531 1680 1561 1648 1501ߝ
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(a) (b) 

Fig. 3.12. Relationship between cross-association energy / R   (K) at 298 K and SARA analysis. (a) cross-association 

energy / R   (K) at 298 K vs Saturates (wt%) (b) R/A ratio (wt/wt) vs Saturates (wt%). Triangle symbol represents 

data for Fluid Y3. Point 1 for Kabir 1999, 2 for Yonebayashi 2009, 3 for Jamaluddin 2002, 4 for Buenrostro 2004 Fluid 
C1 and 5 for Buenrostro 2004 Fluid Y3 (triangle symbols). 
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3.4 Conclusions 

By studying the nine reservoir oils, the model oil and the heavy oil, it can be concluded that CPA is 
able to correlate experimental data of the onset of precipitation after tuning the temperature dependent 
cross-association energy and the critical pressure of HC. The modeling approach is quite simple and 

does not require splitting ܥ଺ା fraction into multiple components. The CPA model is also able to 
predict asphaltene phase envelope for different amount of gas injection, however, only in one case 
(Fotland 1997) we had to adjust the kij of asphaltene-gas pair to match the experimental data. Like Li 
et al [8], we could not find any physical meaning for the temperature dependent cross-association 

energy between HC and asphaltene (ߝ୅ୌ/ܴ). Like Gonzalez et al [12], we found that N2 is the 

strongest precipitant followed by methane and CO2 respectively. We also feel that more experimental 
data on CO2 injection effect on live reservoir oil in terms of onset pressure are required to validate 
whether asphaltene becomes stable at low temperature. It is also found that there is not always a 
maximum in upper onset curve, which contradicts the results from Zhang et al [9] for some of the oils 
(Yonebayashi 2009 and Jamaluddin 2002) studied in this work. One of the key points found during 

this work is that the calculated values of ߝ୅ୌ/ܴ (K) are the function of SARA fractions and are not 
any random fitting values. 
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Chapter 4. Study of Gas Injection Effect and Sensitivity 
of the CPA Model 

Entire content of this chapter is from our journal article “Alay Arya; Nicolas von Solms; Georgios 
M. Kontogeorgis. Investigation of the Gas Injection Effect on Asphaltene Onset Precipitation 
Using the Cubic-Plus-Association Equation of State. Energy Fuels. 2016, Vol. 30(5), pp.3560-
3574”. 

 

Abstract 

Miscible and Immiscible gas flooding is one of the enhanced oil recovery (EOR) techniques that has 
been widely used to increase the oil production. One of the critical problems with gas flooding is that 
it generally aggravates the asphaltene precipitation, which further creates a flow assurance problem. 
Therefore, it is imperative to investigate beforehand, the effect of gas injection into the reservoir, 
from the modeling results. The Cubic-Plus-Association (CPA) equation of state (EoS) has previously 
been applied to model asphaltene onset precipitation condition. In this work, we adopt the modeling 
approach from the previous work and provide the conceptual base for it. Five different reservoir fluids 

are studied to validate whether the model is able to calculate the effect of different types (e.g. ଶܰ,	ܱܥଶ, 

methane) and amounts (e.g. 10/20/30 mol%) of gas injections in agreement with experimental data 
from the literature. We also investigate the model behavior in order to show the importance of the 
association term in the EoS for the selected modeling approach. Sensitivity of the model results when 
we calculate either two or three model parameters from the experimental data is also studied. Model 
dependency on Saturates-Aromatics-Resins-Asphaltenes (SARA) analysis or molecular weight (MW) 
of asphaltene is also analyzed. In addition, a unique characteristic of the model for the given stock 
tank oil (STO) is identified, which does not change with different types and amounts of gas injections, 
and also remains same at upper and lower onset pressure boundaries. Based on this unique 
characteristic, a simple procedure to predict asphaltene phase envelope (APE) for the reservoir oil 
with relatively simple and few experimental data, performed on STO with n-pentane/n-heptane as 
precipitant, is proposed. This proposed procedure avoids the need of high pressure measurements of 
upper onset pressure (UOP). 

4.1 Introduction 

Asphaltenes are high MW organic compounds and are characterized as the fraction of the reservoir 
oil that is soluble in toluene, but insoluble in n-pentane/n-heptane [1]. Asphaltene solubility depends 
upon temperature, pressure and composition of the oil and they may precipitate out during improved 
oil recovery (IOR) operation by gas injection [2]. Once the asphaltene precipitation occurs, it causes 
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severe permeability reduction and wettability alteration in the reservoir, and plugging in the wellbore 
and surface facilities. Remedial measures, which are expensive and disruptive, usually include 
chemical treatments. Therefore, one must investigate the possibility of asphaltene precipitation prior 
to implementing a gas injection scheme [3,4]. 

After the primary and secondary oil recovery, the remaining oil in the most of the reservoir is around 
50-60% of the Original Oil in Place (OOIP) [5-6]. Literature survey reveals that EOR technique with 
gas injection can produce up to 40% of the remaining oil in the field after water flooding [7,8]. Gas 
injection has been the most widely used EOR method for light, condensate and volatile oil reservoirs, 
compared to chemical and thermal methods. Light reservoirs with even small asphaltene content are 
susceptible to asphaltene precipitation not only through pressure depletion during the primary 
recovery but also through the composition change in fluid during gas injection [9-11]. Therefore gas 
injection in the light oil reservoir is more likely to cause asphaltene precipitation [3]. For reservoir 
fields, where hydrocarbon gas is in abundance, EOR is generally performed either by gas injection or 

by Water-Alternating-Gas (WAG) scheme. For fields, where ܱܥଶ is economically available, pure 

 ଶ-EORܱܥ .ଶ injection or Water-Alternating-Gas scheme is applied for the enhanced oil recoveryܱܥ

is long–practiced method and ܱܥଶ-EOR projects are being considered globally [12]. If there is no 

access of other gases, ଶܰ injection might be economical and suitable scheme for high pressure and 
high temperature (HP/HT) light oil reservoirs [13]. Reservoir field with sour and under saturated light 

oil with large gas content has the option of high pressure miscible acid gas (ܪଶܵ+ܱܥଶ) injection for 

enhanced oil recovery as well as for sulfur & ܱܥଶ management [14].  

Gas injection effect on asphaltene precipitation has been studied by several researchers using SAFT, 
PC-SAFT, and CPA. Wu et al [15] used modeling approach based on SAFT within the McMillan-
Mayer description of liquid solutions and studied only one reservoir fluid with respect to gas injection. 
Ting et al [16] and Arya et al [17] studied the methane injection on model oil using the PC-SAFT 
(without association term) and CPA respectively. They have shown that the ambient pressure n-
alkane titration data are enough to find the model parameters. However, no validation was provided 
to show if the ambient pressure n-alkane titration data for STO alone would be sufficient to predict 
the effect of injection of separator gas (or mixture of gases) into the STO. Gonzalez et al [18] studied 

the effect of ଶܰ and ܱܥଶ injections into the reservoir fluid using PC-SAFT by modifying the approach 
from Ting et al. [16]. Later Panuganti et al [19] modified the modeling approach from Gonzalez et al 
[18] and studied the effect of hydrocarbon gases for two reservoir fluids using both PC-SAFT and 
SRK-P. They concluded that PC-SAFT is able to predict the gas injection effect while SRK-P cannot 
do so. Punnapala & Vargas [20] then modified the modeling approach from Panuganti et al [19] by 
reducing three adjustable asphaltene parameters to two parameters and studied gas injection effect on 
five reservoir fluids. AlHammadi et al [21] studied both PC-SAFT and CPA using modeling approach 
from Panuganti et al [19] and Zhang et al [22] respectively. They compared the results with the 
experimental data and concluded that the PC-SAFT predictions for the effect of gas injections are 
better than the CPA predictions.  However, they have compared the asphaltene precipitation onset 
results only for one reservoir fluid and therefore their conclusion cannot be generalized for all fluids. 
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On the other hand Zhang et al [22] also studied both PC-SAFT and CPA using the modeling approach 
from Gonzalez et al [18] and a self-developed approach (CPA) respectively. They concluded that 
CPA results are better than PC-SAFT results for two out of three reservoir fluids studied with respect 
to gas injection. It can be analyzed that for some fluids, the CPA approach of Zhang el al [22] is better 
while for some fluids, the PC-SAFT approach from Gonzalez et al [18] or Panuganti et al [19] is 
better and therefore it opens the door of further understanding. Moreover, from analyzing the results 
of the PC-SAFT modeling approach in the above mentioned publications and results of the CPA 
modeling approach from Li & Firoozabadi [23], it can be seen that the upper onset pressure (UOP) 
boundaries are always of the shape of concave up decreasing. While, the results of CPA modeling 
approach from Zhang et al [22] for UOP boundary show always maximum in the pressure at lower 
temperature and shape of the UOP boundary is more like concave down decreasing. Li & Firoozabadi 
[23], Zhang et al [22] and Arya et al [17] applied the CPA with a different modeling approach but no 
analysis was provided for the sensitivity of model parameters on the results. Li & Firoozabadi [23] 
have not shown any gas injection effect on UOP of reservoir oil. Vafaie-Sefti & Mousavi-Dehghani 
[24] considered asphaltene sub-fractions as aggregated components and used the Peng-Robinson (PR) 

EoS. However, they have shown only ܱܥଶ  injection effect on asphaltene precipitation at fixed 

temperature and pressure but not on UOP boundary of reservoir oil at different temperatures. 

Yonebayashi et al [25] studied the effect of acid gas (ܪଶܵ+ܱܥଶ) injection using CPA for two reservoir 

fluids. They used only two experimental measurements of UOP at two different temperatures for the 
first fluid and only one measurement of UOP for the second fluid to calculate model parameters. In 
all of these works, mentioned above, no discussion is provided about model reliability away from 
experimental temperature range and model sensitivity with respect to SARA analysis and MW of 
asphaltene. Panuganti et al [19] mentioned that accurate SARA analysis is necessary to characterize 
the oil using PC-SAFT but did not show any sensitivity results. Table 4.1 shows the brief overview 
of the available work and corresponding references, based on asphaltene modeling study with CPA 
and PC-SAFT, and how this study is different from them. 

 
Table 4.1. Overview of how this work is different than the available work in the literature, based on asphaltene modeling 
study with CPA and PC-SAFT. 

EoS 
APE 

without GI 
APE 

with GI 

Asphaltene 
Precipitation in 

dead oil 

PVT 
Properties 

Sensitivity of Model 
Inputs/Parameters 

CPA [17,22,23] [17,22] [26] [21] This Work 

PC-SAFT [16] [18,19,20] [27,28] [20,21] NA 

 
 

In this work, we first go through the CPA EoS in order to understand the model parameters. In the 
next section, we mention the framework based on which the modeling approach is derived. Then we 
discuss the results of five reservoir fluids with different types and amounts of gas injections and their 
comparison with experimental data. We also analyze the model behavior with respect to association 
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term and find its importance. Based on the model behavior, relatively simple experimental 
measurements with STO are proposed as model input to predict the asphaltene onset boundary for 
the given reservoir oil with/without gas injections. Effect of model adjustable parameters and MW of 
asphaltene (or in other words, amount of asphaltene from SARA analysis) on the modeling results 
are also discussed. Model results, away from experimental temperature range, are analyzed with 
different set of model parameters. 

4.2 Hypothesis behind Modeling Approach 

In this work we assume the same modeling approach as presented by Arya et al [17], which is also 
represented in Fig. 4.1. Asphaltenes are considered as single self-associating compounds. The 
saturates, aromatics and resins are lumped into single component named as heavy component (HC), 
generally known as maltene fraction. This heavy component is cross associating with asphaltene. 
Asphaltene phase is modeled as liquid phase [30]. The binary interaction parameters are the same as 
mentioned by Arya et al [17], also shown in Table 4.2, and kept constant for all the fluids studied in 

this work. Since the modeling approach uses n-hexane plus (ܥ଺ା ) fraction and STO contains 
negligible amount of lighter component than n-hexane, we can reasonably approximate STO as the 

 ଺ା fraction, which is further divided into the heavy component and asphaltene. In reality, asphalteneܥ

fraction is poly-dispersed in the medium of heavy component in the form of many sub-fractions as 
shown in the Fig. 4.2 as pictorial representation. Buch et al [31] and Badre et al [32] conducted several 
experiments using fluorescence depolarization techniques and concluded that the asphaltene 
molecules are always present as monomer in the oil with MW around 750 DA. Our model results are 
also consistent with this finding, which is discussed in the “Results & Discussion” section. Each sub-

fraction of asphaltene may have different self-associating energy (ߝ஺஺). Since the heavy component 

is the lumped component, each asphaltene sub-fraction may encounter different cross-association 

energy (ߝ஺ுሻ in the medium due to different local composition. In this modeling approach we assume 

that asphaltene sub-fraction, which has the highest value of ߝ஺஺ precipitates first and is responsible 

for the onset of precipitation. One can assume asphaltene sub-fractions as insoluble fractions in n-
heptane, n-octane, and n-nonane and so on respectively. Since in this study we are only concerned 
about onset conditions of asphaltene precipitation and therefore to make the approach simple we 

assume that all the sub-fractions of asphaltene have the same highest value of		ߝ஺஺ . In addition, 
asphaltenes are treated as single component with 4C scheme (molecule has two proton donor and two 
proton acceptor sites). Asphaltene critical parameters are fixed based on the assumption that its 

solubility parameter is 19-23 MPa1/2 [33]. Asphaltene solubility parameters are 19.14 MPa1/2 (	ߝ஺஺ ൌ
0) and 21.51 MPa1/2 (	ߝ஺஺ ൌ 3000) at 298K and 1 atm. User should note that we can use different set 

of critical parameters of asphaltene since model adjustable parameters will set accordingly for the 

same final results. The default value of ߝ஺஺ is 3000K [34] but can be treated as adjustable model 

parameter if sufficient experimental data are available. Local composition of the medium of heavy 

component varies with temperature, which also varies the location dependent		ߝ஺ு. We are interested 

in		ߝ஺ு, which is faced by the asphaltene sub-fraction of the highest value of		ߝ஺஺. Therefore, we 
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assume that the entire heavy component medium has same		ߝ஺ு, which is temperature dependent. 

Cross-association volume ሺߚ஺ுሻ  and self-association volume ሺߚ஺஺ሻ  have constant values (0.05). 

One can note that the value of association strength ሺ∆஺೔஻ೕሻ  is dependent upon two model 

parameters	ሺ	ߝ஺೔஻ೕ	&	ߚ஺೔஻ೕሻ. Hence if we fix		ߚ஺೔஻ೕ, we can calculate 	ߝ஺೔஻ೕ from the experimental 

data at given temperature. However, the temperature extrapolation of 	∆஺೔஻ೕ  will be different for 

different values of		ߚ஺೔஻ೕ. For the heavy component, one cross-association site is selected and the 

normal boiling point is calculated from the Pedersen relationship [35]. Critical parameters ( ௖ܲ , ௖ܶሻ	and 

acentric factor ሺ߱ሻ	of HC are calculated from the Kesler–Lee relationship [36]. Critical pressure ( ௖ܲ) 

of HC is adjusted to match bubble point pressures of the oil. In addition, this modeling approach does 
not require SARA analysis since it does not depend upon asphaltene amount or asphaltene MW. In 

other words, for the fixed value of asphaltene		ߝ஺஺, increase in asphaltene amount increases 		ߝ஺ு 

with heavy component at the onset temperature and pressure. While decrease in asphaltene amount 

decreases 		ߝ஺ு at the onset temperature and pressure. We discuss these points in detail in the “Results 

& Discussion” section. 

 

Crude
‐ MW
‐ SG
‐ wt% Asphaltene

Heavy Comp (HC)
(Cross Assoc.)

Asphaltene (Asp)
(Self Assoc.)

‐ MW=750
‐ Tc = 1040
‐ Pc = 15.4 bar
‐ ω =1.54
‐ 4C scheme
‐ ƐAA/R =3000K
‐ βAA=0.05 

‐ 1  site
‐ Tc, Pc, ω from Kesler & Lee
‐ Pc tuned wrt density
‐ βAH=0.05 
‐ ƐAH/R from Onset Point @T

SP= 18 MPa1/2

 
Fig. 4.1. Representation of the characterization procedure of STO/ܥ଺ା fraction into two pseudo-components (heavy 
component and asphaltene). 
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Real Condition 
Assumption-1 

 ஺஺(max)ߝ =.… =  ஺஺ଶߝ  =  ஺஺ଵߝ

Assumption-2 

 ஺ுሺܶሻߝ =.… =  ஺ுଶߝ  =  ஺ுଵߝ

 
(a) (b) (c) 

Fig. 4.2. Graphical representation of the assumptions made for the modeling approach used in this work. (a) Real 
condition, where asphaltene subfractions are scattered in the medium of heavy component in the heavy oil/STO. (b) All 

asphaltene subfractions are assumed of having same physical properties. (c) The cross-association energy ( / R  ) 

assumed to be the same everywhere but it is temperature dependent. 
 
 
Table 4.2. Binary interaction parameter (݇௜௝) used by CPA model from Arya et al [17]. T is temperature in K. A missing 

value means that the binary interaction parameter is set to zero. 

Component Nଶ CO2 H2S HC Asp 

Nଶ  0.10 0.24 

CO2 -0.06 0.10 0.10 

H2S 0.678-0.0018T 0.05 

methane 0.141-12.6448/T 0.0882 0.0760  0.01 

ethane 0.04 0.1335 0.0847  0.01 

propane 0.04 0.1522 0.0917  0.01 

i-butane 0.05 0.1122 0.0761  

n-butane 0.05 0.1122 0.0897  

i-pentane 0.06 0.10  

n-pentane 0.06 0.10  

      

4.3 Results and Discussion 

In this work, five reservoir fluids are studied with respect to different type and different amount of 
gas injection in order to show the predictive ability and reliability of the model. In general, 
experimental data of asphaltene onset precipitation are used to calculate model parameters and then 
the model is used to predict the results of different types and/or amounts of gas injections. Model 
behavior and effect of model parameters are also analyzed. Calculated values of model parameters 
are mentioned in Table 4.3 for all the fluids. Reservoir oil compositions and properties required for 
the model are mentioned in Table 4.4. Please note that we do not need SARA analysis and information 
about amount of asphaltene is optional. Model behavior is same for all the fluids studied; however, 
results are shown only for fluid-1 in this work. The effect of different model parameters have been 
analyzed for fluid-1 to fluid-4. Four out of these five reservoir fluids have been studied by Punnapala 
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& Vargas [20] with PC-SAFT and reader is referred to their publication if interested. Relative 
deviations between experimental data and calculated results of all the fluids are mentioned in the 
Supplementary Information. 

Table 4.3. Values of Model Parameters for all fluids studied in this work. 

Fluid Asp MW ߝ୅୅/ܴ (K) ߝ୅ୌ/ܴ (K) ߚ୅ୌ ௖ܲ	of HC (bar) 

Fluid-1 1800 7000 3444-5305/T 0.05 18.21 
 750* 7000 3604-24123/T 0.05 18.21 
 750 3000 1207+97519/T 0.05 18.21 

Fluid-2 750 3000 1243+65231/T 0.05 20.12 
 750* 7000 3550-23918/T 0.05 20.12 
 750 3000 3876-378860/T 0.01 20.12 

Fluid-3 750 3000 1887-33418/T 0.05 19.13 
 750* 7000 3977-58536/T 0.05 19.13 

Fluid-4 750 3000 1269+71943/T 0.05 21.4 
 750* 7000 3863-116110/T 0.05 21.4 

Fluid-5 750* 3000 1540 at 373K 0.05 21.5 

* Relative deviations for this case are mentioned in the Supplementary Information 

 

Table 4.4. Composition, properties and asphaltene amount (optional) of reservoir fluids required for the CPA model. 
 Fluid-1[20] Fluid-2[20] Fluid-3[37] Fluid-4[20] Fluid-5[20] 

Comp. mol% mol% mol% mol% mol% 

Nଶ 0.17 0.15 0.34 0.09 0.96 

Hଶܵ 2.11 1.72 0.16 3.68 0.58 

COଶ 0 0 0 5.27 0.30 

methane 34.95 32.51 32.9 45.84 4.49 

ethane 7.77 7.97 8.15 5.35 2.99 

propane 6.81 7.7 6.28 4.21 4.75 

i-butane 1.81 1.93 0 1.18 0.81 

n-butane 4.26 4.66 1.13 2.79 1.92 

i-pentane 2.10 2.08 0 1.39 1.27 

n-pentane 2.69 2.75 3.5 1.8 2.19 

 ଺ା 37.17 38.55 47.54 28.4 79.74ܥ
      

 ଺ା MW 207.5 191.07 250.64 199.05 230.21ܥ

 ଺ା SG 0.823 0.817 0.919 0.8464 0.867ܥ

Asphaltenes (wt%) 0.21 0.17 15.5 0.17 1.73 
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Table 4.5. Injected Gas Composition in mol% for Fluid-1, Fluid-2 and Fluid-5 from Punnapala & Vargas [20]. 
Components Fluid-1 Fluid-2 Fluid-5a 
   Hydrocarbon gas Associated gas 
Nଶ 0.398 0.462 0.40 0.53 
Hଶܵ 3.891 4.510 2.44 3.18 
COଶ 0.000 0.000 0.19 0.17 
methane 71.312 87.449 74.87 59.40 
ethane 11.912 7.192 14.36 17.64 
propane 7.224 0.370 6.20 13.52 
i-butane 1.189 0.006 0.49 1.40 
n-butane 2.254 0.005 0.85 3.04 
i-pentane 0.567 0.001 0.09 0.44 
n-pentane 0.616 0.001 0.08 0.52 

 ଺ା 0.637 0.004 0.03 0.16ܥ
a Composition of two different injected gases (Hydrocarbon gas and Associated gas) are mentioned for fluid-5. 

 

Fluid-1 

Fig. 4.3 shows the hydrocarbon gas injection effect on the reservoir fluid-1. Composition of injected 
hydrocarbon gas is shown in Table 4.5. Model parameters are calculated by correlating experimental 

data for 5 mol% gas injection case as shown in Fig. 4.3a. ௖ܲ of HC is calculated from one bubble 

point and association parameters ሺߝ஺஺&	ߝ஺ுሻ are calculated from three upper onset pressures. Cases 

with 10, 15 and 30 mol% gas injection are then predicted using the model and compared with the 
experimental data as shown in Fig. 4.3b, 4.3c and 4.3d respectively. Model predictions are in 
agreement with experimental data. Also the sensitivity of the model with respect to asphaltene MW 
is analyzed by considering two cases. In the first case, the value of asphaltene MW is considered 750 
Da (which is also the default value) while in the second case it is considered 1800 DA. Model results 
with both cases are in agreement with experimental data. It proves that our modeling approach is not 
sensitive to the asphaltene MW or in other words it does not need accurate amount of asphaltene from 
SARA analysis. SARA analysis usually varies from one standard to another and therefore it is one of 
the benefits of this modeling approach that it does not depend upon SARA analysis. It can also be 
analyzed that decreasing the molar amount of asphaltene by increasing the MW to 1800 Da for the 

fixed mass fraction of asphaltene, 	ߝ஺ு	value also decreases compared to that of for 750 Da case in 

the experimental temperature range. In addition, Fig. 4.4 shows comparison between model results 
for UOP boundary with the three adjustable parameters approach and the two adjustable parameters 

approach. In the three adjustable parameters approach	 ௖ܲ  ୅୅/ܴ are calculated from oneߝ ୅ୌ/ܴ andߝ ,	

bubble point and three upper onset pressures. While in the two adjustable parameters approach		 ௖ܲ 	and 

ܴ/୅ୌߝ  are calculated from one bubble point and two UOP points for default value of	ߝ୅୅/ܴ ൌ
 One can see that the three parameters approach is, as expected, more accurate than the two .ܭ3000
parameters approach. Moreover, extrapolation of upper onset pressures at lower and higher 
temperatures, away from the experimental temperature range, is quite different. As per Fig. 4.4b, 
there is no UOP at higher temperature. We are not sure whether the model can extrapolate the results 
away from the experimental temperature range either with the three parameters approaches or with 
the two parameters approaches. However, we can confidently say that it predicts accurate results of 
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gas injection effect within the experimental temperature range. In addition, with two parameters 
approach, there is a maximum in UOP at lower temperature. The three parameters approach show 
concave up decreasing shape. 
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Fig. 4.3. Fluid-1: UOP and bubble points vs temperature for different amounts of gas injection. Symbols (squares for 
UOP, circles for bubble points) represent experimental data from Punnapala & Vargas [20]. (Plot-a) Lines for UOP and 

bubble pressures for 5 mol% gas injection case are the correlations by CPA with / R  =3604-24123/T K, /AA R 
=7000K, cP of HC =18.21 bar for MW of 750 (case-1/solid line) and / R  =3444-5305/T K, /AA R =7000K, cP of 

HC =18.21 bar for MW of 1800 (case-2/dashed line). Lines for 10 mol% (Plot-b), 15 mol% (Plot-c) and 30 mol% (Plot-

d) gas injections are the predictions after determination of / R  , /AA R and cP  of HC using 5 mol% gas injection 

case.  
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(a) (b) 
Fig. 4.4. Fluid-1 (with asphaltene MW=750): Comparison between three vs two adjustable parameters approaches with 

respect to UOP boundary. (Plot-a) Three adjustable parameters approach, / R  =3604-24123/T K, /AA R =7000K, 

cP of HC =18.21 bar. (Plot-b) Two adjustable parameters approach, / R  =1207+97519/T K, cP of HC =18.21 bar 

for default value of /AA R =3000K. Symbols represent experimental data from Punnapala & Vargas [20]. 

 

Investigation of Model Behavior for Fluid-1 

At the upper onset boundaries of fluid-1 with different amounts of gas injections, there is asphaltene 
rich phase in equilibrium with asphaltene lean phase. The asphaltene rich phase is analyzed with 

respect to SRK (Pௌோ௄,ோ) and association (P஺௦௦௢௖,ோ) contributions to the upper onset pressure (	P௎ை௉ ൌ
Pௌோ௄,ோ ൅ P஺௦௦௢௖,ோ). The reader should note that, for the asphaltene lean phase, association (P஺௦௦௢௖,௅) 

contribution is negligible and SRK (Pௌோ௄,௅) contribution is almost equal to the upper onset pressure 

(	P௎ை௉ ൎ 	Pௌோ௄,௅) since the mole fraction of asphaltene in asphaltene lean phase is very small. Table 

4.6 shows that P஺௦௦௢௖,ோ contribution remains constant for different amounts of gas injections for a 
given temperature. Since the association contribution is due to HC (which is cross-associating with 
asphaltene) and asphaltene (which is self-associating) components, we further show in Table 4.6 that 
asphaltene mole% in the binary mixture of HC and asphaltene in the asphaltene rich phase remains 
constant for different amounts of gas injections for a given temperature. Table 4.7 shows that even if 

we inject n-heptane (݊7ܥ) at ambient pressure into the mixture of HC and asphaltene, which is 

STO/heavy oil, the P஺௦௦௢௖,ோ term and mole % of asphaltene in asphaltene rich phase remain almost 
the same as in the case of gas injection into the reservoir fluid for a given temperature shown in Table 

4.6. Hence, the ܲ஺௦௦௢௖,ோ term is the characteristic property for a given STO and can be calculated 

from the ambient or near ambient pressure titration data, which shows the amount of n-heptane/n-
pentane required per amount of STO at asphaltene onset condition for different temperatures. For our 
modeling approach, we need these ambient pressure titration data at least at three different 
temperatures, which should cover the temperature range of interest. It is also observed that the 

ܲ஺௦௦௢௖,ோ  also remains constant for UOP and lower onset pressure (LOP) for a given temperature 

(results are not shown here). In other words, one can say that the Helmholtz energy contribution due 
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to the association term of asphaltene rich phase at the onset condition is independent of gas/n-heptane 
injection for given temperature. 

An asphaltene (Asp) molecule can associate with other Asp molecules or with other HC molecules. 
If Asp molecules are only bonded with sites of HC molecules and Asp molecules are not bonded with 
each other, ratio of the bonded sites of Asp molecules to the bonded sites of HC molecules will be 
unity. On the other hand if Asp molecules are bonded with each other and also with HC molecules, 
ratio of the bonded sites of Asp molecules to the bonded sites of HC molecules will be greater than 
unity. Asp monomer fraction (fraction of molecules without any bond/s with other molecules), HC 
monomer fraction and ratio of bonded sites of Asp molecules to the bonded sites of HC molecules in 
both Asp rich phase and Asp lean phase at upper onset boundary are shown in Table 4.8 for the 5 
mol% gas injection case. One can observe that Asp monomer fraction is almost zero in both Asp rich 
and Asp lean phases. In Asp lean phase, all Asp molecules are bonded with HC molecules, which 
results zero value of Asp monomer fraction and unity value of ratio of bonded sites. In Asp rich phase, 
Asp-Asp molecules self-association is more since the ratio of bonded sites of Asp molecules to 
bonded site of HC molecules are much higher than unity and Asp monomer fraction is close to zero. 
Thus, model behavior is consistent with the conclusion made by Badre et al [32] that Asp molecules 
in the oil (corresponds to Asp lean phase) are dispersed as single molecule (one fused aromatic ring) 
and not as a lumped molecule (multiple fused aromatic rings cross-linked with each other) of more 
than one Asp molecules associated with each other. 

Table 4.6. Fluid-1 (Asp MW=750 DA): Pressure contribution due to the association term ( ,Assoc RP ) and Asp mol% in the 
binary mixture of Asp and HC components for the asphaltene rich phase at the upper onset boundary. 

Temp. 
(K) 

 (bar) ࡾ,ࢉ࢕࢙࢙࡭ࡼ
(Asp rich phase) 

Asp mol% in Asp and HC mixture  
(Asp rich phase) 

5 mol% 
GI 

10 mol% 
GI 

15 mol% 
GI 

30 mol% 
GI 

5 mol% 
GI 

10 mol% 
GI 

15 mol% 
GI 

30 mol% 
GI 

281.3 -159.3 -158.6 -157.9 -154.7 94.5 94.5 94.6 94.7 

302.1 -171.2 -170.8 -170.2 -168.2 93.6 93.6 93.7 93.8 

322.9 -182.1 -181.6 -181.2 -179.6 92.6 92.6 92.7 92.8 

343.8 -192.1 -191.8 -191.4 -190.0 91.5 91.5 91.6 91.8 

364.6 -201.7 -201.3 -201.0 -199.6 90.3 90.4 90.5 90.8 

385.4 -210.6 -210.4 -210.0 -208.8 89.2 89.2 89.3 89.7 

406.3 -219.3 -219.0 -218.7 -217.5 88.0 88.1 88.2 88.6 

427.1 -227.5 -227.2 -226.9 -225.8 86.8 87.0 87.1 87.5 

447.9 -235.3 -235.0 -234.8 -233.7 85.8 85.9 86.0 86.5 

468.8 -242.8 -242.6 -242.3 -241.3 84.7 84.8 85.0 85.5 

489.6 -249.9 -249.7 -249.5 -248.6 83.7 83.8 84.0 84.5 

500.0 -253.5 -253.3 -253.0 -252.1 83.2 83.3 83.5 84.1 
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Table 4.7. Fluid-1 (Asp MW=750 DA): Pressure contribution due to the association term ( ,Assoc RP ), Asp mol% in the 
mixture of Asp and HC components for asphaltene rich phase and amount of nC7 required at the onset of asphaltene 
precipitation during nC7 injection into STO at 1.01325 bar. 

Temp. 
(K) 

At onset of precipitation 

ܲ஺௦௦௢௖,ோ 
Asp composition in Asp and HC mixture 

(Asp rich phase) 
amount of nC7 

(bar) (mol%) (cm3 of nC7/g of oil) 

281.3 -160.1 94.7 0.46 

302.1 -169.3 94.1 0.68 

322.9 -178.3 93.3 0.84 

343.8 -187.2 92.5 0.96 

364.6 -195.9 91.6 1.05 

 

Table 4.8. Fluid-1 (Asp MW=750 DA), 5 mol% GI: Asp monomer fraction, HC monomer fraction and ratio of bonded 
sites of Asp molecules to bonded sites of HC molecules in Asp rich phase and Asp lean phase at upper onset boundary. 

Temperature 
(K) 

Asp monomer fraction HC monomer fraction 
Bonded sites of Asp 

molecules/Bonded sites of HC 
molecules in one mole of fluid 

Asp Rich Phase Asp Lean Phase Asp Rich Phase Asp Lean Phase Asp Rich Phase Asp Lean Phase 

291.7 0.0003 0.0001 0.0765 0.9979 68.65 0.99 
302.1 0.0003 0.0001 0.0933 0.9980 64.28 1.03 
322.9 0.0004 0.0002 0.1341 0.9980 57.40 1.03 
343.8 0.0006 0.0004 0.1799 0.9980 52.15 1.04 
364.6 0.0008 0.0008 0.2344 0.9980 48.70 1.03 
385.4 0.0009 0.0014 0.2982 0.9980 46.79 1.03 
406.3 0.0011 0.0023 0.3683 0.9980 46.37 1.03 
427.1 0.0014 0.0036 0.4262 0.9980 45.95 1.03 
447.9 0.0016 0.0054 0.4843 0.9980 46.54 1.03 
468.8 0.0018 0.0079 0.5484 0.9980 48.85 1.02 
489.6 0.0020 0.0113 0.5988 0.9980 50.95 1.02 
500.0 0.0021 0.0133 0.6217 0.9980 52.34 0.99 

  

Non-associating CPA EoS for Fluid-1 

Since the association term remains constant for given temperature as explained above, it does not 
mean that only SRK term is important and in order to prove that we studied the non-associating CPA 

EoS as shown in Fig. 4.5 for fluid-1. Association parameters are 	ߝ୅୅/ܴ ൌ ܴ/୅ୌߝ		and ܭ0 ൌ  .ܭ0

Binary interaction parameter ൫݇୧୨ ൌ െ0.6893 ൅ 1507.85x10ି଺T ൅ 92.66/T൯  between HC and 

asphaltene is considered temperature dependent and calculated from three UOP points. All other 
parameters are kept same as in the case of the associating CPA EoS. Fig. 4.5 shows that with non-
associating CPA (essentially SRK), the model is able to correlate 5 mol% gas injection case but is 
unable to predict the 10, 15 and 30 mol% gas injection cases. It also shows the opposite physical 
behavior that is higher amount of gas injection decreases the upper onset pressure. 
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Fig. 4.5. Fluid-1: UOP and bubble points vs temperature for different amounts of gas injections using non-associating 
CPA EoS. Lines for upper onset and bubble pressures for 5 mol% gas injection case are the correlations by non-

associating CPA EoS with ijk between HC and Asp -6=-0.6893+1507.85x10 T+92.66/T  and cP of HC =18.21 bar. Lines 

for 10, 15 and 30 mol% gas injections are the predictions after determination of ijk and  cP  of HC using 5 mol% gas 

injection case. Symbols represent experimental data of UOP from Punnapala & Vargas [20]. 

 

Fluid-2 

Similar to Fluid-1, Fluid-2 is studied for the hydrocarbon gas injection effect. Composition of injected 
gas is mentioned in Table 4.5. Fig. 4.6 shows the effect of 10, 15 and 30 mol% of gas injection into 
reservoir fluid-2. Experimental data for 10 mol% gas injection is used to calculate the model 

parameters. Two cases are considered. In the first case, one bubble point is used to calculate ௖ܲ of HC 

and three upper onset pressures are used to calculate 	ߝ୅୅/ܴ and		ߝ୅ୌ/ܴ. In the second case, one 

bubble point is used to calculate ௖ܲ of HC and three upper onset pressures are used to calculate 	ߝ୅ୌ/ܴ 

and		ߚ୅ୌ for the default value of	ߝ୅୅/ܴ ൌ  Fig. 4.6 shows that after calculating the model .ܭ3000
parameters, the model is able to predict 15 mol% and 30 mol% gas injection cases for both the cases. 
However, the results beyond the experimental temperature range are different. It should also be noted 
that bubble point pressure does not get affected by association parameters (due to very small mole 
fraction and high vapor pressure of asphaltene) and that is why only one bubble point curve is shown 
in the Fig. 4.6. For fluid-2, we also compared three and two parameters approaches, as shown in Fig. 
4.7.  The conclusion is the same as previously mentioned for fluid-1. The injected gas in the case of 
fluid-2 is lighter than the injected gas in the case of fluid-1. Light hydrocarbon gas injection reduces 
the asphaltene stability more compared to heavy hydrocarbon gas. The composition for fluid-1 and 
fluid-2 are almost similar since they are from the same field but from different wells, however, from 
the experimental data (eg. of 10 mol% gas injection case in Supplementary Information), it can be 
observed that fluid-2 asphaltenes are more stable compared to fluid-1 asphaltenes even though the 
light hydrocarbon gas is injected into fluid-2.  
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Fig. 4.6. Fluid-2: UOP and bubble points vs temperature for different amounts of gas injections. Symbols (squares for 
upper onset, circles for bubble points) represent experimental data from Panuganti et al [19]. (Plot-a) Lines for upper 

onset and bubble pressures for 10 mol% gas injection case are the correlations by CPA, case-1/solid lines- /AH R 
=3550-23918/T K & /AA R =7000K for default value of AH =0.05, case-2/dashed lines- /AH R 	=3876-378860/T K 

& AH =0.01 for default value of /AA R =3000K. cP  of HC =20.12 bar and bubble point curves are same for both 

cases. Lines for 15 mol% (Plot-b) and 30 mol% (Plot-c) gas injections are the predictions after determination of /AH R , 

/AA R  or AH  and cP  of HC using 10 mol% gas injection case.  
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(a) (b) 
Fig. 4.7. Fluid-2: comparison between three vs two adjustable parameters approach with respect to UOP boundary. 

(Plot-a) Three adjustable parameters approach: case-1/solid lines- /AH R =3550-23918/T K & /AA R =7000K for 

default value of AH =0.05, case-2/dashed lines- /AH R =3876-378860/T K & AH =0.01 for default value of /AA R 

=3000K. (Plot-b) Two adjustable parameters approach: /AH R =1243+65231/T K for default value of /AA R =3000K 

& AH =0.05. Symbols represent experimental data from Panuganti et al [19]. 

 

Fluid-3 

Anadarko Petroleum Corporation and Schlumberger have jointly investigated the effects of gas 
addition on the Deepwater Gulf of Mexico reservoir fluid with respect to asphaltene precipitation and 

deposition. Three common EOR injection gases ( ଶܰ, ܱܥଶ	and	ܪܥସ) have been studied experimentally. 

In addition, n-heptane (݊7ܥ) injection was also studied in order to analyze the phase behavior of the 
reservoir oil during reservoir depressurization. In this work, we use 0 mol% gas injection case to 

calculate model parameters using two cases and then the model is used to predict 10 mole% ଶܰ, 

 are calculated	୅୅/ܴ and ε୅ୌ/Rߝ	 injection effect. In the first case, the value of 7ܥ݊ ସ andܪܥ	,	ଶܱܥ

from the three upper onset pressures. In the second case, the value of 	ߝ୅୅/ܴ is fixed to the default 

value of 3000K and 		ߝ୅ୌ/ܴ is calculated from the two upper onset pressures. In both cases, ௖ܲ of HC 

is the same since it is calculated from the same single bubble point information. Both cases are able 
to predict the different types of gas injections effect in agreement with experimental data as shown in 
Fig. 4.8. We can also observe that the extrapolations beyond the experimental temperature range are 

different for the two cases. Fig. 4.8f shows only the second case, and it can be observed that ଶܰ gas 

is the strongest precipitant followed by	ܪܥସ, ݊7ܥ and ܱܥଶ	 in decreasing order respectively, which is 
also true for the first case. 
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Fig. 4.8. Fluid-3: UOP and bubble points vs temperature for different types of gas injections. Symbols (squares for upper 
onset, circles for bubble points) represent experimental data from Gonzalez et al [37]. (Plot-a) Lines for upper onset and 

bubble pressures for 0 mol% gas injection case are the correlations by CPA with /AH R =3977-58536/T K, cP of HC 

=19.13 bar, /AA R =7000K & AH =0.05 (case-1/solid lines) and /AH R =1887-33418/T K, cP of HC =19.13 bar for 

default values of /AA R =3000K & AH =0.05 (case-2/dashed lines). Lines for 10 mol% of 2N  (Plot-b), 2CO  (Plot-c), 

4CH  (Plot-d) and 7nC  (plot-e) injections are the predictions after determination of /AH R , /AA R and cP  of HC using 

the 0 mol% gas injection case. (Plot-f) Comparison of UOP boundaries for different types of gas injections using the two 
parameters approach (case-2). 
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Fluid 4 

The effect of ܱܥଶ	  gas injection on reservoir fluid-4 is studied by Punnapala & Vargas [20]. 

Experimental data of bubble points of reservoir fluid-4 (0 mol% gas injection) and UOP with 20 & 

30 mol% ܱܥଶ	gas injections are available.  Fig. 4.9 shows that the model is able to correlate the 

bubble points after calculating ௖ܲ of HC from one bubble point information. Two cases are considered 

to calculate UOP boundary. In the first case, the value of 	ߝ୅୅/ܴ is fixed to the value of 7000K and 

in the second case, the value of 	ߝ୅୅/ܴ  is fixed to the default value of 3000K. The model 

parameter		ߝ୅ୌ/ܴ is calculated from the two upper onset pressures of 20 mol% ܱܥଶ	 injection case. 

The model with both cases are able to predict 30 mol% ܱܥଶ	injection case. However, as mentioned 

above for other fluids, temperature extrapolations are very much different from each other. Note that, 

in the second case, there is no UOP above around 450K for 20 mol% ܱܥଶ	 injection case. One can 

observe that higher value of 	ߝ୅୅/ܴ makes the UOP boundary concave up decreasing. 
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Fig. 4.9. Fluid-4: UOP for 20 & 30 mol% 2CO  injection and bubble points for 0 mol% 2CO  injection vs temperature. 

Symbols (upward & downward triangles for upper onset, circles for bubble points) represent experimental data from 

Punnapala & Vargas [20]. Lines for upper onset, for 20 mol% 2CO  injection, and bubble pressure, for 0 mol% 2CO  

injection case, are the correlations by CPA with /AH R =3863-116110/T K, cP of HC =21.4 bar, /AA R =7000K & 

AH =0.05 (case-1/solid lines) and /AH R =1269+71943/T K, cP of HC =21.4 bar for default values of /AA R 
=3000K & AH =0.05 (case-2/dashed lines). Lines (both solid and dashed) for 30 mol% of 2CO injection are the 

predictions after determination of /AH R , /AA R and cP  of HC using 0 & 20 mol% gas injection cases.  
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Fluid 5 

For this reservoir fluid, we will study different types and different amounts of gas injection effect at 

the constant temperature of 373K. The model parameter		ߝ୅ୌ/ܴ is calculated from the hydrocarbons 

ܴ/୅୅ߝ		gas injection case for the default value of (ݏܥܪ) ൌ  At constant temperature, model .ܭ3000

requires only one experimental data for the onset condition to calculate		ߝ୅ୌ/ܴ. The composition of 

 and associated gases are mentioned in the Table 4.5. The effect of different type of gas injections ݏܥܪ

ሺ90%ሻ	ݏܥܪ] ൅ ଶܰሺ10%ሻ  in Fig.4.10b, ݏܥܪ	ሺ80%ሻ ൅ 	ଶሺ20%ሻܱܥ  in Fig.4.10c, ݏܥܪ	ሺ96.4%ሻ ൅
ଶܵሺ3.6%ሻܪ   in Fig.4.10d, ݏܥܪ	ሺ67%ሻ ൅ ଶሺ22%ሻܱܥ ൅ ଶܰሺ11%ሻ  in Fig.4.10e, associated gas in 
Fig.4.10f] are then predicted and compared with the experimental data. The model results are 

satisfactory. Fig. 4.11 shows that when at least 10 mol% ଶܰ is present in the injected gas, UOP 

boundary moves upward compared to UOP boundary with only ݏܥܪ gas injection. Whereas when 

 gas, upper onset pressure boundary moves downward compared to ݏܥܪ ଶܵ are added to theܪ ଶ orܱܥ

the one with only ݏܥܪ  gas injection. In the case of associated gas injection, UOP is minimum 

compared to other cases or, in other words, when the amount of alkanes, heavier than methane, 
increases in the injected gas, the asphaltene stability also increases. Since this reservoir fluid is 

relatively heavy, containing 79.74 mol% of ܥ଺ା, one can see that more than around 35 mol% of ݏܥܪ 
gas is required to start the asphaltene precipitation at 373K. 
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Fig.4.10. Fluid-5: UOP and bubble points vs amount of different types of gas injections at 373 K. Symbols (triangles for 
upper onset, circles for bubble points) represent experimental data from Punnapala & Vargas [20]. Lines for upper onset 

and bubble pressures for HCs gas injection case are the correlations by CPA with /AH R =1540 K, cP  of HC =21.5 

bar for default value of /AA R =3000K & AH =0.05 in (Plot-a). Lines for upper onset pressure and bubble pressure, 

for (Plot-b)    2 90% 10%HCs N (Plot-c)    2 80% 20%HCs CO (Plot-d)    296.4%  3.6%HCs H S (Plot-e) 

     2 2 66% 22% 11%HCs CO N   (Plot-f) associated gas, are the predictions after determination of /AH R , /AA R 

and cP  of HC using HCs gas injection case. Composition is in mole%. 
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Fig. 4.11. Fluid-5: Comparison of upper onset pressure boundaries for different types of gas injection at 373 K. /AH R 
=1540 K, cP of HC =21.5 bar and default value of /AA R =3000 K & AH =0.05 are used. Composition is in mole%. 
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4.4 Conclusions 

From this work, it can be concluded that the applied modeling approach with the CPA EoS is able to 
predict the effect of different amounts and types of gas injections after the model parameters are 
calculated from a few experimental data. At least three asphaltene onset conditions at different 
temperatures, covering the temperature range of interest, and bubble point information should be 
available in order to calculate asphaltene phase envelope. If the study focuses on analyzing reservoir 
depressurization/pressurization at constant temperature, only one experimental onset condition is 

needed. It is shown that the temperature dependent P஺௦௦௢௖,ோ	term or asphaltene solubility in the 

asphaltene rich phase is the characteristic property of STO (mixture of heavy component and 

asphaltene), which does not change with addition of defined components. Moreover, P஺௦௦௢௖,ோ	is the 

same for both upper onset pressure and lower onset pressure boundaries, which gives benefit to verify 
one set of data (e.g. lower onset boundary) if the model is able to correlate another set of data (e.g. 
upper onset boundary). Higher pressure measurements for the asphaltene upper onset boundary are 
not required with reservoir oil but relatively simple ambient or near ambient pressure measurements 
of STO with n-pentane/n-heptane precipitant are sufficient. Once we have this characteristic of STO, 
we can add separator gas into STO, with known separator gas composition and GOR, and the model 
can then predict the asphaltene phase envelope for the given reservoir fluid. Moreover, the model 
does not require SARA analysis, which may vary from one standard to another. The effect of three 
and two parameters approaches is clearly distinguished in this work. Three parameters approach is 
evidently more accurate than two parameters approach; however, temperature extrapolations may not 
be reliable either with three or with two parameters approach. In addition, temperature extrapolations 

are different when you use either ߝ୅୅/ܴ or β஺ு	as a third model parameter to be calculated from 

experimental data. The shape of upper onset pressure boundary depends upon the temperature 

dependent value of ∆୅୅/݃ሺߩሻ   relative to the temperature dependent value of	∆୅ୌ/݃ሺߩሻ. If we 

increase the value of	∆୅୅/݃ሺߩሻ, the shape of upper onset pressure boundary tends to become concave 

up decreasing. On the other hand if we decrease the value of	∆୅୅/݃ሺߩሻ, the shape tends to become 

concave down decreasing. The model results show that asphaltene molecules in the reservoir oil and 
in the STO are associated with the molecules of heavy component but not with each other. 
Asphaltene-asphaltene molecules association is almost negligible in the reservoir oil whereas in the 
asphaltene rich phase, asphaltene-asphaltene molecules association is dominant. It is also shown that 
when we do not consider the association term, the non-associating CPA EoS is unable to predict the 
gas injection effect. 
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4.5 Supplementary Information 

Relative deviations between experimental data and model results are mentioned in the Tables 4.9 to 
4.13 for all the fluids studied in this work. However, only one case, out of different cases, of each 
fluid is presented. Reader should note that experimental data are obtained by digitization of the plots, 
from the respected references, and therefore, there could be minor deviations from the actual 
experimental data. 

Table 4.9. Fluid-1: Relative Deviation (RD) between experimental data and calculated results for BP and UOP. 

Experimental data are from Punnapala & Vargas [20]. Model parameters ( /AH R =3604-24123/T K, /AA R =7000K, 

cP of HC =18.21 bar for MW of 750) are calculated from 5% GI case. Data for 10 mol%, 15 mol% and 30 mol% gas 

injections are the predictions after determination of /AH R , /AA R and cP  of HC using 5 mol% GI case. 

Amount of 
Injected Gas 

BP UOP 

T Exp Calc RD T Exp Calc RD* 

K bar bar % K bar bar % 

5 mol% 

327.9 121.0 125.8 4.04 327.6 237.0 239.4 1.00 

347.1 140.7 138.1 1.87 346.8 190.1 193.3 1.71 

394.2 160.5 160.6 0.11 393.9 162.9 163.9 0.59 

10 mol% 

328.1 130.8 135.2 3.34 328.1 322.0 302.4 6.07 

347.2 142.5 148.0 3.84 347.2 259.9 249.2 4.11 

394.4 177.8 171.6 3.45 394.4 221.4 208.4 5.86 

15 mol% 
347.1 159.2 158.2 0.61 346.8 294.4 314.0 6.67 

394.4 188.8 183.0 3.12 394.1 253.6 257.6 1.58 

30 mol% 
347.1 201.5 192.4 4.55 346.8 624.2 564.3 9.60 

394.1 233.5 219.5 6.00 393.8 476.8 453.0 4.98 

*RD (%) ൌ
ห୔౛౮౦ି୔ౙ౗ౢౙห

୔౛౮౦
ൈ 100 
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Table 4.10. Fluid-2: Relative Deviation (RD) between experimental data and calculated results for BP and UOP. 

Experimental data are from Panuganti et al [19]. Model parameters ( /AH R =3550-23918/T K, /AA R =7000K, cP of 

HC =20.12 bar for MW of 750) are calculated from 10% GI case. Data for 15 mol% and 30 mol% gas injections are the 

predictions after determination of /AH R , /AA R and cP  of HC using 10% GI case. 

Amount of 
Injected 

Gas 

BP UOP 

T Exp Calc RD T Exp Calc RD 

K bar bar % K bar bar % 

10 mol% 

328.4 148.7 143.4 3.6 327.9 232.8 230.3 1.0 

347.6 157.3 156.4 0.6 347.1 202.6 199.7 1.4 

391.6 183.2 178.6 2.5 391.6 183.2 188.9 3.1 

15 mol% 

328.1 165.5 158.2 4.4 328.5 322.8 307.2 4.8 

347.5 173.7 172.2 0.9 347.5 280.2 269.0 4.0 

391.5 199.9 195.1 2.4 391.5 254.0 245.2 3.5 

30 mol% 

328.4 205.6 210.5 2.4 347.7 583.0 549.3 5.8 

347.5 240.6 225.8 6.1 391.5 426.7 470.3 10.2 

391.9 246.7 250.1 1.4 - - - - 
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Table 4.11. Fluid-3: Relative Deviation (RD) between experimental data and calculated results for BP and UOP. 

Experimental data are from Punnapala & Vargas [20]. Model parameters ( /AH R =3977-58536/T K, /AA R =7000K, 

cP  of HC =19.13 bar for MW of 750) are calculated from 0% GI case. Data for 10 mol% of		 ଶܰ, ܱܥଶ, ܪܥସ and ݊7ܥ 

injections are the predictions after determination of /AH R , /AA R and cP  of HC using the 0 mol% gas injection case. 

Type of 
Injected Gas 

BP UOP 
T Exp Calc RD T Exp Calc RD 
K bar bar % K bar bar % 

0 mol% GI 

370.9 166.9 173.5 3.9 370.9 317.2 315.2 0.7 
338.7 146.8 152.0 3.5 338.7 348.3 362.6 4.1 
310.9 127.6 129.9 1.8 310.9 462.1 493.7 6.8 
304.3 120.7 124.1 2.8 304.3 551.7 549.3 0.4 
299.8 117.2 120.1 2.4 299.8 593.1 594.4 0.2 
277.6 105.7 99.0 6.4 - - - - 

10 mol% 		 ଶܰ 
Injection 

370.9 311.4 318.5 2.3 370.9 669.0 651.4 2.6 
338.7 311.4 307.5 1.3 338.7 841.4 804.5 4.4 
324.8 310.3 301.4 2.9 324.8 931.0 932.2 0.1 
310.9 304.6 294.4 3.3 310.9 1351.7 1136.0 16.0 

10 mol% ܱܥଶ 
Injection 

370.9 187.7 187.8 0.1 370.9 427.6 434.7 1.7 
338.7 166.8 161.0 3.5 338.7 489.7 483.4 1.3 
310.9 145.9 133.8 8.2 310.9 675.9 614.8 9.0 
294.3 125.4 116.2 7.4 304.3 758.6 672.7 11.3 
277.6 118.3 98.0 17.2 - - - - 

10 mol% ܪܥସ 
Injection 

370.9 241.7 219.7 9.1 370.9 565.5 498.5 11.8 
338.7 221.0 195.2 11.7 338.7 724.1 580.0 19.9 
310.9 194.3 168.7 13.2 310.9 896.6 764.5 14.7 
294.3 178.3 150.5 15.6 - - - - 
277.6 177.6 130.5 26.5 - - - - 

10 mol% nC7 
Injection 

277.7 90.6 82.0 9.5 311.1 805.2 730.2 9.3 
311.0 107.4 107.2 0.2 338.8 495.0 544.4 10.0 
338.8 121.8 126.0 3.5 371.1 444.5 465.2 4.6 
371.1 138.5 144.7 4.5 - - - - 

 

 
Table 4.12. Fluid-4: Relative Deviation (RD) between experimental data and calculated results for BP and UOP. 

Experimental data are from Punnapala & Vargas [20]. Model parameters ( /AH R =3863-116110/T K & cP  of HC 

=21.4 bar for /AA R =7000K & MW of 750) are calculated from 0% ܱܥଶ	GI and 20% ܱܥଶ	GI cases. Data for 30 mol% 

GI are the predictions after determination of	ଶܱܥ /AH R , /AA R and cP  of HC using 0% ܱܥଶ	GI & 20 mol% ܱܥଶ	GI 

cases. 

BP for 0 mol% GI UOP for 20 mol% ܱܥଶ GI UOP for 30 mol% ܱܥଶ GI 

T Exp Calc RD T Exp Calc RD T Exp Calc RD  

K bar bar % K bar bar % K bar bar % 

321.1 225.5 223.7 0.80 355.1 386.8 388.7 0.50 355.0 490.4 519.2 5.88 

355.1 250.1 254.1 1.61 393.5 362.9 364.3 0.40 393.9 444.5 479.1 7.80 

393.5 276.9 276.6 0.13 - - - - - - - - 
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Table 4.13. Fluid-5: Relative Deviation (RD) between experimental data and calculated results for BP and UOP with 

respect to amount of GI at 373 K. Experimental data are from Punnapala & Vargas [20]. Model parameters ( /AH R 
=1540 K & cP of HC =21.5 bar for /AA R =3000K & MW of 750) are calculated from ݏܥܪ  GI case. Data 

for ሺ90%ሻ	ݏܥܪ	 ൅ ଶܰሺ10%ሻ , ሺ80%ሻ	ݏܥܪ	 ൅ ଶሺ20%ሻܱܥ , ሺ96.4%ሻ	ݏܥܪ	 ൅ ሺ3.6%ሻ	ଶܵܪ , ሺ66%ሻ	ݏܥܪ	 ൅ ଶሺ22%ሻܱܥ ൅

ଶܰሺ11%ሻ, associated gas injections are the predictions after determination of /AH R , /AA R and cP  of HC using ݏܥܪ 

gas injection case. Composition is in mole%. 

Type of Injected Gas 

BP UOP 

GI Exp Calc RD GI Exp Calc RD  

mol% bar bar % mol% bar bar % 

 ݏܥܪ

0.0 53.8 54.7 1.7 33.8 187.0 NAa - 
9.7 91.2 83.4 8.5 46.5 336.6 403.5 19.9 

29.8 156.6 155.1 1.0 - - - - 
49.9 264.2 252.3 4.5 - - - - 
59.9 339.0 312.5 7.8 - - - - 

ሺ90%ሻ	ݏܥܪ
൅ ଶܰሺ10%ሻ 

9.9 81.4 90.8 11.4 41.7 342.6 316.1 7.8 
29.8 168.5 179.4 6.4 - - - - 

ሺ80%ሻ	ݏܥܪ
൅  ଶሺ20%ሻܱܥ

9.8 75.5 81.5 7.9 40.1 256.2 219.4 14.4 
29.9 171.4 147.4 14.0 42.9 336.5 279.6 16.9 

ሺ96.4%ሻ	ݏܥܪ
൅  ሺ3.6%ሻ	ଶܵܪ

9.8 82.5 82.5 - 33.8 192.9 NAa - 
29.9 145.1 152.2 - 46.0 338.6 376.8 11.3 

ሺ66%ሻ	ݏܥܪ
൅ ଶሺ22%ሻܱܥ
൅ ଶܰሺ11%ሻ 

30.0 182.4 176.8 - 34.0 193.1 191.4 0.9 

- - - - 44.0 341.1 347.2 1.8 

associated gas 
- - - - 34.1 193.3 NAa - 
- - - - 44.1 340.4 309.4 9.1 

a Modeling results do not show UOP at these T and P conditions. 
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Chapter 5. Modeling of Asphaltene Onset Condition 
using the CPA and PC-SAFT Equations of State  

Entire content of this chapter is from our journal article “Alay Arya; Xiaodong Liang; Nicolas 
von Solms; Georgios M. Kontogeorgis. Modeling of Asphaltene Onset Precipitation Conditions 
with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory 
(PC-SAFT) Equations of State. Energy Fuels. 2016, Vol. 30(8), pp.6835-6852”. 

 

Abstract 

Asphaltene precipitation has been one of the major problems in the oil industry and its modeling is 
still believed to be a quite complex issue due to the different characteristics of thousands of heavy 
components in the crude oil. There have been several attempts to model asphaltene precipitation using 
various equations of state and empirical models. In the past few years, association models based on 
CPA and SAFT equations of state have been found to be promising models for studies of asphaltene 
precipitation. In this work, we compare asphaltene precipitation results obtained from different 
modeling approaches based on CPA, PC-SAFT with association (PC-SAFT (WA)) and PC-SAFT 
without association (PC-SAFT (WOA)) models. While the modeling approaches for the CPA and 
PC-SAFT (WOA) have been described before in various literatures, the modeling approach for PC-
SAFT (WA) is proposed in this work. All three models require the same number of experimental data 
points (at least three upper onset pressures and one bubble pressure) in order to obtain model 
parameters. Different types of asphaltene phase behavior for different reservoir fluids, where 
asphaltene solubility either decreases or increases with temperature, asphaltene precipitation occurs 
during reservoir fluid depressurization and the effect of gas injection are studied in order to investigate 
thoroughly the potential and reliability of the models. A total of five reservoir fluids and one model 
oil are studied with all three models. It is found that the modeling approach with the CPA EoS is more 
reliable compared to the other two approaches used in this study. The advantage of the association 
term to describe interactions between asphaltene and other stock tank oil (STO) heavy components 
is also evident from this study. The sensitivity of SARA data to the modeling approach based on PC-
SAFT (WOA) is also analyzed. Finally, the relationship between the binary interaction parameter of 

the asphaltene-ܱܥଶ pair and cross-over temperature, below which asphaltene solubility increases in 

reservoir fluid, with ܱܥଶ gas injection is also studied. 

5.1 Introduction 

Asphaltenes constitute the heaviest and most polar fraction of crude oil. Asphaltenes are not a well-
defined components, rather they are solubility class, which can generally be defined as the fraction 



Chapter 5. Modeling of Asphaltene Onset Condition using the CPA and PC-SAFT EoS 

83 
 

of the oil which is insoluble in n-alkanes (typically n-pentane or n-heptane) [1-3], but soluble in 
aromatic compounds such as toluene and pyridine. Experimental results show that the amount of n-
pentane insoluble asphaltenes is always greater than or equal to the n-heptane insoluble asphaltenes, 
which is always greater than or equal to the n-decane insoluble asphaltenes and so on [2]. A 
representative asphaltene molecule is believed to have polynuclear aromatic ring/s (PNA) connected 
with aliphatic chains. Asphaltene molecule also consists of heteroatoms (oxygen, sulfur, nitrogen, 
nickel and vanadium), which are believed to impart polarity [4]. At certain pressure, temperature and 
composition of oil, asphaltene precipitates out of oil and creates flow assurance problems by plugging 
the well bore and causing formation damage (plugging reduces the permeability of reservoir rock, 
through which oil flows to the oil wells). Enhanced oil recovery by gas injection is more susceptible 
to asphaltene precipitation due to composition change [5-7]. Experimental results show that injection 

of	 ଶܰ/ܱܥଶ/ hydrocarbon gas aggravates the asphaltene precipitation [8]. Asphaltene phase behavior 

under reservoir conditions is generally represented by the Pressure-Temperature (PT) plot (Fig. 5.6a 
in Result section). There are two PT boundaries, the upper onset pressure (UOP) boundary, above 
which only one (liquid) phase exists, and the lower onset pressure (LOP) boundary, above which 
three phases (gas, asphaltene-lean liquid, and asphaltene-rich liquid) exist. Asphaltene precipitation 
occurs between these two boundaries. Maximum asphaltene precipitation occurs at bubble pressure 
(BP). Sometimes crude is also blended with hydrocarbon solvent to decrease the viscosity for ease of 
transportation. In addition, mixing of different crudes (at ambient pressure) at the inlet facility of 
refinery could also pose the threat of asphaltene precipitation and subsequent fouling of heat 
exchangers in crude oil refining operations [9].  

There are generally two different hypotheses for interactions of asphaltene molecules with molecules 
of other components. In the first hypothesis, asphaltene molecules are solubilized in oil due to the 
interactions with other oil molecules. The Flory Huggins model [2] and equation of states based 
models [10-14] are some examples of the first hypothesis. In the second hypothesis, asphaltene 
molecules are peptized by the molecules of resins due to the polar forces between them and together 
they form colloids. Stability of these colloids in the oil depends upon temperature, pressure and 
composition of oil. Solid asphaltene colloidal model by Leontaritis & Mansoori [15], thermodynamic 
miscellization model by Pan et al [16] and McMillan-Mayer theory based model using HS-SAFT by 
Wu et al [17] are some examples of the second hypothesis. There are also different views on the 
mechanism of asphaltene precipitation. Ting [18] and Wiehe [19] mentioned that asphaltene 
precipitation is governed by non-polar van der Waal’s forces and size of molecules to a large extent. 
Ting [18] also agreed upon that in some cases polar forces and hydrogen bonding also take part in the 
precipitation process of asphaltene. On the other hand, Arya et al [20] concluded from the analysis 
based on their modeling approach that asphaltene molecules are present as monomers in the oil and 
the association term helps to describe asphaltene precipitation.  Arya et al [20] also concluded that 
the effect of gas injection is largely dependent upon the van der Waals forces and association 
contribution remains more or less the same with amount of injected gas. Similarly, Buenrostro-
Gonzalez et al [4] also agreed upon that association energy is the main parameter in their model to 
describe asphaltene precipitation. Asphaltene molecular weight is also a topic of debate in literature. 
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Few researchers [21-25] maintain that asphaltene in the oil is present as monomers with single ring 
of polynuclear aromatics (PNA) with molecular weight of <1000 Da, while others [26-27] report that 
asphaltene consists of macromolecules with multiple rings of PNA with molecular weight of 1000-
10000 Da. In this work, we use the first hypothesis and the models based on CPA and PC-SAFT 
equations of state. 

One group of researchers have studied the asphaltene precipitation with different modeling 
approaches based on the CPA EoS [20,28-30], while other group of researchers have studied the 
asphaltene precipitation with different modeling approaches based on the SAFT versions (e.g. PC-
SAFT) [4,13,17,31]. However, there is little work in the literature where these models are compared 
on equal terms. Zhang et al [29] compared the two modeling approaches, the first approach was self-
proposed (their own approach) based on CPA and the second approach was from Gonzalez et al [32-
34] based on PC-SAFT (WOA), with the experimental data. They concluded that the self-proposed 
(their own) approach based on the CPA is better than the PC-SAFT (WOA) based approach. Later, 
AlHammadi et al [35] compared the CPA approach from Zhang et al [29] and the PC-SAFT (WOA) 
approach from Panuganti et al [31], who modified the approach from Gonzalez et al [32-34], and 
concluded that both the CPA and PC-SAFT (WOA) are able to predict the gas injection effect but the 
PC-SAFT (WOA) based approach is more accurate than the CPA based approach. However, 
AlHammadi et al [35] have not shown the results for a number of fluids with different types of 
asphaltene phase behavior. On the other hand, Zhang et al [29] showed the results for a number of 
different fluids and also mentioned that it would be interesting to compare the results with SAFT 
based approach including association term. In these studies of Zhang et al [29] and AlHammadi et al 
[35] for comparing the CPA and PC-SAFT (WOA) based approaches, at most two experimental upper 
onset pressure (UOP) have been used to estimate the model parameters. It would also be interesting 
to compare the model results when we use more than two UOP data in order to calculate more 
optimized model parameters. Moreover, both studies resulted into contradicting conclusions and 
therefore in this work we try to clarify this contradiction. The difference between the CPA approach 
used in this work and the approach used by Zhang et al [29] can be found in Arya et al [12]. In this 
work, we also propose the asphaltene modeling approach based on PC-SAFT (WA) EoS, which, to 
the best of our knowledge, nobody has tried before. 

In this work, we first describe the characterization of pseudo-components and the modeling 
approaches proposed by Arya et al [12,20] based on CPA, by Panuganti et al [31] based on PC-SAFT 
(WOA) and new approach proposed in this work based on PC-SAFT (WA). Then we study the five 
reservoir fluids and one model oil with all the three models. The fluids considered in this work have 
different asphaltene phase behaviors (PT boundaries) and different kinds of experimental data in order 
to check the reliability of the models. The effect of the association term on asphaltene phase behavior 
is analyzed from the results.  
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5.2 Modeling Approach with CPA & PC-SAFT (WA) 

In this work we assume the same modeling approach as presented by Arya et al [12,20] as shown in 
Fig. 5.1. Arya et al [12,20] applied the modeling approach only to CPA EoS but in this work we also 
show how to use it for PC-SAFT (WA) EoS. Asphaltenes are considered as single self-associating 

compound. Since the modeling approach uses n-hexane plus (ܥ଺ା) fraction and stock tank oil (STO) 
contains negligible amount of lighter component than n-hexane, we can reasonably approximate STO 

as the ܥ଺ା fraction, which is further divided into the heavy component (HC) and asphaltene. This 

heavy component is cross associating with asphaltene. Asphaltene rich phase is modeled as a liquid 

phase [36]. The binary interaction parameters ൫݇௜௝൯ for the CPA model are shown in Table 5.1, which 

is same as reported by Arya et al [12,20], and kept constant for all fluids studied in this work. The 

݇௜௝s for the PC-SAFT (WA) model are taken from Panuganti et al [31] and are mentioned in Table 

5.2. The ݇௜௝s with HC are kept same as those with saturates in Panuganti et al [31]. The ݇௜௝s with 

asphaltene are fixed after studying different fluids. In reality, asphaltene fraction is poly-dispersed in 
the medium of heavy component in the form of many sub-fractions as shown schematically in Fig. 
5.2. We use asphaltene MW of 750 Da [22-23]. Each sub-fraction of asphaltene may have different 

self-association energy (ߝ஺஺). Since heavy component is a lumped component, each asphaltene sub-

fraction may encounter different cross-association energy (ߝ஺ுሻ in the medium due to different local 
composition. In this modeling approach we assume that asphaltene sub-fraction having highest value 

of ߝ஺஺ precipitates first and is responsible for onset of precipitation. One can assume asphaltene sub-

fractions as insoluble fractions in n-heptane, n-octane, and n-nonane and so on. Since, in this study, 
we are only concerned about onset conditions of asphaltene precipitation and to make the approach 

simple we assume that all sub-fractions of asphaltene have the same highest value of		ߝ஺஺. In addition, 

asphaltenes are treated as single component with the 4C scheme (molecule has two proton donor and 
two proton acceptor sites). Asphaltene parameters for CPA and PC-SAFT (WA) are different. 

Asphaltene critical parameters ሺ ௖ܶሺܭሻ ൌ 1040, ௖ܲሺܾܽݎሻ ൌ 15.44	, ߱ ൌ 1.535ሻ  for CPA and PC-

SAFT parameters (݉ ൌ ሶ൯ܣ൫	ߪ	,15.25 ൌ ሻܭሺ	݇/ߝ	,4.22 ൌ 367) for PC-SAFT (WA) are fixed based 

on the assumption that the asphaltene solubility parameter varies from 19-23 MPa1/2 [2,37-39] at 

ambient condition. For CPA, asphaltene solubility parameters are 19.14 MPa1/2 (	ߝ஺஺ ൌ 0) and 21.51 

MPa1/2 (	ߝ஺஺ ൌ 3000) at 298K and 1 atm. For PC-SAFT (WA), asphaltene solubility parameters are 

20.23 MPa1/2 (	ߝ஺஺ ൌ 0) and 22.20 MPa1/2 (	ߝ஺஺ ൌ 3000) at 298K and 1 atm. These parameters are 
selected based on our experience. It is suspected that changing the asphaltene pure component 

parameters may also necessitate changing the ݇௜௝ values for asphaltene containing binaries, however, 

this is not studied yet. The default value of ߝ஺஺ is 3000K [40] but can be treated as an adjustable 
model parameter if sufficient experimental data are available. Local composition of the medium of 

heavy component varies with temperature, which also varies the location dependent		ߝ஺ு. We are 

interested in ஺ுߝ		 , which is faced by the asphaltene sub-fraction of the highest value of ஺஺ߝ		 . 

Therefore, we assume that the entire heavy component medium has same		ߝ஺ு, which is temperature 

dependent. The cross-association volume ሺߚ஺ுሻ and self-association volume ሺߚ஺஺ሻ have constant 
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values (0.05). From equations C.6 & C.30 (see supporting information), one can see that the value of 

association strength ሺ∆஺೔஻ೕሻ is dependent upon two model parameters	ሺ	ߝ஺೔஻ೕ	&	ߚ஺೔஻ೕሻ. Hence if we 

fix		ߚ஺೔஻ೕ, we can calculate 	ߝ஺೔஻ೕ from the experimental data at a given temperature. However, the 

temperature extrapolation of 	∆஺೔஻ೕ  will be different for different values of		ߚ஺೔஻ೕ . For the heavy 

component, one cross-association site is selected, which can cross-associate with both positive and 
negative sites (total 4 sites) of asphaltene molecule. One can also assume that the HC has one cross-
association site, which can cross-associate only to positive or negative sites (total 2 sites) of 
asphaltene molecule. In both cases (total 4 vs 2 cross-association sites), values of the calculated model 

parameters (	ߝ஺ு, ,஺ுߚ	  ஺஺), from experimental data, will be different. The normal boiling point ofߝ	

HC is calculated from the Pedersen relationship [41]. Critical parameters ( ௖ܲ , ௖ܶሻ	and acentric factor 

ሺ߱ሻ	of HC are calculated from the Kesler–Lee relationship [42]. Critical pressure ( ௖ܲ) and Peneloux 
volume correction factor of HC are then adjusted to match bubble point pressure and STO density of 
the oil for the CPA model. The PC-SAFT parameters for the HC are initially calculated from the MW 
correlations, which are shown in Table 5.3, with aromaticity (1ߛ) value of 0.5, for the component 
consisting of saturates fraction and polynuclear aromatics (PNA) derivative fraction from Punnapala 
and Vargas [8].  Arya et al [20] showed that this modeling approach does not require SARA analysis 
since it does not depend upon asphaltene amount or asphaltene MW. In other words, for the fixed 

value of asphaltene		ߝ஺஺, increase in asphaltene amount increases 		ߝ஺ு with heavy component at the 

onset temperature and pressure.  

 

Fig. 5.1. Representation of the characterization procedure of STO/ 6C   fraction into two pseudo-components (heavy 

component and asphaltene) for the CPA and PC-SAFT (WA) models. 
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Real Condition 
Assumption-1 

 ஺஺(max)ߝ =.… =  ஺஺ଶߝ  =  ஺஺ଵߝ

Assumption-2 

 ஺ுሺܶሻߝ =.… =  ஺ுଶߝ  =  ஺ுଵߝ

 

(a) (b) (c) 
Fig. 5.2. Graphical representation of the assumptions made for the modeling approach used in this work from Arya et al 
[12-20]. (a) Real condition, where asphaltene subfractions are scattered in the medium of heavy component in the heavy 
oil/STO. (b) All asphaltene subfractions are assumed of having same physical properties. (c) The cross-association energy 

( AH ) between asphaltene and heavy component is assumed to be the same everywhere but it is temperature dependent. 

 
Table 5.1. CPA binary interaction parameters ( ijk ) from Arya et al [12,20]. T is temperature in K. 

Component Nଶ CO2 H2S HC Asphaltene 

Nଶ 0.0 0.0 0.0 0.10 0.24 

CO2 -0.06 0.0 0.0 0.10 0.10 

H2S 0.678-0.0018T 0.0 0.0 0.05 0.0 

methane 0.141-12.6448/T 0.0882 0.0760 0.0 0.01 

ethane 0.04 0.1335 0.0847 0.0 0.01 

propane 0.04 0.1522 0.0917 0.0 0.01 

i-butane 0.05 0.1122 0.0761 0.0 0.011 

n-butane 0.05 0.1122 0.0897 0.0 0.011 

i-pentane 0.06 0.10 0.05 0.0 0.011 

n-pentane 0.06 0.10 0.05 0.0 0.011 

n-heptane1 0.0 0.10 0.0 0.0 0.011 

Toluene1 0.0 0.10 0.0 0.0 0.0 
 .values are proposed in this work	ܒ࢑ܑ 1
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Table 5.2. PC-SAFT (WA) binary interaction parameters ( ijk ) from Panuganti et al [31]. 

Component Nଶ CO2 H2S C1 C2 C3 iC5/nC51 nC71 

Nଶ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CO2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.13 

H2S 0.09 0.0678 0.0 0.0 0.0 0.0 0.0 0.0 

methane 0.03 0.05 0.062 0.0 0.0 0.0 0.0 0.0 

ethane 0.04 0.097 0.058 0.0 0.0 0.0 0.0 0.0 

propane 0.06 0.10 0.053 0.0 0.0 0.0 0.0 0.0 

isobutane1 0.06 0.10 0.0 0.0 0.0 0.0 0.0 0.0 

nbutane1 0.06 0.10 0.0 0.0 0.0 0.0 0.0 0.0 

isopentane1 0.06 0.10 0.0 0.03 0.02 0.015 0.0 0.0 

npentane1 0.06 0.10 0.0 0.03 0.02 0.015 0.0 0.0 

HC1 0.14 0.13 0.09 0.03 0.012 0.01 0.005 0.0 

Asphaltene1 0.175 0.16 0.015 0.04 0.04 0.01 0.01 0.01 

Toluene1  0.10 0.0 0.0 0.0 0.0 0.0 0.01 

 .values are proposed in this work	ܒ࢑ܑ 1

 
 
Table 5.3. Empirical correlations for the initial estimation of the PC-SAFT (WA) model parameters for mixture of 
saturates and polynuclear aromatics (PNA) derivative components from Punnapala & Vargas [8]. 

ሺ1ߛሻ saturates correlation + ሺ1 െ  1ሻ PNA derivatives correlationߛ

݉ ൌ ሺ1 െ 1ሻሾ0.0257ߛ	 ൈܹܯ ൅ 0.8444ሿ ൅ 1ሾ0.0101ߛ ൈܹܯ ൅ 1.7296ሿ 

൫Հ൯ߪ ൌ ሺ1 െ 1ሻߛ	 ൤4.047 െ
4.8013 ൈ lnሺܹܯሻ

ܹܯ
൨ ൅ 1ߛ ൤4.6169 െ

93.98
ܹܯ

൨ 

߳ ݇⁄ ሺܭሻ ൌ ሺ1 െ 1ሻߛ	 ൤݁݌ݔ ൬5.5769 െ
9.523
ܹܯ

൰൨ ൅ 1ߛ ൤508 െ
234100
ሺܹܯሻଵ.ହ

൨ 
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Table 5.4. PC-SAFT (WOA) binary interaction parameters ( ijk ) from Panuganti et al [31]. 

Component Nଶ CO2 H2S C1 C2 C3 Heavy gas nC72 Saturates 

Nଶ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CO2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.13 0.0 

H2S 0.09 0.0678 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

methane 0.03 0.05 0.062 0.0 0.0 0.0 0.0 0.0 0.0 

ethane 0.04 0.097 0.058 0.0 0.0 0.0 0.0 0.0 0.0 

propane 0.06 0.10 0.053 0.0 0.0 0.0 0.0 0.0 0.0 

Heavy gas 0.075 0.12 0.07 0.03 0.02 0.015 0.0 0.0 0.0 

Saturates 0.14 0.13 0.09 0.03 0.012 0.01 0.005 0.0 0.0 

A+R 0.158 0.10 0.015 0.029 0.025 0.01 0.012 0.0 0.007 

Asphaltene 0.16 0.191 0.015 0.07 0.06 0.01 0.01 0.01 -0.004 

Toluene2 0.0 0.10 0.0 0.0 0.0 0.0 0.0 0.01 0.0 

 ૛-asphaltene pair is modified in this work to match the model results with experimental data. More informationܱܥ for	ܒ࢑ܑ 1

is provided into Result section. 2 Proposed in this work considering Toluene and nC7 as (A+R) and Saturates respectively.

 

5.3 Modeling Approach with PC-SAFT (WOA) 

In this work, the procedure suggested by Panuganti et al [31] is used to characterize the fluid for the 

PC-SAFT (WOA) model. Separator gas is modeled as a mixture of seven compounds ( ଶܰ,	ܱܥଶ,	ܪଶܵ, 

methane, ethane, propane and heavy gas (lumped C4+ components)) while STO (separator liquid) is 
characterized as a mixture of three compounds (saturates, aromatics+resins (A+R), asphaltene) as 
shown in the Fig. 5.3. They used the asphaltene MW of 1700 Da considering asphaltene molecules 
are pre-aggregated. Therefore, in this work, we use the asphaltene MW of 1700 Da for PC-SAFT 
(WOA) whereas 750 Da for CPA and PC-SAFT (WA). Detailed information about characterization 
can be found in Panuganti et al [31]. These authors [31] also mentioned that the MW of Cn+ saturates 
and Cn+ (A+R) pseudo-components are assumed such that the STO MW and Cn+ average MW are 
matched. However, this is not completely right since the STO MW is a function of STO composition, 
Cn+ average MW and MW of STO components lighter than Cn+. Fixing the Cn+ average MW by 
changing either the MW of saturates or MW of (A+R) fix the STO MW. Therefore, there can be 
multiple sets of Cn+ saturates and (A+R) MW, which can yield the same STO MW and Cn+ average 
MW. Hence, the characterization of STO may not comply with actual SARA fractions on molar basis. 
Panuganti et al [31] have not mentioned anything about how to use the approach when only reservoir 
fluid composition is available. We propose that when separator gas and STO compositions are not 
available but only reservoir oil composition is available, we can still use the same approach by 

assuming that ܥ଺ା  fraction is 100% STO and lighter components (than ܥ଺ା  fraction) are in the 

separator gas phase. This assumption is pragmatic since lighter components in the STO are always in 
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small amount (around <10 mol %). Values of ݇௜௝s used for the PC-SAFT (WOA) model are shown 

in Table 5.4. 

 

Reservoir Fluid 
Components

‐N2
‐CO2
‐H2S
‐C1
‐C2
‐C3
‐iC4
‐nC4
‐iC5
‐nC5
‐C6
‐C7

.

.

.
‐Cyclo‐C6
‐Mcyclo‐C6

.

.

.
‐Benzene
‐Tolune
‐Xylene

.

.

.
‐Cn+

Characterized 
Separator Gas
Components

‐N2
‐CO2
‐H2S
‐C1
‐C2
‐C3

‐heavy gas

Characterized 
STO 

Components

‐Saturates

‐(A+R)

‐Saturates
‐(A+R)
‐Asp  

Fig. 5.3. Characterization approach for separator gas and STO from Panuganti et al [31]. A=aromatics, R=resins. 

 

Correlations for the PC-SAFT parameters of saturate components and mixture of polynuclear 
aromatics and benzene derivatives components are mentioned in Table 5.5. The value of aromaticity 

parameter (ߛሻ defines the contribution from PNA (1=ߛ means 100% PNA and 0=ߛ means 100% 

benzene derivative).  Heavy gas and saturate components are defined by the correlation of saturates 
while (A+R) component is defined from the correlation of PNA+benzene derivatives. 

  



Chapter 5. Modeling of Asphaltene Onset Condition using the CPA and PC-SAFT EoS 

91 
 

Table 5.5. Empirical correlations for the estimation of the PC-SAFT (WOA) model parameters for saturates and mixture 
of Polynuclear Aromatics (PNA) and benzene derivative components from Panuganti et al [31]. 

Correlation for Saturates ሺߛሻ PNA correlation + ሺ1 െ  ሻ benzene derivatives correlationߛ

݉ ൌ 0.0257 ൈܹܯ ൅ 0.8444 ݉ ൌ ሺ1 െ ሻሾ0.0223ߛ ൈܹܯ ൅ 0.751ሿ ൅ ሾ0.0101ߛ ൈܹܯ ൅ 1.7296ሿ 

൫Հ൯ߪ ൌ 4.047 െ
4.8013 ൈ lnሺܹܯሻ

ܹܯ
൫Հ൯ߪ  ൌ ሺ1 െ ሻߛ ൤4.1377 െ

38.1483
ܹܯ

൨ ൅ ߛ ൤4.6169 െ
93.98
ܹܯ

൨ 

lnሺ߳ ݇⁄ ሻ ܭ	݊݅ ൌ 5.5769 െ
9.523
ܹܯ

	 ሺ߳ ݇⁄ ሻ ݅݊ ܭ ൌ ሺ1 െ ሻሾ0.00436ߛ ൈܹܯ ൅ 283.93ሿ ൅ ߛ ൤508 െ
234100
ሺܹܯሻଵ.ହ

൨ 

 

5.4 Results and Discussion 

In this work, a total of seven fluids are studied with the CPA, PC-SAFT (WA) and PC-SAFT (WOA) 
modeling approaches mentioned in previous sections. Among all fluids, fluid-3 is the model oil 
prepared by dissolving 0.04 wt% of asphaltene into the mixture of toluene (60 mol %) and n-heptane 
(40 mol %). Properties of all other fluids are shown in Table 5.6. Generally, three UOP points are 

used to calculate ߝ୅ୌ/ܴ	ሺܭሻ	 and ߝ୅୅/ܴ	ሺܭሻ  for the CPA and PC-SAFT (WA) models unless 

mentioned otherwise. Only one bubble pressure point and STO density are used to calculate ௖ܲ	 and 
Peneloux volume correction of HC respectively for the CPA model. All available bubble pressure 

points and STO density are used to calculate the PC-SAFT parameters ሺ݉, ,ߪ ߳ሻ	 of HC and 

aromaticity ( γሻ  of A+R component for the PC-SAFT (WA) and PC-SAFT (WOA) models 
respectively.  All available UOP points are used to calculate the PC-SAFT parameters of asphaltene 
for the PC-SAFT (WOA) model. Results from all three models are compared with experimental data 

after calculating the model parameters from experimental data. Default values of ߚ୅୅ ൌ 0.05	and 

୅ୌߚ ൌ 0.05 are used unless mentioned otherwise for both the CPA and PC-SAFT (WA) models. 

Values of calculated model parameters for the CPA and PC-SAFT (WA) models are presented in 

Table 5.7. Plot of calculated parameter ߝ୅ୌ/ܴ vs temperature is also shown for fluid-3, 5, and 6 in 
Fig. 5.7, 5.9, and 5.11 respectively. Composition of the reservoir fluids used for the CPA and PC-
SAFT (WA) models are shown in Table 5.8. While composition of the reservoir fluids and model 
parameters used for the PC-SAFT (WOA) model are shown in Table 5.9. In addition, Supplementary 
Information is also provided, which shows a few more results. In all figures, shown in this section, 
UOP values are calculated only up to 900 bar since PC-SAFT (WOA) generally shows very high 
UOP with pure asphaltene phase and packing fraction above the packing fraction of face centered 
cubic structure, which is not a correct solution; more information regarding this issue can be found 
from Liang et al [43]. Relative deviations of all the models’ results with respect to experimental data 
are given in Supplementary Information. 
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Table 5.6. Properties of fluids used in this work. 

 Fluid-1 
[35] 

Fluid-2 
[14] 

Fluid-4
[45] 

Fluid-5 
[46] 

Fluid-6 
[47] 

Saturates (wt%) 66.26 57.4 57.4* 63.3 53.75 

Aromatics (wt%) 25.59 30.8 30.8* 24.9 28.50 

Resins (wt%) 5.35 10.4 10.4* 11.5 14.10 

Asphaltenes (wt%) 2.8 1.4 1.4* 0.5 3.65 

 ଺ା MW 208.6 225.7 223.2 204.3 246.37ܥ

STO MW 193 229.2 - - 243.30 

STO SG 0.823 0.865 0.863 0.840 0.887 

MW of reservoir fluid 97.75 102.0 102.6 81.7 116.1 

GOR (݉ଷ/݉ଷ) 140 160 140 - 125 
* SARA values are assumed, due to lack of data. Fluid-4 SARA data is assumed same as that of for Fluid-2 

based on molar mass and SG of ܥ଺ା/STO.  

Table 5.7. Calculated values of the model parameters for the CPA and PC-SAFT (WA) for all fluids studied in this work. 

Fluid 
  CPA PC-SAFT (WA) 

 ܴ/୅୅ߝ
(K) 

 ܴ/୅ୌߝ
(K) 

 ௖ܲ of HC 
(bar) 

 ܴ/୅୅ߝ
(K) 

 ܴ/୅ୌߝ
(K) 

 HC 

ߪ ݉ ୅ୌߚ ୅ୌߚ ሺՀሻ ߳/݇ ሺܭሻ 

Fluid-1 3000 2088-92032/T 0.05 16.87 2400 1870-74929/T 0.05 6.16 3.92 252.0 

Fluid-2 7000 5863-508383/T 0.005 18.92 7000 5290-420874/T 0.02 6.73 3.96 281.3 

Fluid-3* 7000 4596-219166/T 0.006 - 7000 3895-129770/T 0.03 - - - 

Fluid-4 7000 4155-177189/T 0.05 19.27 4200 3280-298690/T 0.05 6.33 3.86 260.8 

Fluid-5 3700 1890-1864/T 0.05 20.11 3550 1953+19995/T 0.05 5.87 3.97 267.3 

Fluid-6 3250 1738+15240/T 0.05 19.26 3350 2035+5347/T 0.05 6.86 3.88 270.3 
* Fluid-3: Since fluid-3 is a model oil, toluene is treated as HC for CPA and PC-SAFT (WA). 

 
Table 5.8. Composition of reservoir fluids used for the CPA and PC-SAFT (WA) model *. 

 Fluid-1 Fluid-2 Fluid-4 Fluid-5 Fluid-6 

Comp. mol% mol% mol% mol% mol% 

Nଶ 0.163 0.496 0.390 0.088 0.315 

Hଶܵ 1.944 11.374 0.840 1.022 3.549 

COଶ 0.000 3.218 0.000 0.048 0.701 

methane 33.600 27.350 36.630 42.420 32.555 

ethane 7.673 9.445 8.630 10.800 8.423 

propane 7.282 7.053 6.660 6.918 6.903 

i-butane 1.885 0.948 1.210 0.957 1.094 

n-butane 5.671 3.675 3.690 3.518 3.208 

i-pentane 2.193 1.388 1.550 1.213 1.380 

n-pentane 2.980 2.061 2.250 2.086 1.849 

HC 36.302 32.831 37.991 30.888 39.542 

Asphaltene 0.301 0.162 0.159 0.042 0.480 
 .଺ା mol % is the sum of mol % of HC and asphalteneܥ *
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Table 5.9. Composition and PC-SAFT parameters of heavy gas, saturates, A+R and asphaltene required for the PC-
SAFT (WOA) model. 

Comp. 

Fluid-1 
SARA-1 

Fluid-1 
SARA-2 

Fluid-1 
SARA-3 

Fluid-2 Fluid-4 Fluid-5 Fluid-6 

mol% mol% mol% mol% mol% mol% mol% 

Nଶ 0.163 0.16 0.16    0.496     0.390 0.088     0.315 

COଶ 1.944 1.94 1.94    11.38     0.840 0.048     3.549 

Hଶܵ 0.000 0.00 0    3.219          0   1.022     0.701 

methane 33.600 33.60 33.6    27.36    36.63   42.42    32.56 

ethane 7.557 7.56 7.56    9.361     8.630 10.80     8.423 

propane 6.742 6.74 6.74    6.470     6.660  6.918     6.729 

Heavy Gas 8.198 8.21 8.21    6.116     8.700   7.774     7.168 

Saturates 31.743 28.91 28.4    23.65    24.05   21.76    25.25 

A+R 9.907 12.81 13.21    11.90    14.03     9.15    15.10 

Asphaltenes 0.133 0.070 0.17    0.067     0.070    0.019     0.212 

        

heavy Gas        

 67.3 58.12 58.12 67.1 65.57 65.56 65.5 ܹܯ

݉ 2.53 2.53 2.53 2.57 2.34 2.34 2.58 

 ሺՀሻ 3.74 3.74 3.74 3.75 3.71 3.71 3.75	ߪ

߳/݇	ሺܭሻ 228.5 228.5 228.5 229.3 224.3 224.3 229.4 

saturates        

 210.1 183.8 203.2 198.2 152.64 160.1 167.7 ܹܯ

݉ 5.15 4.96 4.77 5.94 6.07 5.57 6.24 

 ሺՀሻ 3.90 3.89 3.89 3.92 3.92 3.91 3.92	ߪ

߳/݇	ሺܭሻ 249.7 248.99 248.27 251.9 252.1 250.9 252.5 

A+R        

 278.3 250.0 250 282.6 260.0 259.3 253.8 ܹܯ

݉ 6.41 6.53 6.55 5.98 5.95 6.04 6.09 

 ሺՀሻ 3.99 3.99 3.99 4.13 4.03 4.02 4.10	ߪ

߳/݇	ሺܭሻ 285.0 285.06 285.06 360.7 314.8 307.9 347.2 

Asphaltene        

 1700 1700 1700 1700 1700 1700 1700 ܹܯ

݉ 40.2 50.14 41.93 28.00 33.21 33.21 35.82 

 ሺՀሻ 4.20 4.20 4.20 4.35 4.31 4.30 4.46	ߪ

߳/݇	ሺܭሻ 341.2 338.5 338.09 413.2 382.72 383.06 413.4 
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Table 5.10. Injected Gas Composition in mol% for Fluid-1 [8,31,35] and Fluid-4 [45]. 
Components Fluid-1 Fluid-4 
Nଶ 0.398 0.000 
COଶ 3.891 60.320 
Hଶܵ 0.000 0.000 
methane 71.312 10.730 
ethane 11.912 7.550 
propane 7.224 9.090 
i-butane 1.189 0.000 
n-butane 2.254 6.470 
i-pentane 0.567 0.030 
n-pentane 0.616 5.820 
 ଺ା 0.637 0.000ܥ

 

Fluid-1 

Fluid-1 has been studied by AlHammadi et al [35], who compared results of the PC-SAFT (WOA) 
and CPA models with respect to experimental data. They used the same modeling approach as 
Panuganti et al [31], which is also used in this work for the PC-SAFT (WOA). However, AlHammadi 
et al [35] used a different approach for the CPA than used in this work. Fig. 5.4 shows the comparison 
of the results from this work using the PC-SAFT (WOA), PC-SAFT (WA) and CPA with respect to 
experimental data. Experimental data for 5 mol% gas injection (i.e. 5 mol of gas added to 95 mol of 
fluid) scenario are used to calculate the model parameters (as explained in the previous section) and 
models correlation can be seen in panel (b) of Fig. 5.4. The composition of the injected gas is shown 
in Table 5.10. After calculating the model parameters, results for 0 mol%, 15 mol% and 30 mol% gas 
injection scenarios are predicted as shown in panels (a), (c) and (d) of Fig. 5.4. It can be observed that 
all three modeling approaches are able to correlate the UOP and BP data for 5 mol% gas injection in 
the experimental range. There are deviations between all three models outside the experimental 
temperature range. At lower temperature, deviations are more pronounced in UOP and BP results. 
The BP results from the PC-SAFT (WOA) and PC-SAFT (WA) are almost the same but different to 
the BP results from CPA. Predictions for 0 mol%, 15 mol% and 30 mol% scenarios by all three 
models are in agreement with experimental data but there are considerable deviations among the 
models’ results for 30 mol% gas injection case. In other words, it can be concluded that as the 
composition changes from the reference composition (of correlated scenario, 5 mol% gas injection), 
predictions from three approaches differ largely from each other. It is believed that the difference 
between predictions can be due to interactions between asphaltene and other STO components, 
characterization of STO components and binary interaction parameters of different components with 
asphatlene. This fluid has also been studied by Punnapala and Vargas [8] with little modification of 
the modeling approach from Panuganti et al [31] for the PC-SAFT (WOA) and with different MW of 
asphaltene. Punnapala and Vargas [8] used a MW of 1474 Da while Panuganti et al [31] and 
AlHammadi et al [35] used a MW of 1700 Da for asphaltene. In other words, there are multiple sets 
of asphaltene parameters for different values of MW of asphaltene, which can correlate the 
experimental data. It should be noted that asphaltene PC-SAFT (WOA) parameters found in this work 
are also different to those used by AlHammadi et al [35]. As mentioned earlier, the CPA and PC-
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SAFT (WA) modeling approaches are also independent of asphaltene MW and there could be 
multiple sets of asphaltene parameters, which would correlate experimental data. 
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Fig. 5.4. Fluid-1: Upper onset and bubble pressure boundaries for reservoir fluid without gas injection (Panel-a) and 
with gas injection of 5 mol% (Panel-b), 15 mol% (Panel-c), 30 mol% (Panel-d). Symbols represent experimental data 
from AlHammadi et al [35] and lines represent results from all the three models.  
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Models dependency upon amount of SARA fractions 

Since SARA analysis may vary from lab to lab and can be significantly different depending on the 
method applied, it is important to study the models dependency upon amount of SARA fractions. 
Arya et al [20] have shown that the CPA approach used in this study is not dependent upon SARA 
fractions. The PC-SAFT (WA) approach is similar to the CPA approach and is also independent of 
SARA fractions. Panuganti el al [31] mentioned that their PC-SAFT (WOA) approach, which is used 
in this study, needs accurate value of SARA fractions. Therefore, Fluid-1 is studied with PC-SAFT 
(WOA) by changing the SARA analysis, in order to check the sensitivity of the model with respect 

to SARA fractions.	 Three different sets of SARA analysis are selected as shown in Table 5.11. Panel 
(b) of Fig. 5.5 shows that the PC-SAFT (WOA) model with all three sets of SARA fractions can 
correlate the experimental data of 5 mol% gas injection scenario. Panels (a), (c) and (d) of Fig. 5.5 
show that the predictions of the model for all the three sets do not differ much. In other words, there 
are many sets of SARA fractions, which would predict the same results. Model parameters for 
SARA1, SARA2 and SARA3 sets are mentioned in in Table 5.9. Since all the models used in this 
work do not depend upon SARA analysis, assumed value of SARA fractions in Table 5.6 will not 
affect the results of onset conditions. It should be noted that amount of precipitated asphaltene is 
dependent upon the amount of asphaltene present in the oil. 

Table 5.11. Different sets of SARA analysis used to study Fluid-1. 

Set 
Saturates 

(wt%) 
Aromatics 

(wt%) 
Resins 
(wt%) 

Asphaltenes 
(wt%) 

SARA1 66.26 25.59 5.35 2.8 

SARA2 57.4 30.8 10.4 1.4 
SARA3 53.75 28.50 14.10 3.65 
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(c) (d) 

Fig. 5.5. Fluid-1: Sensitivity of the model results with respect to three different sets of SARA analysis. Upper onset and 
bubble pressure boundaries for reservoir fluid without gas injection (Panel-a) and with gas injection of 5 mol% (Panel-
b), 15 mol% (Panel-c), 30 mol% (Panel-d). Symbols represent experimental data from AlHammadi et al [35] and lines 
represent results from the PC-SAFT (WOA) model using three different sets of SARA analysis. 
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Fluid-2 

Fluid-2 has been studied by Jamaluddin et al [14] and it is also used by other researchers [12,29,30,32] 
for asphaltene modeling study. Panel (a) of Fig. 5.6 shows that all the three models are able to 
correlate the UOP and BP experimental data. The models are also able to predict the LOP data. Panel 

(b) of Fig. 5.6 shows that predictions of UOP and BP for different amounts of ૛ܰ injection at 419K 
are also in agreement with the experimental data. The PC-SAFT (WOA) model has larger deviations 
from the experimental data, shown in panel (b) of Fig. 5.6, compared to the CPA and PC-SAFT (WA) 
models since the correlation of UOP in panel (a) of Fig. 5.6 by the PC-SAFT (WOA) is not accurate 
compared to the other two models at around 419K. Panels (c) and (d) of Fig. 5.6 show the predictions 

of the effect of 10 and 20 mol% of ܱܥ૛  injection respectively. There are no experimental data 

available for ܱܥ૛ injection for this fluid. There are only minor deviations between the CPA and PC-

SAFT (WA) models as we increase the ܱܥ૛ injection. However, the PC-SAFT (WOA) deviates more 

from the other two models, especially at higher temperatures, as we increase the ܱܥ૛ injection (due 

to the same reason of different correlation of UOP by the PC-SAFT model in panel (a) of Fig. 5.6). 
Gonzalez et al [34] have also studied fluid-2 with the PC-SAFT (WOA) and showed that there is a 

cross-over temperature with ܱܥ૛ injection below which asphaltene solubility increases with amount 

of ܱܥ૛ injection. We have not seen this behavior since ܱܥ૛-asphaltene binary interaction parameter 

used in this work is different for the PC-SAFT (WOA) model. If we use ܱܥ૛-asphaltene binary 
interaction parameter of the value 0.11, which was used by Gonzalez et al [34], both models (PC-

SAFT (WOA) and PC-SAFT (WA)) predict increase in asphaltene solubility with ܱܥ૛ injection at 
low temperatures (results are shown in Supplementary Information) or in other words there is a cross-
over temperature. However, unlike Gonzalez et al [34], we have not observed single cross-over 

temperature but the cross-over temperature (with respect to 0 mol% ܱܥ૛  injection scenario) is 

different for different amount of ܱܥ૛ injection. We have fixed the ܱܥ૛-asphaltene binary interaction 

parameters based on our experience by studying different fluids with ܱܥ૛  injection. Fluid-3 and 

Fluid-4 represent the results with ܱܥ૛ injection in this article while one more fluid (Fluid-7) from 

Punnapala and Vargas [8] is also studied and the results are shown in Supplementary Information. 
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(c) (d) 

Fig. 5.6. Fluid-2: Upper/lower onset and bubble pressure boundaries for reservoir fluid without gas injection (Panel-a) 

and with 2CO  injection of 10 mol% (Panel-c), 20 mol% (Panel-d). (Plot-b) Effect of 2N  injection on upper/lower onset 

and bubble pressure boundaries at 419K. Symbols represent experimental data from Jamaluddin et al [14] and lines 
represent results from all the three models. 

 

Fluid-3 

Fluid-3 is a model oil prepared by dissolving 0.04 wt% of n-heptane insoluble asphaltene (from 
Furrial field in the Eastern Venezuelan Basin) into the solution of toluene (60 mol%) and n-heptane 
(40 mol%). Marcano et al [44] studied the asphaltene flocculation onset of solutions with 10, 15 and 

20 wt% of ܱܥ૛  injection. Experimental results show the critical temperature of 353K where the 
asphaltene solubility in the solution is maximum. In this work, we calculated the model parameters 

for all the three models using the 20 wt% of ܱܥ૛ injection scenario and models correlations can be 
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seen in panel (c) of Fig. 5.7. Panel (c) of Fig. 5.7 also shows that the experimental UOP at 423K is 
not consistent with the trend predicted by any of the models. The three models are then used to predict 

10 and 15 wt% of ܱܥ૛ injection scenarios. If we assume that experimental data are accurate, the 

models’ prediction is poor especially at 10 wt% of ܱܥ૛ injection. More experimental data of this kind 

should be used to check the reliability of the three models. It should be noted that if we use the ܱܥ૛-

asphaltene binary interaction parameter reported by Panuganti et al [31], both PC-SAFT (WOA) and 
PC-SAFT (WA) predict the cross-over temperature, which contradicts the experimental data. 

Supplementary Information gives more details. Panel (d) of Fig. 5.7 shows that ߝ஺ு/ܴ increases with 

temperature for both the CPA and PC-SAFT (WA) models, however change in ߝ஺ு/ܴ is relatively 

small over the temperature range (from 250 K to 500K) for the PC-SAFT (WA). 
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Fig. 5.7. Fluid-3: Upper onset and bubble pressure boundaries with 2CO  injection of 10 wt% (Panel-a), 15 wt% (Panel-

b) and 20 wt% (Panel-c). Symbols represent experimental data from Marcano et al [44] and lines represent results from 

all the three models. (Panel–d) Temperature dependency of AH R  for CPA and PC-SAFT (WA) models. 
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Fluid-4 

This fluid is from a Kuwait reservoir and it was studied by Memon et al [45] to check the feasibility 
of miscible gas injection. In this work, all model parameters are calculated from the experimental 

data shown in panel (a) and one UOP point (with 10 mol%) ܱܥ૛ rich gas injection shown in panel (b) 

of Fig. 5.8. After calculation of model parameters, results for different amount of ܱܥ૛  rich gas 

injections are predicted and compared with experimental data at 363K in panel (b) of Fig. 5.8. Panel 
(b) of Fig. 5.8 shows that all the three model are able to predict the gas injection effect on UOP and 
BP in agreement with experimental data. Panel (a) of Fig. 5.8 shows that the CPA correlations for BP 
are different to the PC-SAFT (WOA) and PC-SAFT (WA) correlations at low temperature. Please 
note that we have assumed SARA analysis for this fluid due to lack of experimental data. Fluid-4 

SARA data is assumed same as that of for Fluid-2 based on molar mass and SG of ܥ଺ା/STO. The 

composition of the injected ܱܥ૛ rich gas is shown in Table 5.10. 
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(a) (b) 
Fig. 5.8. Fluid-4: Upper/lower onset and bubble pressure boundaries for reservoir fluid without gas injection (Panel-a). 

(Plot-b) Effect of 2CO  rich gas injection on upper/lower onset and bubble pressure boundaries at 363K. Symbols 

represent experimental data from Memon et al [45] and lines represent results from all the three models. 

 

Fluid-5 

Kabir & Jamaluddin [46] measured both asphaltene phase envelope and asphaltene amount in the 
reservoir oil during depressurization at 322K and 389K for fluid-5. Panel (a) of Fig. 5.9 shows the 
correlations for UOP and BP after calculating the model parameters for all the models from the 
respective experimental data. It can be seen from panel (a) of Fig. 5.9 that PC-SAFT (WOA) cannot 
correlate well the UOP data whereas the PC-SAFT (WA) and CPA are in good agreement with the 
experimental data. The LOP lines from the models are predictions. Interestingly, LOP predictions 
from the CPA are close to those from the PC-SAFT (WOA) but are different to those from the PC-
SAFT (WA). Panels (b) and (c) of Fig. 5.9 show the prediction of relative amount of asphaltene in 
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oil phase (ratio of asphaltene wt% in oil phase at given pressure to asphaltene wt% in oil phase at 
UOP) at 322K and 389K respectively. Predictions from the CPA and PC-SAFT (WA) are in 
agreement with the experimental data at 322K. Since the PC-SAFT (WOA) cannot correlate the UOP 
data, predictions of relative amount of asphaltene in oil phase have considerable deviations from the 
experimental data. However, we also noticed that when the PC-SAFT (WOA) correlates the UOP at 
322K (but unable to correlate the UOP data at other temperatures), it can also predict the relative 
amount of asphaltene in oil phase at 322K (results are not shown here). We believe that the 
experimental data at 389K are not sufficient to compare the models predictions shown in Fig. 5.9c. 
Since model parameters are calculated from correlating UOP & BP data and asphaltene mass is 
constant, models predictions in panels (b) and (c) of Fig. 5.9 can be seen in terms of the values of 
LOP and relative asphaltene amount at BP. In other words, UOP, BP and relative asphaltene amount 
at BP decide the positive slope whereas LOP, GOR at LOP, BP and relative asphaltene amount at BP 
decide the negative slope in panels (b) and (c) of Fig. 5.9 within APE. It should be noted that we have 
shown relative amount of asphaltene in oil phase but not absolute value of asphaltene amount. The 
reason for considering relative amount of asphaltene is that Asphaltene fraction may be different in 
the reservoir oil than that in STO. In addition, n-pentane and n-heptane insoluble asphaltene fractions 
are also different. For this reason, the models considered in this work cannot predict the absolute 
value of asphaltene amount during depressurization. However, the models can predict the relative 
amount of asphaltene, which is also independent of the amount of asphaltene in STO (models input 

parameter). Panel (d) of Fig. 5.9 shows that ߝ஺ு/ܴ increases with temperature for the CPA model 

while it decreases for the PC-SAFT (WA) model. The increase in ߝ஺ு/ܴ with temperature helps to 

increase the solubility of asphaltene in the fluid at higher temperatures while decrease in ߝ஺ு/ܴ with 

temperature helps to decrease the solubility of asphaltene. In other words, increase in ߝ஺ு/ܴ at fixed 

temperature decreases the UOP at that temperature. Fig. 5.10 shows that the CPA model predicts 
same values of relative amount of asphaltene when we consider 0.5, 5 and 15 wt% of asphaltene in 
STO. The model parameters (not shown here) are different for the three cases of different amounts of 
asphaltene in STO and are calculated from the same experimental data of UOP and BP shown in 
panel (a) of Fig. 5.9. It can be seen from Fig. 5.10 that all three cases predict the same results and 
therefore relative asphaltene amount in the oil phase is independent of asphaltene in STO (model 
input). Same behavior, like that of the CPA model in Fig. 5.10, is also observed by the PC-SAFT 
(WA) and PC-SAFT (WOA) but results are not shown here.  
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(c) (d) 
Fig. 5.9. Fluid-5: Asphaltene phase envelope (Panel-a) and relative amount of asphaltene in oil phase during 
depressurization at 322K (Panel-b) & 389K (Panel-c). Symbols represent experimental data from Kabir & Jamaluddin 

[46] and lines represent results from all the three models. (Panel–d) Temperature dependency of AH R  for CPA and 

PC-SAFT (WA) models. 
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Fig. 5.10. Fluid-5: Relative amount of asphaltene in oil phase during depressurization at 322 K. Symbols represent 
experimental data from Kabir & Jamaluddin [46] and lines represent results from the CPA model for three different 
amounts (0.5/5/15 wt%) of asphaltene in STO.  

 

Fluid-6 

Fluid-6 is from the Maracaibo basin of western Venezuela. Gonzalez et al [47] studied this fluid with 
respect to asphaltene precipitation as part of a formation damage investigation. Panel (a) of Fig. 5.11 
shows that fluid-6 has unusual asphaltene phase behavior, where asphaltenes are more soluble at 
lower temperature. Gonzalez et al [47] also modeled this fluid with CPA (but with a different 
modeling approach than ours) and concluded that the CPA model cannot predict asphaltene phase 
envelope for fluid-6. Panel (a) of Fig. 5.11 shows that the CPA and PC-SAFT (WA) can correlate 
both the UOP and BP data after calculating model parameters from the data while the PC-SAFT 
(WOA) is unable to correlate the UOP data but only the BP data. In addition, BP correlations by the 
CPA is quite different to those by the PC-SAFT (WA) and PC-SAFT (WOA). The PC-SAFT (WA) 
model also shows decrease in asphaltene solubility at low temperatures (around <300K), which 

contradicts the CPA results. Panel (b) of Fig. 5.11 shows that ߝ஺ு/ܴ decreases with temperature for 

both the CPA and PC-SAFT (WA) models. Since ߝ஺ு/ܴ increases as temperature decreases, it helps 

to increase the asphaltene solubility as temperature drops. Note that asphaltene solubility depends 
upon the interactions between asphaltene-HC and asphaltene-asphaltene molecules. 
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(a) (b) 

Fig. 5.11. Fluid-6: Upper onset and bubble pressure boundaries for reservoir fluid without gas injection (Panel-a). 
Symbols represent experimental data from Gonzalez et al [47] and lines represent results from all the three models. 

(Panel –b) Temperature dependency of AH R  for CPA and PC-SAFT (WA) models.  

 

Relative Deviations between Modeling Results and Experimental Data 

Table 5.12 shows average relative deviation in bubble pressure, upper onset pressure and lower onset 
pressure for all fluids studied in this work. It can be seen that the CPA based modeling approach has 
lower deviations in bubble pressure and upper onset pressure than other two models used in this study. 
The PC-SAFT (WA) based modeling approach has lower deviations in lower onset pressure, however, 
the CPA based modeling approach has lower deviations for one fluid out of two (for which 
experimental data are available). In general, it is analyzed that incorporating the association term in 
PC-SAFT significantly improves the results of upper onset pressure boundary. Supplementary 
Information shows the detailed results of deviation from experimental data of each figure. 

Table 5.12. Average relative deviation in BP, UOP and LOP for all fluids. 

Fluid Figure Panel 

Avg. Relative Deviation 
in BP (%) 

Avg. Relative Deviation in 
UOP (%) 

Avg. Relative Deviation 
in LOP (%) 

CPA 
PC-

SAFT
(WA) 

PC-
SAFT 

(WOA) 
CPA 

PC-
SAFT 
(WA) 

PC-SAFT 
(WOA) 

CPA 
PC-

SAFT
(WA) 

PC-
SAFT 

(WOA) 

Fluid-1 Fig. 5.4 a,b,c,d 4.41 5.35 6.69 12.99 11.71 12.51  NA  NA   NA   

Fluid-2 Fig. 5.6 A 1.21 2.28 1.86 2.05 2.54 21.35 11.47 13.45 13.37 
Fluid-2 Fig. 5.6 B 1.71 2.72 4.03 6.72 5.90 12.60  NA  NA   NA   
Fluid-3 Fig. 5.7 a,b,c 13.26 16.44 17.21 19.02 24.80 21.49   NA  NA   NA   
Fluid-4 Fig. 5.8 A 2.54 4.00 3.44 6.60 6.62 5.64  NA   NA   NA   
Fluid-4 Fig. 5.8 B 3.95 1.95 2.73 3.10 3.24 5.46  NA  NA   NA   
Fluid-5 Fig. 5.9 A 1.62 4.72 4.06 2.05 2.54 21.35 22.39 15.03 29.60 
Fluid-6 Fig. 5.11 A 1.00 9.50 8.16 0.90 1.24 14.59 NA   NA   NA   

   Avg 3.71 5.87 6.02 6.68 7.32 14.37 16.93 14.24 21.48 
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5.5 Conclusions 

Studying a total of seven fluids for which different kinds of experimental data were available, we can 
conclude that if any of the three models considered in this work can correlate the upper onset pressure 
and bubble pressure data, it can also predict the lower onset pressure, gas injection effect on upper 
onset pressure and relative asphaltene amount in the oil during depressurization compared with 
experimental data. It is shown that the PC-SAFT (without association) is unable to correlate the upper 
onset pressure boundary for fluid-5 and 6. On the other hand, the PC-SAFT (with association) and 
CPA can correlate the upper onset boundary for all fluids. This demonstrates that the asphaltene 
modeling approach with the PC-SAFT (without association) from Panuganti et al [31] has some 
limitations. It also raises the questions about whether only van der Waals interactions are responsible 
for asphaltene precipitation or association forces also contribute to asphaltene precipitation. If only 
van der Waals interaction are responsible then we need to modify the modeling approach for the PC-
SAFT (without association) to characterize the stock tank oil components. It is shown that the 
modeling approach with the PC-SAFT (without association) does not depend upon the SARA analysis 
and there could be multiple sets of SARA which would give the same asphaltene phase envelope. 
Asphaltene phase envelopes obtained from all the three models are also different outside of 
experimental temperature range since the asphaltene phase envelope depends upon the parameters of 
the stock tank oil components (heavy component and asphaltene for CPA/PC-SAFT (WA); saturates, 

aromatics+resins, asphaltene for PC-SAFT (WOA); ݇௜௝ values for all models). It is also observed that 

as the composition changes from the composition of correlated case (e.g. correlated case is 0% gas 
injection and predicted case is 30% gas injection), asphaltene phase envelope from the three models 
deviate more from each other. It is shown that relative asphaltene amount is independent of asphaltene 
amount in the stock tank oil (as a model input) and can be used to study asphaltene precipitation 
during reservoir depressurization. We believe more studies related to reservoir depressurization are 
required to check the reliability of the concept of prediction of the relative asphaltene amount. It was 

shown that the ܱܥ૛-asphaltene binary interaction parameter (݇௜௝) values used by Gonzalez et al [34] 

and Panuganti et al [31] predict the increase in asphaltene solubility at lower temperatures for fluid-

2 and 3. The ܱܥ૛-asphaltene binary interaction parameter (݇௜௝) value proposed in this work does not 

predict an increase in asphaltene solubility at lower temperatures for fluid-2 and 3. The experimental 

data for fluid-3 also confirms that there is no increase in asphaltene solubility with ܱܥ૛ injection at 
low temperatures. For all the fluids studied here, the CPA model accurately correlates bubble pressure 
data while PC-SAFT (with association) and PC-SAFT (without association) have minor deviations 
(e.g. Fluid-6). None of the models depends upon the molecular weight of asphaltene and SARA 
analysis. At least three upper onset pressures and one bubble pressure experimental point are required 
for all models studied in this work. Most important observation is that model results outside of 
experimental temperature range may not be reliable due to temperature dependency of the models. 
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5.6 Supplementary Information 

Fluid-2 

Fluid-2 is also studied with PC-SAFT (WA) and PC-SAFT (WOA) by changing ܱܥ૛-asphaltene 

binary interaction parameter (݇௜௝) to the value of 0.11 reported by Gonzalez et al [34]. Fig. 5.12 shows 

the APE for reservoir fluid without gas injection and UOP boundaries for 10 & 20 mol% ܱܥ૛ 
injection. Both models show that asphaltene solubility increases at lower temperatures with amount 

of injected	ܱܥ૛. 
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(a) (b) 

Fig. 5.12.  Asphaltene phase envelope using the PC-SAFT (WA) (Panel-a) and PC-SAFT (WOA) (Panel-b) for different 

amounts of 2CO  gas injection. Symbols represent experimental data from Jamaluddin et al [14] and lines represent 

results from the respective model. ijk for 2CO -asphaltene is 0.11. 

 

Fluid-7  

Fluid-7 was studied by Punnapala and Vargas [8] using the PC-SAFT (WOA) EoS by slightly 
modifying the approach from Panuganti et al [31] but keeping the same binary interaction parameters 
for all components. In this work, we use the same PC-SAFT (WOA) parameters used by Punnapala 

and Vargas [8] but ܱܥ૛-asphaltene binary interaction parameter (݇௜௝) mentioned in this work is used. 

The model parameters are calculated from BP data for 0 mol% GI and UOP data for 20 mol% GI. 
Fig. 5.13 shows that the PC-SAFT (WOA) model is able to correlate the BP and then can predict the 

UOP for 30 mol% GI. Therefore, we can conclude that ܱܥ૛- asphaltene binary interaction parameter 

(݇௜௝ ) used in this work are correct. We also checked the results using ܱܥ૛ - asphaltene binary 

interaction parameter (݇௜௝) equals to 0.10, reported by Panuganti et al [19], but could not reproduce 

the results shown by Punnapala and Vargas [8]. All information of fluid-7 can be found in Tables 
5.13-5.14. 



Chapter 5. Modeling of Asphaltene Onset Condition using the CPA and PC-SAFT EoS 

108 

Table  5.13.  Properties  of  Fluids  used  in  Supplementary

Information. 

 
 

 Fluid-7 [8] 

Saturates (wt%) 73.42 

Aromatics (wt%) 19.32 

Resins (wt%) 7.05 

Asphaltenes (wt%) 0.17 

 ଺ା MW 199.1ܥ

STO MW 212.9 

STO SG 0.846 
MW of reservoir 
fluid (MW) 

75.4 

GOR (݉ଷ/݉ଷ) 152 

Table  5.14. Composition  and  PC‐SAFT  parameters  of 

heavy gas,  saturates, A+R and asphaltene  required  for 

the PC‐SAFT (WOA) model. 

Comp. 
Fluid-7[8]

mol% 

Nଶ 0.1 

Hଶܵ 3.7 

COଶ 5.3 

methane 46.3 

ethane 5.4 

propane 4.2 

Heavy Gas 10.3 

Saturates 18.0 

A+R 6.6 

Asp 0.004 

  

Heavy Gas  

 74.7 ܹܯ

݉ 2.76 

ߪ ሺՀሻ 3.77 

߳/݇ ሺܭሻ 232.6 

Saturates  

 193.2 ܹܯ

݉ 5.84 

ߪ ሺՀሶ ሻ 4.09 

߳/݇ ሺܭሻ 345.7 

A+R  

 264.6 ܹܯ

݉ 5.84 

ߪ ሺՀሻ 4.09 

߳/݇ ሺܭሻ 345.7 

Asp  

 2183.9 ܹܯ

݉ 45.09 

ߪ ሺՀሻ 4.22 

߳/݇ ሺܭሻ 349.9 
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(c)  

Fig. 5.13. Asphaltene phase envelope for reservoir fluid without gas injection (Panel-a) and with 2CO  injection of 20 

mol% (Panel-b), 30 mol% (Panel-c). Symbols (triangle for UOP, circles for bubble points) represent experimental data 
from Punnapala & Vargas [8] and lines represent results from the PC-SAFT (WOA) model.  

 

  



Chapter 5. Modeling of Asphaltene Onset Condition using the CPA and PC-SAFT EoS 

110 

Fluid-3 

Fluid-3 is studied with the PC-SAFT (WOA) by changing ܱܥ૛ - asphaltene binary interaction 

parameter (݇௜௝) to the value of 0.10 reported by Panuganti et al [31]. Fig. 5.14 shows that asphaltene 

solubility increases with amount of ܱܥ૛ injection, which contradicts the experimental data. 
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Fig. 5.14. Fluid-3: Upper onset and bubble pressure boundaries for different amounts of 2CO  injection. Symbols 

represent experimental data from Marcano et al [44] and lines represent results from the PC-SAFT (WOA) model using 
o

33.3, 4.3A, /  450.5m k K     of Asp. ijk for 2CO -asphaltene is 0.10. 
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Chapter 6. Modeling of Asphaltene Onset Condition 
using the CPA, SRK, and SRK+HV Equations of State 

Entire content of this chapter is from our journal article “Alay Arya; Xiaodong Liang; Nicolas 
von Solms; Georgios M. Kontogeorgis. Prediction of Gas Injection Effect on Asphaltene 
Precipitation Onset using the Cubic and Cubic-Plus-Association Equations of State. Submitted to 
Energy & Fuels”. 

 

Abstract 

Gas injection is a proven enhanced oil recovery technique. The gas injection changes the reservoir oil 
composition, temperature and pressure conditions, which may result in asphaltene precipitation. In 
this work, we have used a modeling approach from the literature in order to predict asphaltene 
precipitation onset condition during gas injection. The modeling approach is used with the Soave-
Redlich-Kwong (SRK), Soave-Redlich-Kwong-Plus-Huron-Vidal mixing rule (SRK+HV) and 
Cubic-Plus-Association (CPA) equations of state (EoS). Six different reservoir fluids are studied with 
respect to asphaltene onset precipitation during nitrogen, hydrocarbon gas mixture and carbon dioxide 
injection. It is also shown how to extend the modeling approach when the reservoir fluid is split into 
multiple pseudo-components. It is observed that the modeling approach using any of the three models 
can predict the gas injection effect on asphaltene onset conditions. The CPA EoS is more reliable 
than the other two models, which are sensitive to asphaltene molecular weight and sometimes predict 
highly non-linear behavior outside the experimental temperature range used for fitting the model 
parameters. 

6.1 Introduction 

Asphaltenes are the solubility fraction of oil, which are insoluble in n-heptane and soluble in aromatic 
solvents such as toluene [1-3]. They form the heaviest, highly polarizable and polydisperse fraction 
of oil. Their actual chemical structures are very difficult to identify due to their extremely low 
volatility, the complex and continuous variation in their chemical structures and self-aggregation [4]. 
Their mass fraction in oil at ambient conditions is generally measured using the Saturates-Aromatics-
Resins-Asphaltenes (SARA) analysis. They may precipitate out of oil depending upon the oil 
temperature, pressure and composition. Thus, they generally create flow assurance problems in the 
oil industry by reducing the permeability of reservoirs, forming scale, and plugging the wellbore. The 
asphaltene flow assurance problem is analyzed by Pressure-Temperature (PT) plots as shown in Fig. 
6.5. There are two PT boundaries, the upper onset pressure (UOP) boundary, above which only one 
(liquid) phase exists, and the lower onset pressure (LOP) boundary, above which three phases (gas, 
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asphaltene-lean liquid, and asphaltene-rich liquid) exist. Asphaltene precipitation occurs between 
these two boundaries. Maximum asphaltene precipitation occurs at bubble pressure.   

Generally, gas is injected into the reservoir, after water flooding, in order to maintain its pressure and 

recover more oil. Miscible flooding with carbon dioxide (COଶ) or hydrocarbon (H/C) solvents is 
considered one of the most effective enhanced oil recovery processes applicable to light and medium 

oil reservoirs [5]. Miscible COଶ  displacement results in approximately 22% additional recovery, 

while immiscible displacement achieves approximately 10% additional recovery [6]. In addition, COଶ 

has a considerably lower minimum miscibility pressure (MMP) compared to nitrogen (Nଶ) and 

methane [7,8]. The MMP is the minimum pressure at which around 95% of contacted oil is recovered 
for a given temperature. The MMP depends upon the reservoir temperature and oil composition [8,9]. 
With new technology in horizontal drilling and stimulation, the oil production from tight reservoirs 
is increasing. Although the initial production rates are high, the recovery factors are low (around 5-
10%). Water flooding is not a feasible option for these tight reservoirs due to low permeability; 
however, gas injection may be a good alternative option based on recent analysis [10].  The asphaltene 
solubility in oil usually decreases with the amount of injected gas, which increases the upper onset 
pressure for a given temperature. Therefore, there is a need to develop a model to predict asphaltene 
onset conditions during gas injection. 

There are different models in the literature to study asphaltene precipitation but only a few researchers 
have studied the effect of gas injection into reservoir fluid using cubic equations of state (EoS). EoS 
based compositional reservoir simulations use almost exclusively cubic EoS such as the Soave-
Redlich-Kwong (SRK) and Peng-Robinson (PR) equations [11]. A logical option is therefore to 
develop a modeling approach based on these EoS to predict the gas injection effect on asphaltene 
onset conditions. Jamaluddin et al [12] studied the SRK EoS to describe two reservoir fluids. They 
could correlate the asphaltene UOP boundary by tuning the model parameters and predict the lower 
onset pressure boundary. Pedersen et al [13] studied both SRK and PR EoS and could also correlate 
the UOP boundary and predict the lower onset pressure boundary. Panuganti et al [14] studied the 
SRK and Perturbed-Chain-Statistical-Associating-Fluid-Theory (PC-SAFT) EoS for one reservoir 
fluid and concluded that the SRK EoS was not able to predict the hydrocarbon gas injection effect on 
the UOP boundary with the same set of binary interaction parameters. They did not study the SRK 

EoS for ܱܥଶ and ଶܰ injections. On the other hand, Hustad et al [15] also used SRK and PC-SAFT for 
one reservoir fluid and concluded that both models performed well in predicting the asphaltene UOP 

during Nଶ injection at constant temperature. There was no discussion about how their model would 
work at different temperatures. Zhang et al [16] and Arya et al [17-19] studied the CPA EoS using 
different modeling approaches and concluded that the CPA EoS can predict the gas injection effect. 
Given the mixed results of these studies for modeling asphaltene precipitation during gas injection 
using cubic EoS, more investigations are needed.  

In this work, we study the CPA, SRK and SRK+HV models with respect to asphaltene precipitation 
onset condition during gas injection. To the best of our knowledge, the SRK+HV model has never 
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been used before for such studies. We first describe the modeling approach and parameters used for 
all three models. Then we study six different reservoir fluids to check the reliability of the models for 
the prediction of the gas injection effect. We also study how to extend the modeling approach when 
the plus fraction (e.g. hexane plus fraction) needs to be split into multiple pseudo-components in order 
to predict PVT properties. 

6.2 Modeling Approach 

In this work we take the same modeling approach as presented by Arya et al [17-19] and shown in 

Fig. 6.1. The reservoir fluid is divided into defined components (shown in Table 6.5) and ܥ଺ା fraction. 

The ܥ଺ା fraction is further divided into heavy component (HC) and asphaltene. The heavy component 
can be also divided into multiple components: this approach is studied and discussed in the Results 
& Discussion section. Once the temperature dependent non-ideality between the heavy component 
and asphaltene pair is appropriately modeled, the gas injection effect can be predicted. The literature 

shows that the asphaltene solubility parameter varies from 19 to 23 ܽܲܯଵ/ଶ depending upon the 

source [2,22]. The asphaltene component critical temperature, pressure and acentric factor are fixed 

based on its solubility parameter of 19 ܽܲܯଵ/ଶ at 298 K and 1 atm. One can also choose the different 

value of asphaltene solubility parameter (for example 21	ܽܲܯଵ/ଶ). It should be noted that the binary 

interaction parameters between gas/alkane-asphaltene pairs are dependent upon the asphaltene pure 
compound parameters; however this study is not presented here. The asphaltene rich phase is modeled 
as a liquid phase [23]. The normal boiling point of the heavy component is calculated from the 

Pedersen relationship [13]. The heavy component critical temperature ( ௖ܶ), pressure ( ௖ܲ) and acentric 

factor (߱) are calculated from the Kesler-Lee correlation [24] using the information of molecular 

weight (MW) and specific gravity (SG) of stock tank oil (STO). The critical pressure ( ௖ܲ) of the heavy 

component is then tuned with respect to experimental data of bubble point of the reservoir fluid. The 

binary interaction parameters for gas/alkane-heavy component (݇ଵଶ) pairs are fixed and obtained from 
the literature [15,28] assuming the heavy component as a heavy n-alkane for which binary parameters 
are available with respective gas/n-alkane components. For the CPA and SRK models, gas/ alkane-

asphaltene binary interaction parameters (݇ଵଷ ) are fitted in this study and kept constant for all 

reservoir fluids. For the SRK+HV model, Huron-Vidal parameters (ܩଵଷ,	ܩଷଵ) are fitted in this work 

and kept constant for all reservoir fluids. It should be noted that for the SRK+HV model, the Huron-

Vidal parameters (ܩଵଶ,	ܩଶଵ) for gas/n-alkane-heavy component binaries are calculated from ݇ଵଶ to 
reduce the Huron-Vidal mixing rule to van der Waal’s one fluid (classical) mixing rule for those 
binaries. If the heavy component is divided into multiple components, they each have the same values 

of ݇ଵଶ, ݇ଵଷ and Huron Vidal parameters (ܩଵଶ,	ܩଶଵ, ܩଵଷ and	ܩଷଵ for the SRK+HV model). 
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Fig. 6.1. Modeling approach used in this work for the CPA, SRK and SRK-HV equations of state. 

 

The CPA EoS is described by Kontogeorgis and Folas [25]. For the CPA model, the asphaltene 
fraction is considered as a monodisperse and associating component. The self-associating energy 

 between asphaltene molecules are fixed to 3000 K and 0.05 (dimensionless) (ଷଷߚ) and volume (ܴ/ଷଷߝ)
respectively. The solubility parameter of asphaltene is 21.51 MPa1/2 at 298K and 1 atm when these 
association parameters are used. The heavy component is not self-associating but can cross-associate 
with the asphaltene component. The asphaltene molecule is treated as having two positive and two 
negative association sites (four sites in total). The heavy component molecule is treated as having one 
site, which can associate with all asphaltene molecule sites i.e. regardless of polarity. The cross-

association energy (ߝଶଷ/ܴ) between the heavy component and asphaltene molecules is temperature 

dependent, as shown in Fig. 6.1, and is fitted to experimental asphaltene precipitation onset data. The 

cross-association volume (ߚଶଷ) is kept constant to a value of 0.05 (dimensionless). If the heavy 
component is divided into multiple components, these components will each have the same value of 

cross-association energy (ߝଶଷ/ܴ) and volume (ߚଶଷ) with asphaltene. The fitted value of (ߝଶଷ/ܴ) in 
the case of a single heavy component will be different from that in the case of multiple heavy 
components.   

The SRK EoS is described by Soave [26]. For the SRK model, the asphaltene fraction is treated as a 

monodisperse and non-associating component. The binary interaction parameter (݇ଶଷሻ for the heavy 
component-asphaltene pair is assumed to be temperature dependent, as shown in Fig. 6.1, and is fitted 
to experimental asphaltene precipitation onset data. If the heavy component is divided into multiple 

components, they each have the same value of ݇ଶଷ. The fitted value of ݇ଶଷ in case of a single heavy 

component will be different from that in the case of multiple heavy components. 

The SRK+HV model is described by Huron and Vidal [27]. For the SRK+HV model, the asphaltene 
fraction is treated as a monodisperse and non-associating component. The Huron-Vidal mixing rule 

for energy parameter (ܽሻ is defined in equation-2.37to 2.40. The Huron Vidal parameters (ܩଶଷ,  ଷଶሻܩ
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of the heavy component-asphaltene pair are assumed to be temperature dependent, as shown in Fig. 
6.1, and are fitted to experimental asphaltene precipitation onset data. If the heavy component is 

divided into multiple components, they each have the same value of ܩଶଷ and ܩଷଶ. The calculated 

values of ܩଶଷ and ܩଷଶ	in case of a single heavy component will be different from those in the case of 
multiple heavy components. 

The binary interaction parameters for the CPA and SRK models are shown in Tables 6.1 and 6.2 
respectively. The binary interaction parameters and Huron Vidal Parameters for the SRK+HV model 

are shown in Table 6.3. For all models, the ݇୧୨ parameters for all binary pairs (except those with 

asphaltene) are obtained from the literature [15,28]. The pure component parameters for all models 
are listed in Table 6.9 in Supplementary Information section. 

 

Table 6.1. CPA Model: binary interaction parameters (݇௜௝).  

Component Nଶb COଶ b HଶS b Asphaltene c 

Nଶ 0 0 0 0.44 

COଶ -0.0315 0 0 0.10 

HଶS 0.1696 0.0989 0 0 

methane 0.0278 0.12 0.08 0.10 

ethane 0.0407 0.12 0.0852 0.10 

propane 0.0763 0.12 0.0885 0.10 

i-butane 0.0944 0.12 0.0511 0.10 

n-butane 0.07 0.12 0.06 0.10 

i-pentane 0.0867 0.12 0.06 0.10 

n-pentane 0.0878 0.12 0.0685 0.10 

heavy comp/sa 0.13 0.10 0.05 0 

a Same binary parameters are used if we split C଺ା fraction into multiple heavy components. 
b Values are referred from [15,28]. 
c Values are fitted in this work. 
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Table 6.2. SRK Model: binary interaction parameters (݇௜௝).  

Component Nଶ b COଶ b HଶS b Asphaltene c 

Nଶ 0 0 0 0.33 

COଶ -0.0315 0 0 0.22 

HଶS 0.1696 0.0989 0 0 

methane 0.0278 0.12 0.08 0.165 

ethane 0.0407 0.12 0.0852 0.165 

propane 0.0763 0.12 0.0885 0.165 

i-butane 0.0944 0.12 0.0511 0.165 

n-butane 0.07 0.12 0.06 0.165 

i-pentane 0.0867 0.12 0.06 0.165 

n-pentane 0.0878 0.12 0.068 0.165 

heavy comp/sa 0.13 0.10 0.05 MAPd 

a Same binary parameters are used if we split C଺ା fraction into multiple heavy components. 
b Values are referred from [15,28]. 
c Values are fitted in this work. 
d Model Adjustable Parameter: calculated value shown in Table 6.6. 

 

Table 6.3. SRK+HV Model: binary interaction (݇௜௝) and Huron Vidal parameters.  

Component 
Nଶ b COଶ b HଶS b Asphaltene Huron Vidal Parameters c 

k୧୨ G0୧୨ G0୨୧ GT୧୨ GT୨୧ α୧୨ ൌ α୨୧ 

Nଶ 0 0 0 -545.50 530.50 0 0 0.2 

COଶ -0.0315 0 0 -722.20 464.80 0 0 0.2 

HଶS	d 0.1696 0.0989 0 11082.74 -648.02 0 0 0 

methane 0.0278 0.12 0.08 344.59 -141.79 -0.5838 0.5963 0.2 

ethane 0.0407 0.12 0.0852 569.03 -56.47 -1.3984 0.7299 0.2 

propane 0.0763 0.12 0.0885 618.02 697.27 -1.6996 -0.3379 0.2 

i-butane 0.0944 0.12 0.0511 661.20 2077.35 -1.2871 -3.0500 0.2 

n-butane 0.07 0.12 0.06 661.20 2077.35 -1.2871 -3.0500 0.2 

i-pentane 0.0867 0.12 0.06 4585.06 -2949.16 -10.4904 12.0512 0.2 

n-pentane 0.0878 0.12 0.0685 4585.06 -2949.16 -10.4904 12.0512 0.2 

heavy comp/sa 0.13 0.10 0.05 MAPe MAPe 0 0 0.2 
a Same binary parameters are used if we split C଺ା fraction into multiple heavy components. 
b Values are referred from [15,28] 

c Values are fitted in this work. 

d Huron-Vidal mixing rule is reduced to classical mixing rule for HଶS-ashaltene pair due to lack of experimental data. 
e Model Adjustable Parameter: calculated value shown in Table 6.6. 
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6.3 Results and Discussion 

In this work, six different reservoir fluids are studied. Tables 6.4 and 6.5 show their fluid properties 
and compositions. The fluids are selected so that there are at least two fluids each with experimental 

data of hydrocarbon gas injection (Fluid-1, 2 and 6), Nଶ injection (Fluid-2 and 4) and COଶ  injection 
(Fluid-2, 3 and 5) in order to check the reliability of the models in a wide range of conditions.  As 
discussed in the previous section, each model has three adjustable parameters (see Fig. 6.1) for the 
heavy component-asphaltene pair to be fitted to experimental data of asphaltene onset condition at 
three different temperatures within the range of interest. When experimental data are available at only 
two temperatures, the third adjustable parameter is set to zero. The calculated parameters of each 

model are shown in Table 6.6. The binary parameters for gas (Nଶ,COଶ)-asphaltene and light alkanes 

(methane to n-pentane)-asphaltene pairs are optimized with respect to UOP data and assuming an 

asphaltene fraction of 0.1 mol% of the ܥ଺ା fraction for all fluids. One can also optimize the binary 
parameters and study the models considering different amount of asphaltene (for example 0.3 mol% 

in the C଺ା fraction); however, the results are not shown in this work. The calculated parameters ( ஼ܶ, 

஼ܲ, ߱) of the heavy component, after tuning the critical pressure with respect to bubble pressure of 

reservoir fluid, are listed in Table 6.10 in Supplementary Information section. For all fluids, there are 
sufficient experimental data so that the model can be correlated with experimental data for a single 
gas injection amount, and then the model reliability can be evaluated by comparing the model 
predictions with experimental data for different amounts of gas injection. For example, as shown in 
Fig. 6.2, the model can be fitted to the 5 mol% gas injection scenario and then the model predictions 
can be validated against the 0, 15 and 30 mol% gas injection scenarios. 

 
Table 6.4. Properties of all fluids used in this work. 

 Fluid-1 
[14] 

Fluid-2 
[29] 

Fluid-3
[30] 

Fluid-4
[31] 

Fluid-5 
[32] 

Fluid-6 
[30] 

Saturates (wt%) 66.26 39.2 a 57.4 b 73.42 

Aromatics (wt%) 25.59 35.9 a 30.8 b 19.32 

Resins (wt%) 5.35 9.0 a 10.4 b 7.05 

Asphaltenes (wt%) 2.8 15.5 0.17 1.4 1.4c 0.17 

C଺ା MW (Da) 208.6 250.6 - 225.7 223.2 191.1 

STO MW (Da) 193 289.9 212.9 229.2 - 182 

STO SG (-) 0.823 0.919 0.846 0.865 0.863 0.817 

MW of reservoir fluid (Da) 97.8 132.9 75.4 102.0 102.6 92.8 

GOR (݉ଷ/݉ଷ) 140 160 - 160 140 152 
a SARA values for fluid-3 are not mentioned since there is a mismatch between Tables 5 and A3 of reference [30]. b SARA values 
for fluid-5 are not available. c asphaltene amount is assumed. 
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Table 6.5. Composition of reservoir fluids used in this work for the evaluation of the CPA, SRK and SRK-HV models *. 

 Fluid-1 
[14] 

Fluid-2 
[29] 

Fluid-3
[30] 

Fluid-4
[31] 

Fluid-5 
[32] 

Fluid-6 
[30] 

Comp. mol% mol% mol% mol% mol% mol% 

Nଶ 0.163 0.340 0.090 0.496 0.390 0.147 

COଶ 1.944 0.160 3.679 11.374 0.840 1.711 

Hଶܵ 0.000 0.000 5.267 3.218 0.000 0.000 

methane 33.600 32.900 45.840 27.350 36.630 32.508 

ethane 7.674 8.150 5.350 9.445 8.630 7.966 

propane 7.283 6.280 4.214 7.053 6.660 7.700 

i-butane 1.886 0.000 5.163 0.948 1.210 1.930 

n-butane 5.671 1.130 2.792 3.675 3.690 4.661 

i-pentane 2.194 0.000 1.393 1.388 1.550 2.076 

n-pentane 2.981 3.500 1.802 2.061 2.250 2.749 

C଺ା  36.604 47.540 24.410 32.993 38.150 38.553 
 .଺ା mol % is the sum of mol % of heavy component/s and asphalteneܥ *

 

Table 6.6. Calculated values of the model parameters (see Fig. 6.1) for the CPA, SRK and SRK+HV for all fluids.  

Fluid 
Asp MW 

(Da) 

Model Adjustable Parameters (see Fig. 6.1) for heavy component/s (2)-asphaltene(3) pair/s 

CPA 
ଶଷߝ  ܴ⁄ ൌ ܣ ൅ ܶܤ ൅ ܶ/ܥ ሺ݅݊  ሻܭ

SRK 
݇ଶଷ ൌ ܣ ൅ ܶܤ ൅  ܶ/ܥ

SRK+HV 
݃0ଶଷ ൌ ݃0ଷଶ ൌ ܣ ൅ ܶܤ ൅ ଶሺ݅݊ܶܥ  ሻܭ

A B C A B C A B C 

Fluid-1 

6165 3232 -2.0513 -233132 -0.7908 0.0015 102.63 0.0499 -27.90 7558 

750 2674 -0.5998 -142291 -0.6408 0.0010 84.50 0.0204 -12.77 4847 

10000 3341 -2.3771 -247603 -0.8488 0.0016 110.82 0.0799 -45.73 10475 

           

Fluid-2 
38500 3606 -3.5623 -284768 -0.5081 0.0011 60.46 0.0001 -0.1063 31.97 

750 3048 -1.3732 -181089 -0.3991 0.0007 46.97 0.0001 -0.0922 26.71 

           

Fluid-3 
372 1770 0.1749 0 -0.2654 0.0008 0.00 8.3278 256.05 0.00 

10000 2246 -2.1483 0 -0.3830 0.0014 0.00 NAb NAb NAb 

           

Fluid-4 

3450 8097 -8.6298 -1210194 -1.1939 0.0020 189.23 0.1097 -72.79 16059 

750 6680 -6.1582 -963365 -1.1186 0.0018 183.19 0.0434 -29.04 8082 

10000 9599 -11.1237 -1469333 -1.2612 0.0022 196.13 NAb NAb NAb 

           

Fluid-5 

3100 1475 0.6444 0 -0.1376 0.0005 0.00 4.1084 2461.10 0.00 

750 1406 1.2351 0 -0.0921 0.0003 0.00 -0.2775 3267.62 0.00 

10000 1538 0.1227 0 -0.1742 0.0007 0.00 NAb NAb NAb 

           

Fluid-6 
330 2962 -1.7953 -195514 -0.7345 0.0014 94.77 0.0397 -20.95 6063 

10000 5834 -7.3187 -644148 -1.0292 0.0022 131.70 NAb NAb NAb 

Fluid-1a 
(9 HC) 

6165 2861 -1.3244 -185970 -0.7524 0.0014 98.47 0.0416 -23.66 6853 

a Fluid-1  ܥ଺ା is divided into nine heavy components and asphaltene. 
b SRK+HV model parameters could not be calculated for this case. 
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Table 6.7. Injected gas composition in mol% for Fluids-1, 5 and 6. 

Components 
Fluid-1 

[14] 
Fluid-5 

[32] 
Fluid-6 

[30] 
Nଶ 0.398 0.000 0.462 

COଶ 3.891 60.320 4.510 

Hଶܵ 0.000 0.000 0.000 

methane 71.312 10.730 87.449 

ethane 11.912 7.550 7.192 

propane 7.224 9.090 0.370 

isobutane 1.189 0.000 0.006 

nbutane 2.254 6.470 0.005 

isopentane 0.567 0.030 0.001 

npentane 0.616 5.820 0.001 

 ଺ା 0.637 0.000 0.003ܥ

 

Fig. 6.2 shows that all three models can correlate the 5 mol% gas injection scenario for Fluid-1 with 

0.1 mol% of asphaltene in C଺ା fraction. The composition of the injected hydrocarbon (H/C) gas is 

given in Table 6.7. Fig. 6.2 shows that there is considerable deviation for the 0 mol% H/C gas 
injection scenario while deviations for the 15 and 30 mol% scenarios are smaller. The CPA 
predictions are very different to those of the SRK and SRK+HV outside of the experimental 
temperature range used in the parameters fitting. The bubble pressure predictions are almost identical 
for all three models. Table 6.8 shows the relative deviation in UOP for fluid-1 for three different 
asphaltene molecular weights (750, 6165 and 10000 Da) at 347 K. The asphaltene molecular weight 

of 6165 Da corresponds to 0.1 mol% of asphaltene in ܥ଺ା fraction. Table 6.8 shows that the relative 
deviations for the CPA model are almost the same for all three cases of asphaltene molecular weights 
and therefore the CPA model is not very sensitive to the asphaltene molecular weight. The relative 
deviations for the SRK and SRK+HV models are different for all three cases of asphaltene molecular 

weights and therefore these models are sensitive to the asphaltene molecular weight in case of H/C 

gas injection. Panuganti et al [14] also studied Fluid-1 with the SRK EoS using the PVT-Sim software 
from Calsep [33] and concluded that the SRK EoS is unable to predict the gas injection effect 
correctly. They [14] characterized Fluid-1 and fitted the parameters to match the saturation pressures 
and asphaltene onset pressures for different temperatures with the 5 mol% gas injection scenario. 
Since our modeling approach with the SRK EoS can predict the gas injection effect correctly, we 
believe this shows that the modeling assumptions and model parameters are very important. 
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(c) (d) 

Fig. 6.2. Fluid-1: Upper onset and bubble pressure boundaries for reservoir fluid without gas injection (Fig. 6.2a) and 
with gas injection of 5 mol% (Fig. 6.2b), 15 mol% (Fig. 6.2c), 30 mol% (Fig. 6.2d). Symbols represent experimental data 
from Panuganti et al [14] and lines represent results from all the three models. Asphaltene amount in ܥ଺ା fraction is 0.1 
mol%. 
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Table 6.8. Fluid-1: Relative Deviation (RD) in calculated Upper Onset Pressure (UOP) with respect to experimental data 
for different amounts of gas injection and considering different asphaltene molecular weights. 

Fluid 
Temp. Gas Inj. MW Relative Deviation (%) b 

K mol% Da CPA SRK  SRK+HV 

1 347 
30 

 (gas ܥ/ܪ)

750 6 -16 -9 

6165 a 6 -3 -1 
10000 6 2 7 

AADc 6 7 6 

2 311 

10 
(Nଶ) 

750 14 13 8 

38500 a 10 7 5 

10 
(COଶ) 

750 9 -10 -36 

38500 a 6 0 -3 

10 
(methane) 

750 11 -6 -17 

38500 a 8 -6 -67 
AADc 10 7 22 

3 355 
30 

(COଶ) 
372 A -4 -4 -6 

10000 -3 17 NAd 
AADc 3 10 6 

4 419 
20 

(Nଶ) 

750 2 -1 -27 
3450 a 0 0 1 
10000 -2 1 NAd 

AADc 1 1 14 

5 363 

25 
(COଶ rich gas) 

750 -4 -15 -28 

3100 a -5 -1 -8 

10000 -4 12 NAd 

AADc 4 9 18 

6 348 

30 
(H/C gas) 

330 a 0 -8 -13 

10000 1 19 NAd 

AADc 0 13 6 

1 
(with 9 HC) 

347 
30 

(H/C gas) 
6165 7 -3 -1 

AADc 5 7 15 

a Molecular weight corresponds to 0.1 mol% of asphaltene amount in ܥ଺ା fraction. 

b Relative Deviation (RD) ൌ
௎ை௉೐ೣ೛ି௎ை௉೎ೌ೗೎

௎ை௉೐ೣ೛
ൈ 100 

c Average Absolute Deviation (AAD) ൌ ∑ |௜ܦܴ|
ே
௜ , where|ܴܦ௜| is the absolute value of RD of point ݅, ܰ is a total number points. 

d SRK+HV model parameters could not be calculated for this case. 
 

 

Fluid-2 contains the most asphaltene of the fluids studied, 15.5 wt% in stock tank oil, making it 
possible to check the effect of asphaltene concentration on the models. Fig. 6.3 shows that all three 
models can correlate the experimental data of reservoir fluid without gas injection with 0.1 mol% of 

asphaltene in C଺ା fraction. The models’ predictions are very different at higher temperature beyond 
the experimental range used in the parameters’ estimation. It can be observed that the SRK+HV 
model gives highly non-linear behavior at high temperatures outside of the experimental temperature 

range. Fig. 6.3 shows that all three models have minor deviations when 10 mol% of Nଶ or COଶ gas 

are added. The CPA and SRK models have minor deviations when 10 mol% of methane gas is added, 
whereas the SRK+HV has considerable deviations. Table 6.8 shows relative deviations in UOP 
prediction for fluid-2 using two different asphaltene molecular weights (750 and 38500 Da) at 311 K. 



Chapter 6. Modeling of Asphaltene Onset Condition using the CPA, SRK and SRK+HV EoS 

125 
 

The asphaltene molecular weight of 38500 Da corresponds to 0.1 mol% of asphaltene in C଺ା fraction. 
Like Fluid-1, the relative deviations for the CPA model are almost same for the two cases of 
asphaltene molecular weights. The relative deviations for the SRK model are not very sensitive to 

asphaltene molecular weight when 10 mol% ଶܰ or methane is added but they are relatively sensitive 

when 10 mol% COଶ is added. Similarly, the relative deviations for the SRK+HV model are not very 

sensitive to asphaltene molecular weight when 10 mol% Nଶ is added but they are relatively sensitive 

when 10 mol% COଶ or methane is added. These results show that the difference between relative 
deviations, for the SRK or SRK+HV, would increase with the amount of injected gas for different 
asphaltene molecular weights. 
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(c) (d) 

Fig. 6.3. Fluid-2: Upper onset and bubble pressure boundaries for reservoir fluid without gas injection (Fig. 6.3a) and 
with gas injection of 10 mol% methane (Fig. 6.3b), 10 mol% ܱܥଶ (Fig. 6.3c) and 10 mol% ଶܰ (Fig. 6.3d). Symbols 
represent experimental data from Gonzalez et al [29] and lines represent results from all the three models. Asphaltene 
amount in ܥ଺ା fraction is 0.1 mol%. 
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Fig. 6.4 shows that all three models can correlate the experimental data of Fluid-3 with 20 mol% COଶ 

gas injection but the correlations are very different at temperatures beyond the experimental range 
used in the parameters’ estimation. It can be observed that the SRK model gives highly non-linear 
behavior at temperatures (around 250-260 K) beyond the experimental range. Fig. 6.4 shows that all 

three models have minor deviations when 30 mol% of COଶ gas is added. Table 6.8 shows the relative 

deviations in UOP predictions for fluid-3 using two different asphaltene molecular weights (372 and 
10000 Da) at 355 K. The asphaltene molecular weight of 372 Da corresponds to 0.1 mol% of 

asphaltene in C଺ା fraction. Like the previously mentioned fluids, the relative deviations for the CPA 
model are almost the same for the two cases of asphaltene molecular weights. The relative deviation 
for the SRK model is very sensitive to asphaltene molecular weight. The SRK+HV model could not 
correlate the data when an asphaltene molecular weight of 10000 Da was used. The critical pressure 
of the heavy component was tuned to the bubble point pressure of Fluid-3 without gas injection. 
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(a) (b) 

Fig. 6.4. Fluid-3: Upper onset and bubble pressure for the reservoir fluid with ܱܥଶ injection of 20 mol% (Fig. 6.4a) and 
30 mol% (Fig. 6.4b). Symbols represent experimental data from Punnapala et al [30] and lines represent results from all 
three models. Asphaltene amount in ܥ଺ା fraction is 0.1 mol%. 

 

Fig. 6.5 shows that all three models can correlate the experimental data of Fluid-4 when there is no 
gas injection but the correlations are very different at temperatures (around 420-500 K) above the 
experimental range used in the parameters’ estimation. The lower onset pressure results are 
predictions. For the SRK and SRK+HV models, lower onset pressure predictions are not shown at 
higher temperature (around 425-500 K) since these models predict asphaltene precipitation at ambient 
pressure, possibly due to incorrect convergence. The same behavior was also observed for Fluid-1 



Chapter 6. Modeling of Asphaltene Onset Condition using the CPA, SRK and SRK+HV EoS 

127 
 

(with SRK+HV), Fluids-2 and 5 (with SRK and SRK+HV) but is not shown here. Fig. 6.5 shows that 

all three models have minor deviations when Nଶ gas is added at 419 K. Table 6.8 shows relative 

deviations in UOP prediction for Fluid-4 for three different asphaltene molecular weights (750, 3450 
and 10000 Da) at 419 K. The asphaltene molecular weight of 3450 Da corresponds to 0.1 mol% of 

asphaltene in ܥ଺ା fraction. The relative deviations for the CPA and SRK models are almost the same 
for all three cases of asphaltene molecular weights. The relative deviation for the SRK+HV is 
relatively sensitive to the asphaltene molecular weight. The SRK+HV model could not correlate the 
data when an asphaltene molecular weight of 10000 Da was used.  
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(a) (b) 

Fig. 6.5. Fluid-4: Upper onset, lower onset and bubble pressure boundaries for reservoir fluid without gas injection (Fig. 
6.5a). (Fig. 6.5b) Effect of ଶܰ injection on upper onset, lower onset and bubble pressure boundaries at 419K. Symbols 
represent experimental data from Jamaluddin et al [31] and lines represent results from all the three models. Asphaltene 
amount in ܥ଺ା fraction is 0.1 mol%. 

 

Fig. 6.6 shows that all three models can correlate the experimental data of Fluid-5 when there is no 

gas injection and 10 mol% COଶ  rich gas injection. It shows that all three models have minor 

deviations when 15 and 25 mol% COଶ rich gas is added at 363 K. The composition of injected gas is 
given in Table 6.7. Table 6.8 shows the relative deviation in UOP for Fluid-5 using three different 
asphaltene molecular weights (750, 3100 and 10000 Da) at 363 K. The asphaltene molecular weight 

of 3100 Da corresponds to 0.1 mol% of asphaltene in C଺ା fraction. Similarly to other previously 

mentioned fluids, the relative deviations for the CPA model are almost the same for the three cases 
of asphaltene molecular weights. The relative deviations for the SRK and SRK+HV models are very 
sensitive to the asphaltene molecular weight. The SRK+HV model could not correlate the data when 
the asphaltene molecular weight of 10000 Da was used. 
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Fig. 6.6. Fluid-5: Upper onset and bubble pressure boundaries for reservoir fluid without gas injection (Fig. 6.6a). (Fig. 
6.6b) Effect of ܱܥଶ rich gas injection on upper onset, lower onset and bubble pressure boundaries at 363K. Symbols 
represent experimental data from Memon et al [32] and lines represent results from all the three models. Asphaltene 
amount in ܥ଺ା fraction is 0.1 mol%. 

 
Fig. 6.7 shows that all three models can correlate the experimental data of Fluid-6 when 10 mol% 

H/C gas is injected. It shows that all three models have minor deviations when 15 and 30 mol% H/C 

gas are added. The composition of injected H/C gas is mentioned in Table 6.7. Table 6.8 shows the 

relative deviation in UOP for fluid-6 using two different asphaltene molecular weights (330 and 
10000 Da) at 348 K. The asphaltene molecular weight of 330 Da corresponds to 0.1 mol% of 

asphaltene in C଺ା fraction. Similarly to other previously mentioned fluids, the relative deviations for 
the CPA model are almost the same for the two cases of asphaltene molecular weights. The relative 
deviation for the SRK model is once again very sensitive to the asphaltene molecular weight. The 
SRK+HV model could not correlate the data when the asphaltene molecular weight of 10000 Da was 
used, which was the case for several of the previously studied fluids. 
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(c)  

Fig. 6.7. Fluid-6: Upper onset and bubble pressure boundaries for reservoir fluid with gas injection of 10 mol% (Fig. 
6.7a), 15 mol% (Fig. 6.7b) and 30 mol% (Fig. 6.7c). Symbols represent experimental data from Punnapala et al [30] and 
lines represent results from all the three models. Asphaltene amount in ܥ଺ା fraction is 0.1 mol%. 
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Fluid-1 with splitting of ࡯૟ା fraction into Nine Heavy Components and Asphaltene 

Generally reservoir fluids are modeled by dividing them into a few pseudo-components, in addition 
to defined components, in order to accurately predict PVT (Pressure-Volume-Temperature) 

properties. The modeling approach described above divides the C଺ା fraction into two components 

(heavy component and asphaltene), but here we demonstrate how to extend the modeling approach 

by dividing the C଺ା fraction into multiple heavy components and a single asphaltene component. In 

this study the, C଺ା fraction of Fluid-1 is divided into nine heavy components and asphaltene. The 

exponential molar distribution is assumed to divide the C଺ା fraction into 80 components which then 
are lumped into nine heavy components having approximately equal mass fractions. An asphaltene 

molecular weight of 6165 Da, corresponding to 0.1 mol% of asphaltene in C଺ା fraction, is selected. 
The critical pressures of all heavy components are multiplied by the same factor in order to match the 
experimental bubble pressure of Fluid-1. The binary parameters of the nine heavy components with 
the asphaltene are assumed to be equal and the values are shown in Table 6.6. Figs 6.2 and 6.8 show 
the upper onset and bubble pressure profiles when one and nine heavy components respectively are 
considered. These figures show that all three models have the same upper onset and bubble pressure 
profiles. Table 6.8 shows the relative deviations in the UOP when one and nine heavy components 
are considered. The relative deviations for all three models are the same in both cases. In other words, 
all three models are insensitive to the number of heavy components. 
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(a) (b) 

Fig. 6.8. Fluid-1 (with 9 HC): Upper onset and bubble pressure boundaries for reservoir fluid with gas injection of 15 
mol% (Fig. 6.8a) and 30 mol% (Fig. 6.8b). Symbols represent experimental data from Panuganti et al [14] and lines 
represent results from all the three models. Asphaltene amount in ܥ଺ା fraction is 0.1 mol%. 
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6.4 Conclusions 

It has been shown in this work that the CPA, SRK and SRK+HV models can successfully predict the 

gas (COଶ, Nଶ, hydrocarbon) injection effect after fitting the model parameters to experimental data of 
a single gas injection scenario. The temperature dependent cross association energy, the binary 

interaction parameters (݇୧୨), and the Huron-Vidal parameters between the heavy component and the 

asphaltene are used as model parameters for the CPA, SRK and SRK+HV models respectively.  
However, the three models give very different predictions outside of the experimental temperature 
range used in parameters estimation. The CPA model is relatively insensitive to the molar amount of 

asphaltene in C଺ା fraction, whereas the SRK and SRK+HV models are sensitive to the molar amount 

of asphaltene in C଺ା  fraction, although the sensitivity is lower for Nଶ  compared to COଶ  and 
hydrocarbon gas injection. Therefore, in order to use the SRK and SRK+HV models, the molar 
amount of asphaltene needs to be fixed at the same value at which the binary parameters for gas-
asphaltene and light alkanes-asphaltene pairs are regressed. In this work, we assumed the asphaltene 

molar amount is 0.1 mol% in the C଺ା fraction. It would be interesting to do the comparison at different 

asphaltene molar amounts (e.g. 1 mol%). The SRK and SRK+HV models abruptly change the lower 
onset pressure trend and predict the asphaltene precipitation at ambient pressure (possibly due to 
incorrect convergence) for certain fluids. This abrupt change can be avoided by changing the 
asphaltene molar amount (generally by increasing it), requiring regression of a new set of binary 
parameters. Generally, the SRK+HV model used in this work cannot correlate the data for the upper 
onset pressures for certain fluids when the asphaltene molar amount used corresponds to an 
asphaltene molecular weight of 10000 Da. Thus the SRK+HV model has no apparent advantages over 
the SRK model. In contrast to the SRK and SRK+HV models, the CPA model has not encountered 
any problems, and appears to be more reliable. It has also been shown that a modeling approach can 

be used in which the C଺ା fraction is divided into multiple heavy components and a single asphaltene 

component. With this approach, the results from all three model are insensitive to the number of 
heavy components. Therefore, the modeling approach using the CPA EoS can easily be implemented 
into PVT simulations for reservoir fluids, since it can adequately model such systems using only a 
few components. 
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6.5 Supplementary Information 

Table 6.9 shows the pure component parameters used in this work for all three models. Table 
6.10shows the calculated properties and mol% of heavy component/s for all fluids studied in this 
work. All calculated properties of the heavy component are the same for all three models when only 
one heavy component is considered as shown in Table 6.10. Tables 6.11 to 6.17 show the relative 
deviations in upper onset pressure at experimental temperatures considering different molecular 
weights. 

Table 6.9. Pure Component Parameters used for the CPA, SRK and SRK-HV equations of state.  

Component ஼ܶ ஼ܲ ߱ 
Mathias-Copeman Parameters 

Reference ܿଵ ܿଶ ܿଷ 
K bar -  -  - -  

ଶܰ 126.2 34.00 0.0377 0.5867 -0.4459 0.8926 [34]  
  ଶ 304.2 73.83 0.2236 0.8679 -0.7135 2.6563 [34]ܱܥ
  ଶܵ 373.5 89.63 0.0942 0.6267 0 0  [34]ܪ

methane 190.6 45.99 0.0115 0.5857 -0.7206 1.2899 [34]  
ethane 305.3 48.72 0.0995 0.7178 -0.7644 1.6396 [34]  

propane 369.8 42.48 0.1523 0.7863 -0.7459 1.8454 [34]  
i-butane 408.1 36.48 0.1808 0.8284 -0.8285 2.3201 [34]  
n-butane 425.2 37.96 0.2002 0.8787 -0.9399 2.2666  [34]  
i-pentane 460.4 33.81 0.2275 0.8290 0 0  [34]  
n-pentane 469.7 33.70 0.2515 0.8647 0 0  [34]  

Heavy Comp Table 6.10 Table 6.10 Table 6.10 Table 6.10 0 0 Table 6.10 
asphalteneA 1040.1 15.44 1.535 2.4814 0 0  [17-19] 

A For the CPA model, asphaltene reduced self-association energy and volume are 3000K and 0.05 respectively. 

 
Table 6.10. Properties and Composition of Heavy Component/s for all fluids studied in this work for a given asphaltene 
MW. These values are the same for all three models.  

Fluid Asp MW Component 
HC 

Composition 
Asp 

Composition ஼ܶ ߱  ஼ܲ 

  Da   mol% mol% K - bar 
Fluid-1 6165 HC-1 36.567 0.037 735.6 0.7407 14.33 
Fluid-2 38500 HC-1 47.492 0.048 775.2 0.6428 18.28 
Fluid-3 372 HC-1 24.386 0.025 753.0 0.7491 17.34 
Fluid-4 3450 HC-1 32.960 0.033 775.9 0.7914 16.25 
Fluid-5 3100 HC-1 38.112 0.038 760.1 0.7331 16.22 
Fluid-6 330 HC-1 38.514 0.039 726.2 0.7181 16.55 

Fluid-1 
(with 9 HC) 

6165 

HC-1 10.831 

0.040 

533.6 0.4843 22.31 
HC-2 7.625 612.7 0.6388 15.62 
HC-3 5.369 673.6 0.7835 13.22 
HC-4 3.780 725.5 0.9160 12.13 
HC-5 2.661 771.9 1.0345 11.57 
HC-6 2.248 819.4 1.1479 11.26 
HC-7 1.874 877.2 1.2636 11.11 
HC-8 1.291 952.1 1.3539 11.12 
HC-9 0.886 1091.8 1.2249 11.47 
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Table 6.11. Fluid-1: Relative Deviation (RD) in calculated Upper Onset Pressure (UOP) with respect to experimental 
data for different amounts of gas injection and considering different asphaltene molecular weights. 

Asp 
MW 
(Da) 

 %Gas Injection=30 mol ܥ/ܪ %Gas Injection=15 mol ܥ/ܪ %Gas Injection=5 mol ܥ/ܪ %Gas Injection=0 mol ܥ/ܪ

Exp 
Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated 
UOP 
(%) Exp 

UOP 
(bar) 

Exp
UOP
(bar) 

RD in calculated 
UOP 
(%) Exp

Temp
(K) 

Exp
UOP
(bar) 

RD in calculated 
UOP 
(%) 

Exp 
Temp 
(K) Exp 

UOP 
(bar) 

RD in calculated 
UOP 
(%) 

CPA SRK
SRK 

+ 
HV 

CPA SRK
SRK

+ 
HV 

CPA SRK
SRK 

+ 
HV 

 CPA SRK
SRK

+ 
HV 

6165 
  

328 107 -69 -61 -60 328 238 -1 0 -1                     
347 126 -14 -12 -12 347 193 0 -1 -1 347 296 -7 -11 -12 347 630 6 -3 -1 
394 152 2 3 3 394 168 0 0 2 394 257 -1 2 3 394 481 5 12 13 

  AAD 28 25 25     0 0 1     4 6 7     5 7 7 

750 
  

328 107 -69 -57 -56 328 238 0 -1 1                     
347 126 -15 -8 -9 347 193 0 0 -1 347 296 -7 -16 -15 347 630 6 -16 -9 
394 152 2 2 1 394 168 0 0 1 394 257 -1 -4 -4 394 481 4 -2 -2 

  AAD 28 22 22     0 0 1     4 10 10     5 9 6 

10000 

328 107 -69 -63 -63 328 238 0 -1 0                     
347 126 -15 -13 -15 347 193 -1 0 -1 347 296 -7 -9 -8 347 630 6 2 7 
394 152 3 3 3 394 168 -1 0 1 394 257 -1 4 8 394 481 5 16 23 

 AAD 29 26 27     1 0 1     4 7 8     5 9 15 

 

Table 6.12. Fluid-2: Relative Deviation (RD) in calculated Upper Onset Pressure (UOP) with respect to experimental 
data for different amounts of gas injection and considering different asphaltene molecular weights. 

Asp 
MW 
(Da) 

Gas Injection=0 mol% ଶܰ  Injection=10 mol% ܱܥଶ Injection=10 mol% Methane Injection=10 mol% 

Exp 
Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated 
UOP 
(%) Exp 

Temp 
(K) 

Exp
UOP
(bar) 

RD in calculated 
UOP 
(%) Exp

Temp
(K) 

Exp
UOP
(bar) 

RD in calculated 
UOP 
(%) Exp 

Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated 
UOP 
(%) 

CPA SRK
SRK 

+ 
HV 

CPA SRK
SRK

+ 
HV 

CPA SRK
SRK 

+ 
HV 

CPA SRK
SRK

+ 
HV 

38500 
  

371 317 0 -1 0 371 669 -1 -4 -9 371 428 -3 6 7 371 566 7 5 -27 
339 348 0 0 0 339 841 2 -2 -4 339 490 1 2 1 339 724 16 10 -26 

          325 931 -3 -7 -11                     
311 462 -2 -1 -6 311 1352 10 7 5 311 676 6 0 -3 311 897 8 -6 -67 
304 552 2 3 1           304 759 6 -3 -3           
300 593 -1 -1 0                               

  AAD 1 1 1     3 3 4     4 3 3     10 7 40 

750 

371 317 0 0 0 371 669 2 1 -9 371 428 -1 -10 -33 371 566 9 0 -5 
339 348 -1 0 0 339 841 5 5 -1 339 490 4 -10 -32 339 724 19 8 3 

          325 931 0 -1 -8                     
311 462 -4 -4 -7 311 1352 14 13 8 311 676 9 -10 -36 311 897 11 -6 -17 
304 552 2 2 0           304 759 10 -11 -35           
300 593 -1 -1 -1                               

  AAD  1 1 2     5 5 4     6 10 34     13 5 9 
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Table 6.13. Fluid-3: Relative Deviation (RD) in calculated Upper Onset Pressure (UOP) with respect to experimental 
data for different amounts of ܱܥଶ injection and considering different asphaltene molecular weights. 

Asp 
MW 
(Da) 

ଶܱܥ %ଶ Gas Injection=20 molܱܥ Gas Injection=30 mol% 

Exp 
Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated UOP 
(%) Exp 

Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated UOP 
(%) 

CPA SRK 
SRK 

+ 
HV 

CPA SRK 
SRK 

+ 
HV 

372 
  

355 387 -1 0 0 355 490 -4 -4 -6 

394 363 -1 0 0 394 444 -5 1 -5 

  AAD 1 0 0     4 2 6 

10000 
355 387 -1 0 NAa 355 490 -3 17 NAa 

394 363 0 0 NAa 394 444 -3 23 NAa 

  AAD 0 0 NAa     3 20 NAa 
aSRK+HV model parameters could not be calculated for this case. 

 

Table 6.14. Fluid-4: Relative Deviation (RD) in calculated Upper Onset Pressure (UOP) with respect to experimental 
data for different amounts of ଶܰ injection and considering different asphaltene molecular weights. 

Asp 
MW 
(Da) 

Gas Injection=0 mol% ଶܰ Injection @419 K 

Exp 
Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated UOP  
(%) Exp 

gas Inj. 
(mol%) 

Exp 
UOP 
(bar) 

RD in calculated UOP  
(%) 

CPA SRK 
SRK 

+ 
HV 

CPA SRK 
SRK 

+ 
HV 

3450 
  

361 373 -1 0 -2 5 379 7 8 8 
383 280 4 5 3 10 532 12 13 14 
400 251 0 0 -3 20 804 0 0 1 
422 262 0 0 1           

 AAD 1 1 2     6 7 8 

750 
  

361 373 0 0 0 5 379 8 7 3 
383 280 4 4 1 10 532 13 12 3 
400 251 0 0 -2 20 804 2 -1 -27 
422 262 0 0 0           

 AAD 1 1 1     8 7 11 

10000 

361 373 -1 -1 NAa 5 379 6 8 NAa 
383 280 5 5 NAa 10 532 11 13 NAa 
400 251 -1 0 NAa 20 804 -2 1 NAa 
422 262 0 0 NAa           

  AAD 2 1    7 7  
aSRK+HV model parameters could not be calculated for this case. 
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Table 6.15. Fluid-5: Relative Deviation (RD) in calculated Upper Onset Pressure (UOP) with respect to experimental 
data for different amounts of ܱܥଶ injection and considering different asphaltene molecular weights. 

Asp 
MW 
(Da) 

Gas Injection=0 mol% ࡻ࡯૛  rich gas Injection @363 K 

Exp 
Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated UOP 
(%) Exp 

gas Inj. 
(mol%) 

Exp 
UOP 
(bar) 

RD in calculated UOP 
(%) 

CPA SRK 
SRK 

+ 
HV 

CPA SRK 
SRK 

+ 
HV 

3100 
  

336 302 -1 -1 0 10 247 -1 -1 1 
350 189 0 -1 1 15 323 4 5 4 

          25 440 -5 -1 -8 
  AAD 1 1 0     3 3 4 

750 
  

336 302 -1 -1 0 10 247 0 -2 1 
350 189 -1 0 1 15 323 5 1 -2 

          25 440 -4 -15 -28 
  AAD 1 0 0     3 6 10 

10000 
336 302 -1 -1 NAa 10 247 -1 -1 NAa 
350 189 0 0 NAa 15 323 5 10 NAa 

          25 440 -4 12 NAa 
  AAD 1 1 NAa   3 8 NAa 

aSRK+HV model parameters could not be calculated for this case. 

Table 6.16. Fluid-6: Relative Deviation (RD) in calculated Upper Onset Pressure (UOP) with respect to experimental 
data for different amounts of H/C gas injection and considering different asphaltene molecular weights. 

Asp 
MW 
(Da) 

 %Gas Injection=30 mol ܥ/ܪ %Gas Injection=15 mol ܥ/ܪ %Gas Injection=10 mol ܥ/ܪ

Exp 
Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated UOP 
(%) Exp 

Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated UOP 
(%) Exp 

Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated UOP 
(%) 

CPA SRK 
SRK 

+ 
HV 

CPA SRK 
SRK 

+ 
HV 

CPA SRK 
SRK 

+ 
HV 

330 
  

328 233 -1 -1 0 328 323 1 -3 -4           
348 203 0 0 0 348 280 2 0 -2 348 583 0 -8 -13 
392 190 -1 -1 0 392 254 3 4 2 392 427 -12 -8 -15 

   1 1 0     2 2 3     4 5 9 

10000 
328 233 -1 0 NAa 328 323 2 5 NAa           
348 203 0 0 NAa 348 280 3 8 NAa 348 583 1 19 NAa 
392 190 -1 0 NAa 392 254 3 14 NAa 392 427 -11 25 NAa 

  AAD 1 0 NAa   2 9 NAa   4 15 NAa 
aSRK+HV model parameters could not be calculated for this case. 

Table 6.17. Fluid-1 (with 9 HC): Relative Deviation (RD) in calculated Upper Onset Pressure (UOP) with respect to 
experimental data for different amount of gas injections and considering different asphaltene molecular weight. 

Asp 
MW 
(Da) 

 %Gas Injection=30 mol ܥ/ܪ %Gas Injection=15 mol ܥ/ܪ %Gas Injection=5 mol ܥ/ܪ %Gas Injection=0 mol ܥ/ܪ

Exp 
Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated 
UOP 
(%) Exp 

UOP 
(bar) 

Exp 
UOP 
(bar) 

RD in calculated 
UOP 
(%) Exp

Temp
(K) 

Exp
UOP
(bar) 

RD in calculated 
UOP 
(%) Exp 

Temp 
(K) 

Exp 
UOP 
(bar) 

RD in calculated 
UOP 
(%) 

CPA SRK 
SRK 

+ 
HV 

CPA SRK 
SRK

+ 
HV 

CPA SRK 
SRK 

+ 
HV 

CPA SRK 
SRK

+ 
HV 

6165 
328 107 -69 -60 -59 328 238 0 0 0                     
347 126 -15 -13 -10 347 193 0 0 0 347 296 -6 -11 -11 347 630 7 -3 -1 
394 152 2 2 2 394 168 0 0 3 394 257 0 2 3 394 481 7 12 11 

  AAD  29 25 24   0 0 1   3 6 7   7 7 6 
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Chapter 7.  Modeling of Asphaltene Precipitation from 
Crude (Degassed) Oil 

Entire content of this chapter is from our journal article “Alay Arya; Xiaodong Liang; Nicolas 
von Solms; Georgios M. Kontogeorgis. Modeling of Asphaltene Precipitation from Crude Oil with 
the Cubic Plus Association Equation of State. Submitted to Energy & Fuels”. 

 

Abstract 

In this study, different modeling approaches using the Cubic Plus Association (CPA) equation of state 
(EoS) are developed to calculate asphaltene precipitation onset condition and asphaltene yield from 
degassed crude oil during the addition of n-paraffin. A single model parameter is fitted to calculate 
asphaltene onset condition during the addition of different n-paraffin precipitants (n-pentane to n-
hexadecane). Three parameters per precipitant are fitted to calculate the asphaltene yield during the 
addition of the precipitant.  The results obtained from the model are compared with experimental data 
for eight different crude oils. Results were also obtained for seven crudes using the Perturbed Chain 
Statistical Association Fluid Theory (PC-SAFT) EoS based approach described in the literature. The 
CPA EoS based approaches treat the asphaltene fraction as an associating component whereas the 
PC-SAFT EoS based approach does not. A comparison between the approaches shows that the CPA 
EoS based approaches, developed in this work, give more reliable results. The predictions from the 
PC-SAFT EoS based approach result in behavior that is unphysical: mole fraction of n-paraffin (at 
the precipitation onset) and the asphaltene yield do not decrease with the carbon number of n-paraffin. 
Furthermore, it is shown that the approach, developed in this work, can predict the onset conditions 
of asphaltene precipitation resulting from a blend of two or more crudes. 

7.1 Introduction 

A crude oil at room temperature can be divided into maltene (deasphalted fraction) and asphaltene 
fractions. The maltene fraction can be further divided into saturates, aromatics and resins fractions. 
The SARA (saturates, aromatics, resins, asphaltenes) analysis is used to measure the amount (on 
weight basis) of these four solubility fractions. All of these fractions are polydisperse in the oil and 
contain a large number of components. Asphaltenes are defined as the heaviest fraction of the oil, 
which is not soluble in n-pentane/n-heptane but soluble in aromatic solvents such as toluene [1-3]. 
Resins are the fraction of the oil, which is soluble in n-pentane/n-heptane, toluene and benzene but 
insoluble in ethyl acetate at room temperature [2,4]. It is believed that resins are cross-associating 
(form hydrogen bonds) with asphaltenes to keep asphaltenes soluble in the oil [5]. The asphaltene 
fraction may precipitate out of the crude oil during the addition of a paraffinic solvent. As the carbon 
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number of n-paraffin increases, the solubility of the asphaltene fraction increases and the amount of 
precipitated asphaltenes decreases. At higher n-paraffin carbon number, the amount of precipitated 
asphaltenes remains almost constant [5]. Asphaltenes containing crude is generally blended with one 
or more crudes to maintain the properties of feedstock (blended crude) to the refinery.  In certain 
cases, the blending of incompatible crudes results in the asphaltene precipitation. The asphaltene 
precipitation can result in fouling and coking of preheat trains, heat exchangers and pipestill furnace 
tubes in the refinery [6]. Therefore, it is important to understand the asphaltene precipitation in order 
to avoid complications during the processing of crude oil.  

There are several studies on the modeling of the asphaltene precipitation from crude oil. Some of 
them consider the asphaltene fraction as polydisperse while others consider it as monodisperse. These 
studies can also be classified according to whether the asphaltene fraction is treated as a non-
associating or an associating molecule. When the asphaltene molecule is considered not to associate 
with other asphaltene  molecules, it is assumed that the asphaltene component already exists in a pre-
aggregated form where only van der Waals forces are included in the asphaltene precipitation model. 
On the other hand, when the asphaltene molecule is allowed to associate with other asphaltene 
molecules, it is assumed that the asphaltene molecule exists as a monomer. The association between 
asphaltene molecules is an important criteria for precipitation, along with the van der Waals forces. 
This association is a way to account for strong polar forces such as hydrogen bonding. The framework 
for both PC-SAFT and CPA allows for the modelling of both van der Waals and association forces. 
However we note here that the association term is not considered in this work for the PC-SAFT based 
model, where we follow the approach used previously in the literature [7]. 

Asphaltene as a Non-associating and Pre-aggregated Component 
 
The asphaltene precipitation from crude oil has been modeled by several researchers. Hirschberg et 
al [2] used the Flory-Huggins theory in order to study the effect of miscible gas flooding on the 
asphaltene precipitation. They used the Soave-Redlich-Kwong (SRK) EoS for vapor-liquid 
equilibrium considering no asphaltene precipitation. They then used the Flory-Huggins model to 
calculate the asphaltene precipitation from the liquid phase, calculated from the SRK EoS. The 
asphaltene fraction was considered as a monodisperse component. Alboudwarej et al [8] used the 
regular Flory-Huggins model dividing the asphaltene fraction into multiple components of different 
molar mass, volume and solubility parameters. They assumed that the precipitated phase is ideal and 
consists of only the asphaltene components. Akbarzadeh et al [9] used the same approach developed 
by Alboudwarej et al [8] and showed the temperature and pressure effect on the model predictions. 
They used a temperature dependent gamma distribution function to describe the temperature 
dependent molar mass distribution of the asphaltene fraction. Pazuki and Nikookar [10] modified the 
Flory-Huggins model and compared the asphaltene precipitation results with the original Flory-
Huggins model and experimental data. They concluded that the modified model is better than the 
original one. Wiehe et al [6] developed the oil compatibility model in order to check whether the 
blending of two or more crudes is compatible with respect to the asphaltene precipitation. Wiehe et 
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al [11] compared the oil compatibility model with the regular Flory-Huggins theory based model 
from Yarranton and co-workers [8, 9]. They concluded that both models can calculate the asphaltene 
onset condition as well as the maximum in volume of n-paraffin, as a function of the carbon number 
of n-paraffin at the onset of asphaltene precipitation. They also mentioned that the basic assumption 
of the oil compatibility model, that the solubility parameter of mixture at the onset is constant, 
contradicts the physical behavior. Tharanivasan et al [12] used the regular Flory-Huggins theory 
based model, developed by Yarranton and co-workers [8, 9], to calculate the asphaltene yield (ratio 
of mass of precipitated asphaltenes to mass of oil before addition of precipitant) as well as the onset 
condition of the blend of different crudes. They considered the asphaltene fraction as polydisperse 
components. Sabbagh et al [13] used the Peng-Robinson (PR) EoS. They divided the asphaltene 
fraction into multiple components of different molar mass based on the gamma distribution function. 
The precipitated phase was assumed to contain only the asphaltene components. They concluded that 
the PR model is not a universal predictor and not better than the previously developed regular solution 
model. Panuganti et al [14] and Tavakkoli et al [7] used a model, based on the PC-SAFT EoS, 
considering the asphaltene fraction as polydisperse components. They studied both light and heavy 
crudes. They used interaction parameters for the asphaltene-n-paraffin binary pairs in order to 
correlate both the onset conditions and asphaltene yield from the light crude. They kept the binary 
interaction parameters for asphaltene-n-paraffin binary pairs to zero value in order to predict the 
asphaltene yield from the heavy crude, however, they used non-zero values of binary interaction 
parameter for the asphaltene-saturates binary pair to correlate the onset conditions. Their model 
predictions contradict the general experimental observation [2,15,4], where the amount of 
precipitated asphaltenes decreases or remains constant with the carbon number of n-paraffin 
precipitant. This contradiction is discussed in detail in the “Results and Discussion” section of this 
work. 

Asphaltene as an Associating and Monomeric Component 
  
Wu et al [16,17] used the SAFT EoS in the framework of McMillan-Mayer theory. In their model, 
asphaltenes and resins are considered as monodisperse pure pseudo-components and the interactions 
between them are screened through the continuous medium of solution containing other components. 
They applied their model to calculate the asphaltene yield from the crude oil and the onset conditions 
from the reservoir oil. However, they did not study the onset conditions for crudes during the addition 
of n-paraffin. Buenrostro-Gonzalez et al [15] modified the modeling approach of Wu et al [16,17] by 
using the SAFT-VR instead of the SAFT EoS. They applied their model to calculate both the onset 
conditions and asphaltene yields from the crude. However, they could not match both types of 
experimental data with the single set of parameters. Li and Firoozabadi [18] developed a modeling 
approach based on the CPA EoS considering the asphaltene fraction as a monodisperse component. 
They studied the asphaltene precipitation from the heavy oil. They did not study their modeling 
approach with respect to the asphaltene onset condition from the crude oil. 
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To our knowledge, nobody has so far studied the CPA equation of state for the asphaltene 
precipitation from the crude considering the asphaltene fraction as polydisperse. There is also no 
study on the blending of crudes with the CPA and PC-SAFT equations of state. In this study, different 
CPA approaches are developed to study the asphaltene yield and onset conditions. The PC-SAFT 
approach is referred from Tavakkoli et al [7]. Both CPA and PC-SAFT approaches are studied and 
compared with the experimental data. A total of eight crudes are studied. Crude-1 is studied with 
respect to both the asphaltene yield and onset conditions considering the asphaltene fraction as a 
polydisperse fraction. Crude-2 to 4 are studied with respect to asphaltene yield considering the 
asphaltene fraction as a polydisperse fraction, while Crude-5 to 8 are studied with respect to onset 
conditions considering the asphaltene fraction as a monodisperse fraction.  

7.2 Modeling Approaches  

Approach-1 

Approach-1 is based on the CPA EoS and is the same approach as was proposed by Arya et al [20-
22]. As shown in Table 7.1, the modeling approach-1 has a single component for the maltene fraction 
and six components for the asphaltene fraction. The asphaltene components are considered self-
associating with two positive and two negative sites on each asphaltene molecules. The maltene 
component’s molecule has one association site and can cross-associate with both positive and 
negative sites of the asphaltene components. The maltene component is not self-associating. The 

critical temperature and pressure ( ௖ܶ, ௖ܲ) and acentric factor (߱) of maltene component are calculated 

from the Kesler-Lee correlations [23] based on the information of normal boiling point, molecular 
weight (MW) and specific gravity (SG). The MW and SG of maltene component are calculated from 
the experimental information of MW and SG of the crude and asphaltenes MW (750 Da) and SG (1.2 
g/cc). The normal boiling point is calculated from the Pedersen correlation [24]. The critical 

temperature and pressure ( ௖ܶ, ௖ܲ), acentric factor (߱) and self-association volume are constant for all 
six asphaltene components and are referred from Arya et al [20-22]. The self-association energies of 
asphaltene components (Asp-4 to Asp6) are also kept constant to reduce the number of model 
parameters. In addition the self-association energies of asphaltene components (Asp1 to Asp3) are 
assumed to be same. The cross-association volume between the asphaltenes and maltene is also fixed 
to the value of 0.05. 

Mitchell and Speight [4] mentioned that the asphaltene yield decreases with the carbon number of n-
paraffin. However, approach-1 cannot predict this physical behavior and precipitate all asphaltene 
components (Asp1 to 6) irrespective of the carbon number of n-paraffin. To overcome this issue, one 
more model parameter is incorporated, which is the cross-association energy between the n-paraffin 
and asphaltene components (except Asp6). It means that Asp1 to Asp5 have the same cross-
association energy with a given n-paraffin. By doing this, the solubility of Asp1 in n-paraffin is more 
compared to that of other asphaltene components (Asp2 to Asp5) in n-paraffin since the self-
association energy of Asp1 is less compared to those of other asphaltene components. If the cross-
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association energy for a given n-paraffin increases, the solubility of all asphaltene components (with 
fixed self-association energies) in a given n-paraffin increases. Therefore, we can assign the higher 
value of the cross-association energy for n-paraffin precipitant as the carbon number increases and 
can correlate the asphaltene yield data.  Li and Firoozabadi [18] also studied the CPA EoS for the 
calculations of asphaltene yield from the crude and they suggested that the cross-association energy 
between (A+R) and asphaltenes is different for different n-paraffin. They have not considered any 
cross-association between n-paraffin and asphaltenes. However, in our approach, the cross-
association energy between aromatics+resins (A+R)/maltene and asphaltenes is the same for different 
n-paraffin and the cross-association energy between n-paraffin and asphaltenes is different for 
different n-paraffin. Speight [25] mentioned that the asphaltene yield is almost constant for n-paraffin 
of higher carbon number (around >11). Therefore, Asp6 component is treated as an n-paraffin 
undissolved asphaltene fraction and does not cross-associate with the n-paraffin precipitant. Thus, 
approach-1 needs two additional model parameters (the cross-association energy between the 
precipitant and asphaltene components and amount of Asp6). It should be noted that the binary 

interaction parameter (݇௜௝) between the n-paraffin and asphaltenes pair could also be used instead of 

the cross-association energy between them. However, it needs some modification of the modeling 
approach and is not shown in this work. In addition, one could also fix the amount of Asp6 for all 
crudes, for example 30% of asphaltenes amount from SARA analysis, which would result in minor 
deviations from the experimental data. Table 7.2 shows that there are total three model adjustable 
parameters (MAP1, MAP2, and MAP3). The model parameter MAP3 is different for different n-
paraffin.  

Table 7.1. Approach-1: Crude oil characterization and components parameters.  

Comp 
Amount MW ௖ܶ ௖ܲ ߱ 

Self-association 
energy (ߝ஺஺ ܴ⁄ ) 

Self-
association 

volume 
 (஺஺ߚ)

No. Of 
Sites 

wt% g/mol K bar - (K) - - 
Maltene X a Calcd Calcd Calcd Calcd 0 0 1f 

Asp1 Y b 750 1040.1 15.44 1.535 MAP1e 0.05 2+,2- 
Asp2 Y b 750 1040.1 15.44 1.535 MAP1e 0.05 2+,2- 
Asp3 Y b 750 1040.1 15.44 1.535 MAP1e 0.05 2+,2- 
Asp4 Y b 750 1040.1 15.44 1.535 6500 0.05 2+,2- 
Asp5 Y b 750 1040.1 15.44 1.535 6600 0.05 2+,2- 
Asp6 Z c (MAP) e 750 1040.1 15.44 1.535 7000 0.05 2+,2- 

a X is the sum of wt% of saturates, aromatics and resins from SARA analysis. 
b Y ൌ ሺ݌ݏܣ	%ݐݓ	݉݋ݎ݂	ܣܴܣܵ െ Zሻ 5⁄  . 
c Z is the amount of asphaltene sub-fraction (Asp6), which is not dissolved in n-paraffin. 
d Calculated (Calc) from the Kesler-Lee correlations as mentioned in the text. 
e Model Adjustable Parameter (MAP) determined from the experimental data. 
f Maltene molecule has one site, which can cross-associate with both positive and negative sites of asphaltene molecule.
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Table 7.2. Approach-1: Self-association and Cross-association energy parameter in Kelvin.b  

  Asp1 Asp2 Asp3 Asp4 Asp5 Asp6 Maltene n-paraffin 
Asp1 MAP1 a Elliott Elliott Elliott Elliott Elliott MAP2 a MAP3 a 
Asp2 Elliott MAP1 a Elliott Elliott Elliott Elliott MAP2 a MAP3 a 
Asp3 Elliott Elliott MAP1 a Elliott Elliott Elliott MAP2 a MAP3 a 
Asp4 Elliott Elliott Elliott 6500 Elliott Elliott MAP2 a MAP3 a 
Asp5 Elliott Elliott Elliott Elliott 6600 Elliott MAP2 a MAP3 a 
Asp6 Elliott Elliott Elliott Elliott Elliott 7000 MAP2 a 0 

Maltene MAP2 a MAP2 a MAP2 a MAP2 a MAP2 a MAP2 a 0 0 
n-paraffin MAP3 a MAP3 a MAP3 a MAP3 a MAP3 a 0 0 0 

a Model Adjustable Parameters (MAP1, MAP2 and MAP3) determined from the experimental data of asphaltene yield 
and onset conditions. 
b Cross-association volume is 0.05 for all pairs where Elliott combining rule is not used. 

 

Approach-2 

Approach-2 is based on the CPA EoS and similar to approach-1, except for a few differences, and is 
shown in Table 7.3. In approach-2, the maltene fraction is divided into saturates and (A+R) 

components. The critical temperature and pressure ( ௖ܶ, ௖ܲ), acentric factor (߱) and MW are fixed for 
all components and are taken from Li and Firoozabadi [18]. For asphaltenes MW, the value of 750 
Da is used in this study, whereas Li and Firoozabadi [18] used the value of 1800 Da. Sabbagh et al 

[13] showed the relationship between MW and critical temperature and pressure ( ௖ܶ, ௖ܲ) and acentric 

factor (߱ ), which were then used by Li and Firoozabadi [18]. There are two reasons for the 
development of approach-2 over approach-1. The first reason is to show that the maltene fraction can 
further be divided into two components (and possibly more) and model can still be fitted to the 
experimental data. The second reason is to use the different set of component parameters, derived 
based on the information of experimental MW from the vapor pressure osmometry technique, for the 
heavy oil from the literature. Table 7.4 shows that there are total three model adjustable parameters 
(MAP1, MAP2, and MAP3). The model parameter MAP3 is different for different n-paraffin. 

Table 7.3. Approach-2: Crude oil characterization and components parameters.  

Comp 
Amount MW ௖ܶ ௖ܲ ߱ 

Self-association 
energy (ߝ஺஺ ܴ⁄ )

Self-association 
volume (ߚ஺஺) 

No. Of 
Sites 

wt% g/mol K bar - (K) - - 
Saturates X1 a 460 930 13.4 0.9 0 0 0 

A+R X2 b 660 1074 10.85 1.5 0 0.05 1f 
Asp1 Y c 750 1474 7.07 2 MAP1e 0.05 2+,2- 
Asp2 Y c 750 1474 7.07 2 MAP1e 0.05 2+,2- 
Asp3 Y c 750 1474 7.07 2 MAP1e 0.05 2+,2- 
Asp4 Y c 750 1474 7.07 2 6500 0.05 2+,2- 
Asp5 Y c 750 1474 7.07 2 6600 0.05 2+,2- 
Asp6 ܼ d (MAP) e 750 1474 7.07 2 7000 0.05 2+,2- 

a X1 is the wt% of saturates from SARA analysis. 
b X2 is the sum of wt% of aromatics and resins from SARA analysis. 
c Y ൌ ሺ݌ݏܣ	%ݐݓ	݉݋ݎ݂	ܣܴܣܵ െ Zሻ 5⁄  . 
d Z is the amount of asphaltene sub-fraction (Asp6), which is not dissolved in n-paraffin. 
e Model Adjustable Parameter (MAP1) determined from the experimental data. 
f (A+R) molecule has one site, which can cross-associate with both positive and negative sites of asphaltene molecule. 
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Table 7.4. Approach-2: Self-association and Cross-association energy parameters in Kelvin.b  

  Asp1 Asp2 Asp3 Asp4 Asp5 Asp6 saturates A+R n-paraffin
Asp1 MAP1 a Elliott Elliott Elliott Elliott Elliott 0 MAP2 a MAP3 a 
Asp2 Elliott MAP1 a Elliott Elliott Elliott Elliott 0 MAP2 a MAP3 a 
Asp3 Elliott Elliott MAP1 a Elliott Elliott Elliott 0 MAP2 a MAP3 a 
Asp4 Elliott Elliott Elliott 6500 Elliott Elliott 0 MAP2 a MAP3 a 
Asp5 Elliott Elliott Elliott Elliott 6600 Elliott 0 MAP2 a MAP3 a 
Asp6 Elliott Elliott Elliott Elliott Elliott 7000 0 MAP2 a 0 

saturates 0 0 0 0 0 0 0 0 0 
A+R MAP2 a MAP2 a MAP2 a MAP2 a MAP2 a MAP2 a 0 0 0 

n-paraffin MAP3 a MAP3 MAP3 a MAP3 a MAP3 a 0 0 0 0 
a Model Adjustable Parameters (MAP1, MAP2 and MAP3) determined from the experimental data of asphaltene yield 
and onset conditions. 
b Cross-association volume is 0.05 for all pairs where Elliott combining rule is not used. 

 
 
Approach-3 

If we are only interested in calculating the precipitation onset condition, we can reduce the number 
of components and therefore the number of model adjustable parameters. Approach-3 is based on the 
CPA EoS and is similar to approach-2. Approach-3 has only one asphaltene component as shown in 
Table 7.5. There is no cross-association between the precipitant and asphaltene component but the 
cross-association between (A+R) and asphaltene components is present. Moreover, the self-
association energy of asphaltene is fixed to 3000K (instead of 7000K) to show that the relative balance 
between the asphaltene and solvent is important rather than the absolute values of asphaltene self-
association energy and cross-association energy of solvent. In other words, there can be multiple pairs 
of values of the asphaltene self-association energy and cross-association energy (between (A+R) and 
asphaltene components), which can correlate the experimental data. The experimental values of MW 

are used, if they are available, without changing the critical temperature and pressure ( ௖ܶ, ௖ܲ), acentric 

factor (߱) for saturates and (A+R) components. Table 7.6 shows that there is only one model 
adjustable parameter (MAP1). 

Table 7.5. Approach-3: Crude oil characterization and components parameters.  

Comp 
Amount MW ௖ܶ ௖ܲ ߱ 

Self-association 
energy (ߝ஺஺ ܴ⁄ ) 

Self-association 
volume (ߚ஺஺) 

No. Of 
Sites 

wt% g/mol K bar - (K) - - 
Saturates X1 a 460 930 13.4 0.9 0 0 0 

A+R X2 b 660 1074 10.85 1.5 0 0.05 1d 
Asp X3 c 750 1474 7.07 2 3000 0.05 2+,2- 

a X1 is the wt% of saturates from SARA analysis. 
b X2 is the sum of wt% of aromatics and resins from SARA analysis. 
c X3 is the wt% of asphaltene from SARA analysis. 
d (A+R) molecule has one site, which can cross-associate with both positive and negative sites of asphaltene molecule. 
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Table 7.6. Approach-3: Self-association and Cross-association energy parameters in Kelvin.b 

  Asp saturates A+R n-paraffin 
Asp 3000 0 MAP1 a 0 

saturates 0 0 0 0 
A+R MAP1 a 0 0 0 

n-paraffin 0 0 0 0 
a Model Adjustable Parameter (MAP1) determined from the experimental data of asphaltene onset condition. 
b Cross-association volume is 0.05 for all pairs. 

 

Approach-4 

Approach-4 is based on the PC-SAFT EoS and no association term is used since there is no 
associating component. Approach-4 is the same approach as was developed by Tavakkoli et al [7]. In 
approach-4, the crude is divided into saturates, A+R and multiple components of the asphaltene 
fraction. The number of asphaltene components depends upon the experimental data of different n-

paraffin undissolved asphaltene amounts. For example, if the experimental data of	݊7ܥ݊ ,5ܥ and 

 insoluble but 5ܥ݊) undissolved asphaltene amounts are available, three asphaltene components 10ܥ݊

7ܥ݊  soluble asphaltene fraction, ݊7ܥ  insoluble but ݊10ܥ  soluble asphaltene fraction and ݊10ܥ 

insoluble asphaltene fraction) are used. The PC-SAFT parameters of saturates components are 
calculated from the MW correlations developed from the homologous series of n-paraffin. The 
standard n-paraffin PC-SAFT parameters from Gross and Sadowski [26] are used for this approach. 
The PC-SAFT parameters of the (A+R) and asphaltene components are also calculated from the MW 

and aromaticity (ߛሻ correlations developed from the polynuclear aromatic components by Gonzalez 

et al [27]. The zero value of aromaticity (ߛሻ corresponds to benzene derivatives and value of unity 
corresponds to polynuclear aromatics. Both correlations are mentioned in Table 7.7. The aromaticity 

value of (A+R) is tuned to match density of the crude. The aromaticity (ߛሻ  values of all asphaltene 

components are assumed to be the same considering they have the same physical nature. The single 

value of aromaticity (ߛሻ and respective value of MW of all asphaltene components are tuned to match 

the precipitation data. In addition, binary interaction parameters (݇௜௝s) are also used to match the 

precipitation data. Tavakkoli et al [7] also tuned the segment diameter ߪ of asphaltenes to find a good 

match with the experimental data. However, the segment diameter ߪ is not used as an adjustable 
parameter in approach-4 in order to reduce the number of fitting parameters. When we are only 
interested in onset conditions, one asphaltene component, like approach-3, is used for approach-4 
rather than dividing it into multiple components. Also, when the experimental MW of aromatics and 
resins fractions are available, (A+R) component can be divided into aromatics and resins components 

with the same value of aromaticity (ߛሻ. 
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Table 7.7. Approach-4: Empirical correlations for the estimation of the PC-SAFT parameters for saturates and mixture 
of Polynuclear Aromatics (PNA) and benzene derivative components from Panuganti et al [14]. 

Correlation for Saturates ሺߛሻ PNA correlation + ሺ1 െ  ሻ benzene derivatives correlationߛ

݉ ൌ 0.0257 ൈܹܯ ൅ 0.8444 ݉ ൌ ሺ1 െ ሻሾ0.0223ߛ ൈܹܯ ൅ 0.751ሿ ൅ ሾ0.0101ߛ ൈܹܯ ൅ 1.7296ሿ 

൫Հ൯ߪ ൌ 4.047 െ
4.8013 ൈ lnሺܹܯሻ

ܹܯ
൫Հ൯ߪ  ൌ ሺ1 െ ሻߛ ൤4.1377 െ

38.1483
ܹܯ

൨ ൅ ߛ ൤4.6169 െ
93.98
ܹܯ

൨ 

lnሺ߳ ݇⁄ ሻ ܭ	݊݅ ൌ 5.5769 െ
9.523
ܹܯ

	 ሺ߳ ݇⁄ ሻ ݅݊ ܭ ൌ ሺ1 െ ሻሾ0.00436ߛ ൈܹܯ ൅ 283.93ሿ ൅ ߛ ൤508 െ
234100
ሺܹܯሻଵ.ହ

൨ 

 
 

7.3 Results and Discussion 

In this work, a total of eight different crudes are studied. The composition and properties of the crudes 
are mentioned in Table 7.8.  Crudes-1, 2 and 8 are light crudes whereas Crudes-3 to 7 are relatively 
heavy crudes. The model parameters for the CPA EoS based approaches-1 to 3, calculated from the 
experimental data, and are shown in Tables 7.9 and 7.10. The model parameters and characterization 
of the crudes for approach-4 are shown in Tables 7.11 and 7.12. The binary interaction parameters 

(݇௜௝s) used for approach-4 are shown in Table 7.13. The experimental and calculated density using 

approach-4, after tuning the aromaticity ሺߛሻ of A+R component, are compared in Table 7.14. For 

approaches-1 to 3, Peneloux volume corrections are used for the n-paraffin unless otherwise 

mentioned. It should be noted that no ݇௜௝ parameter is used for approaches-1 to 3. For all the crudes 

(except Crude-2), one of the CPA EoS based approaches-1 to 3 and the PC-SAFT EoS based 
approach-4 are compared with experimental data. For Crude-2, only approach-1 is studied. For 
Crudes-1, 3, and 4, the PC-SAFT parameters and oil characterization for approach-4 are referred from 
Tavakkoli et al [7]. For Crudes-5 to 8, the PC-SAFT parameters for approach-4 are from this work. 
Table 7.15 shows the comparison of the number of model adjustable parameters between the 
approaches for all the crudes. Approaches-1 and 2 are used for Crudes-1 and 2 and Crudes-3 and 4 
respectively. One can also use either approach-1 or approach-2 for Crudes-1 to 4 but results are not 
presented here. Since we are only interested in onset conditions, approach-3 (instead of approaches-
1 and 2) is used for Crudes-5 to 8. 
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Table 7.8. Experimental data of composition, MW and density of all crudes.  
Crude 1 2 3 4 5 6 7 8 

Composition 

Volatile - - - - - - 12.6 25.7 
Saturates - a 54.67 25 20.5 19.5 16.4 25.3 34.2 
Aromatics - a 28.89 31.1 38 38.2 40.1 40.9 33.5 

Resins - a 12.66 37.1 19.6 26.8 28.7 4.9 3.2 
 Asphaltenes 3.9 3.8 6.8 21.8 15.5 14.8 16.3 3.5 5ܥ݊

solids - - - 0.1 - - - - 
  

MW 
(Da) 

Volatile - - - - - - 86 86 
Saturates - - 361 400 508 524 460 460 
Aromatics - - 450 508 522 550 522 522 

Resins - - 1108 1090 930 976 1040 1040 
Asphaltenes - - 7065 7662 2850 2910 - - 

Crude 221.5 238.1 - - - - - - 
  

Density 
(g/cc) 

Volatile - - - - - - 0.657 0.657 
Saturates - - 0.853 0.882 0.882 0.885 0.880 0.880 
Aromatics - - 0.972 0.997 0.995 1.003 0.990 0.990 

Resins - - 1.066 1.052 1.037 1.040 1.044 1.044 
 - - Asphaltenes - - 1.192 1.193 1.203 1.203 5ܥ݊

Crude 0.873 0.857 0.982 1.016 0.991 0.995 0.924 0.870 
a Molar composition of saturates (50 mol%), aromatics (25 mol%) and hetero-compounds  (25 mol%) are given in 
reference [2]. 

 

 
Table 7.9. The model adjustable parameters for Crudes-1 to 4 for the CPA EoS based approaches-1 and 2.  

Crude 
Self-association Energy 

஺஺ߝ) ܴ⁄   in K) 
Cross-association Energy (K) Asp-6 

(wt%) 
Asp-1 Asp-2 Asp-3 Maltene A+R ݊16ܥ݊ 12ܥ݊ 10ܥ݊ 9ܥ݊ 7ܥ݊ 5ܥ 

1 6450 6450 6450 3670 - 2400 2970 - 3135 3135 3135 1.2 
2 6000 6000 6000 3480 - 2000 2610 2720 - 2920 - 0.5 
3 6100 6100 6100 - 3440 1950 2380 - - - - 0.5 
4 6430 6430 6430 - 3580 2300 2550 - - - - 2 

 

 

Table 7.10. The model adjustable parameters for Crudes-5 to 8 for the CPA EoS based approach-3.  

Crude 
Self-association Energy (K) 

 
Cross-association Energy (K) 

Asphaltenes  A+R Toluene 
5 Default  1810 - 
6 Default  1845 - 
7 Default  1860 1410 
8 2600  1690 1260 
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Table 7.11. Characterization of Crudes-1, 3 and 4 for the PC-SAFT EoS based approach-4 referred from Tavakkoli et al 
[7].  

Components 
Crude-1 Crude-3 Crude-4 

MW (Da) ߛ wt% MW (Da) ߛ wt% MW (Da) ߛ wt% 
Saturates 207.43 0 46.8 361 0 25 400 0 20.5 
Aromatics - - - 450 0.23 31.1 508 0.3 38 

Resins - - - 1108 0.23 37.1 1090 0.3 19.6 

Aromatic+Resins 219.44 0.38 49.3 - - - - - - 

5ܥ݊ െ 	7ܥ݊
Asphaltenes 

2900 0.2 2 4700 0.2 2.2 2500 0.4 4.3 

7ܥ݊ െ 	10ܥ݊
Asphaltenes 

2950 0.2 0.4 - - - - - - 

	7ܥ݊
Asphaltenes 

- - - 5600 0.2 4.6 2600 0.4 17.5 

	10ܥ݊
Asphaltenes 

4307 0.2 1.5 - - - - - - 

 

Table 7.12. The parameters for Crudes-5 to 8 for the PC-SAFT EoS based approach-4 from this work.  

Crude 
MW (Da)  ߛ 

Saturates A+R Asp 
 

A+R Asp 

5 508 637.3 2850  0.32 0.37 
6 524 672.4 2910  0.32 0.37 
7 460 800 6350  0.38 0.18 
8 460 800 5200  0.30 0.25 

 

Table 7.13. The binary interaction (݇௜௝) parameters used for the PC-SAFT EoS based approach-4 for different crudes. 

For Crudes 1 and 4, parameters are from Tavakkoli et al [7].  

Crude Component ݊16ܥ݊ 12ܥ݊ 10ܥ݊ 7ܥ݊ 5ܥ Saturates 

1 

Aromatic+ 
Resins 

0.007 0.0065 0.006 0.006 0.005 0.007 

5ܥ݊ െ 7ܥ݊
Asphaltenes 

0.01 a 0.007 a 0.006 0.005 0.005 0.003 

7ܥ݊ െ 10ܥ݊
Asphaltenes 

0.01 a 0.007 a 0.006 0.005 0.005 0.003 

	10ܥ݊
Asphaltenes 

0.01 a 0.0075 a 0.0075 a 0.006 a 0.006 a 0.003 

        

4 

5ܥ݊ െ 7ܥ݊
Asphaltenes 

0 0 0 0 0 -0.009 

	7ܥ݊
Asphaltenes 

0 0 0 0 0 -0.009 

        
5,6,7,8 Asphaltenes 0 0 0 0 0 -0.02 

a Modified in this work to decrease the deviations from the experimental data. 
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Table 7.14. The experimental density and calculated density using the PC-SAFT based approach-4, after adjusting 
aromaticity (ߛሻ of A+R, for Crudes-5 to 8.  

Crude Experimental Crude density (g/cc) Calculated Crude density (g/cc) 

1 0.873 0.872 
3 0.982 0.951 
4 1.016 0.997 
5 1.001 1.002 
6 0.995 1.011 
7 0.928 0.927 
8 0.871 0.841 

 
Table 7.15. The number of Model Adjustable (MAP) Parameters for all the approaches calculated from experimental 
data of asphaltene precipitation. 

Number of Model Adjustable (MAP) Parameters calculated from experimental asphaltene precipitation data 

MAP Crude-1 Crude-2 Crude-3 Crude-4 Crude-5 Crude-6 
Blend of Crude-7 

and 8 

CPA EoS based approaches 

 Approach-1 Approach-1 Approach-2 Approach-2 Approach-3 Approach-3 Approach-3 

Self-association energy of 
asphaltene 

1a 1 a 1 a 1 a 0 0 
1 

(Crude-8) 

Cross-association energy 
with maltene/(A+R) 

1 1 1 1 1 1 
2 

(Crude-7 and 8) 

Cross-association energy 
with precipitant 

5 
(5 precipitants) 

4 
(4 precipitants) 

2 
(2 precipitants) 

2 
(2 precipitants) 

0 0 
2 

(Crude-7 and 8 
with Toluene) 

Amount of Asp6 1 1 1 1 0 0 0 

Total 8 7 5 5 1 1 5 

PC-SAFT EoS based approach 

 Approach-4 Approach-4 Approach-4 Approach-4 Approach-4 Approach-4 Approach-4 

Asphaltene component 
MW 

3 
(3 components) 

Not studied 
2 

(2 components) 
2 

(2 components) 
0 0 

2 
(Crude-7 and 8) 

Asphaltene components 
aromaticity 

1b Not studied 1 b 1 b 1 1 
2 

(Crude-7 and 8) 

݇௜௝  (asphaltene-saturates) 3 
(3 components) 

Not studied 1 1 1 1 1 

݇௜௝ (asphaltene-
precipitants) 

15 
(3 components) 
(5 precipitants) 

Not studied 0 0 0 0 0 

݇௜௝ (saturates-(A+R)) 1 Not studied 0 0 0 0 0 

Total 23 Not studied 4 4 2 2 5 

a Self-association energy of Asp1, Asp2 and Asp3 components are assumed same. 
b Aromaticity of all asphaltene components of the crude are assumed same. 
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Asphaltene Precipitation from Light Crudes 

Crude-1 is an Iranian crude whose information including the experimental data are referred from 
Hirschberg et al [2]. It is characterized using the CPA EoS based approach-1 and the PC-SAFT EoS 
based approach-4. The characterization of the crude and model parameters for approach-4 are referred 

from the work of Tavakkoli et al [7]. Fig. 7.1a shows the experimental asphaltene yield for ݊7ܥ݊ ,5ܥ, 

and ݊10ܥ precipitants while Fig. 7.1b shows the experimental concentration of precipitant (݊7ܥ, 

 at the onset of asphaltene precipitation condition. Fig. 7.1a and 7.1b show (16ܥ݊ and 12ܥ݊ ,10ܥ݊
that both approaches can correlate the data but the accuracy of approach-1 is higher than approach-4. 

It should be noted that approach-4, with all ݇௜௝=0, cannot predict the asphaltene precipitation during 

the addition of n-paraffin. However, as shown in Fig. 7.1a, when ݇௜௝ is used, as shown in Table 7.13, 

approach-4 can correlate the asphaltene precipitation data. The higher value of ݇௜௝ (e.g. ݇௜௝with ݊5ܥ 

is greater than that with ݊7ܥ) results in more asphaltene yield. From Fig. 7.1b, one can analyze that 

the difference between the approaches-1 and 4 fitted results for the ݊5ܥ concentration at the onset 

point is large since the higher value of ݇௜௝ lowers the precipitant concentration at onset. From the 

approach-4 results, it can be concluded that it cannot predict both types of the experimental data (the 
asphaltene yield and onset condition for different n-paraffins) qualitatively. The approach-1 results 
of onset conditions are not very sensitive to the cross-association energy of n-paraffin since the cross-
association between n-paraffin undissolved asphaltene (Asp6) component and n-paraffin is not 
considered. Therefore, approach-1 can predict both types of experimental data qualitatively. For 

approach-1, the difference between the values of cross-association energies for ݊5ܥ-asphaltenes and 

 asphaltenes pairs is higher than the difference between the values of cross-association energies-7ܥ݊

for the ݊7ܥ-asphaltenes and ݊10ܥ-asphaltenes pairs. The two widely different values of the model 

parameters (cross-association energy in approach-1 and ݇௜௝ value in approach-4) related to ݊5ܥ  and 

 precipitants are due to the widely different values of respective asphaltene yield. From the fitted 7ܥ݊
results using both approaches, as shown in Fig. 7.1a, it is observed that the asphaltene yield decreases 

at higher dilution of ݊7ܥ and ݊10ܥ. Hirschberg et al [2] did not mention the error margin on the 
experimental data. Wang and Buckley [28] concluded from their experimental studies that the 
asphaltene yield increases with the amount of n-paraffin, reaches a maximum value, then decreases 
at higher amount of n-paraffin. They observed the maximum in the asphaltene yield at around 30:1 

to 40:1 n-paraffin:oil volume ratio when ݊6ܥ or ݊7ܥ used. For ݊5ܥ, they observed the maximum at 

around 80:1 n-paraffin:oil volume ratio. They mentioned that the overall error on asphaltenes amount 

measurement was around േ0.02 wt%. 
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(a) (b) 

Fig. 7.1. Crude-1: (a) Asphaltene yield during the addition of ݊7ܥ݊ ,5ܥ and ݊10ܥ paraffins. (b) Amount of different n-
paraffin (݊16ܥ݊ ,12ܥ݊ ,10ܥ݊ ,7ܥ݊ ,5ܥ) required at the onset of asphaltene precipitation. Experimental data are from 
Hirschberg et al [2]. All experimental data (Fig. 7.1a and 7.1b) are used for the parameters estimation. 

 

Crude-2 is a Mexican crude whose information including the experimental data are referred from 

Buenrostro-Gonzalez et al [15]. The experimental data of the asphaltene yield for ݊9ܥ݊ ,7ܥ݊ ,5ܥ and 

 .precipitants are available. For this crude, only the CPA EoS based approach-1 is studied. Fig 12ܥ݊
7.2 shows that approach-1 is able to correlate the data after calculating the model adjustable 
parameters. The PC-SAFT EoS based approach-4 could also predict this data but we could not fit the 
model due to the difficulty of estimation of a large number of model adjustable parameters. 
Buenrostro-Gonzalez et al [15] used the SAFT-VR EoS in McMillan-Mayer framework developed 
by Wu et al [16-17] to predict this experimental data (with seven adjustable model parameters), 
however, their model results are not as accurate as the results of this work. The reader is referred to 
their work for more detail. 
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Fig. 7.2. Crude-2: Asphaltene yield during the addition of ݊9ܥ݊ ,7ܥ݊ ,5ܥ and ݊12ܥ paraffins. Lines represent the 
correlations using approach-1. Symbols represent the experimental data from Buenrostro-Gonzalez [15]. 

 

Asphaltene Precipitation from Heavy Crudes 

Crude-3 and 4 are Russian and Venezuelan heavy oils respectively whose information including the 
experimental data are referred from Sabbagh et al [13]. They mentioned that the asphaltene yield data 

were repeatable to േ0.015 (wt/wt). For approach-4, the oil characterization and model parameters are 

referred from Tavakkoli et al [7]. For these crudes, the experimental data of asphaltene yield for ݊5ܥ 

and ݊7ܥ precipitants are available. As seen from Fig. 7.3a and 7.3b, approach-2 can correlate the data 

better than approach-4. For approach-4, only one ݇௜௝ , of negative value, between saturates and 

asphaltenes is used. The ݇௜௝ value is used to correlate the onset condition.  
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(a) (b) 

Fig. 7.3. (a) Crude-3: Asphaltene yield during the addition of ݊5ܥ and ݊7ܥ paraffins. (b) Crude-4: Asphaltene yield 
during the addition of ݊5ܥ and ݊7ܥ paraffins. Experimental data are from Sabbagh et al [13] for both Crude-3 and 4. 
 

Fig. 7.4 shows the predictions of asphaltene yield for Crude-3 for ݊7ܥ 9ܥ݊ , 10ܥ݊ ,  and ݊11ܥ 

precipitants using approach-4. One can see that for the ݊10ܥ precipitant, the asphaltene yield is zero 

and the asphaltene yield for ݊11ܥ is higher than that for ݊9ܥ, when precipitant concentration is 40 

cm3/g of oil. However, it contradicts the general experimental behavior from the literature, where the 
asphaltene yield always decreases or remains almost constant as the carbon number of paraffinic 

solvent is increased. Therefore, we hypothesize that approach-4 needs ݇௜௝ between asphaltenes and 

precipitant (like Crude-1) before calculating the PC-SAFT parameters of polydisperse asphaltene 
fraction. In other words, the asphaltene yield of the crude for different n-paraffin precipitants cannot 

be predicted using approach-4 but can be correlated considering ݇௜௝  between asphaltenes and 

precipitant. It should be noted that approaches-1 to 3 can also not predict the asphaltene yield for 
different n-paraffin and that is why the approach-2 predictions, like Fig. 7.4 for the approach-4 
predictions, are not shown. The same behavior of the approach-4 results, like Fig. 7.4 for Crude-3, 
has been observed for Crude-4 but results are not shown here. Therefore, one must check physical 
behaviors (mole fraction of n-paraffin at the precipitation onset, discussed later, and the asphaltene 
yield should decrease with the carbon number of n-paraffin) while calculating the model parameters. 
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Fig. 7.4. Crude-3: Predictions of the asphaltene yield during the addition of different n-paraffins using approach-4. 

 

Asphaltene Precipitation Onsets for Heavy Crudes 

When the asphaltene precipitation onset conditions are modeled for the reservoir fluid (at high T and 
P), the asphaltene fraction is usually considered as a monodisperse fraction/component since we are 
generally interested in calculating the onset conditions. Therefore, it is important to check whether 
the modeling approaches can predict the onset conditions when the asphaltene fraction is treated as a 
single component. Crude-5 and 6 are Cold Lake Bitumen and Athabasca heavy oils respectively 
whose information including the experimental data are referred from Wiehe et al [11]. The 
experimental data of asphaltene onset conditions for different n-paraffin are available for these crudes. 
Wiehe et al [11] mentioned that the precision of the onset data is within 0.1 vol%. Fig. 7.5a and 7.5b 
show the experimental onset data and model fitted results on molar and volume basis respectively for 
Crude-5. Fig. 7.5a shows that the experimental g-moles of n-paraffin at the onset condition decreases 
with the n-paraffin carbon number. Fig. 7.5b shows that the experimental data has a maximum at the 
n-paraffin carbon number of 9. Fig. 7.5a and 7.5b show that approach-3 correlates the experimental 
data qualitatively while approach-4 has major deviations. Approach-4 is studied with respect to 
scenarios-1 and 2. In scenario-1, the standard n-paraffin PC-SAFT parameters from Gross and 
Sadowski [26] are used while in scenario-2, the n-paraffin PC-SAFT parameters are calculated from 
the generalized MW correlations, as shown in Table 7.7. For all other crudes, approach-4 is studied 
with scenario-1 only. Approach-4 with scenario-1 introduces an inconsistent effect of carbon number 
that does not seem to exist in the experimental data as shown in Fig. 7.5.  On the other hand, approach-
4 with scenario-2 gives linear trend as shown in Fig. 7.5.  Therefore, the nonlinearity with scenario-

1 is due to the inconsistent values of the PC-SAFT parameters for the n-paraffin (especially for ݊7ܥ 

to ݊10ܥ). The other model parameters like the PC-SAFT parameters of other components and ݇௜௝ 
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values are kept the same for scenarios-1 and 2. The approach-4 with scenario-2 model fitted results 
on volume basis, as shown in Fig. 7.5b, have considerable deviations due to the poor predictions of 
the fitted results on mole basis shown in Fig. 7.5a. It should be noted that approach-4 with scenario-
2 still gives accurate prediction of the molar volume. Therefore, it can be concluded that the 
asphaltene onset precipitation is very sensitive to the PC-SAFT parameters and detailed study about 

it could give us more insight. For approach-4 with scenarios-1 and 2, using ݇௜௝ value for asphaltenes-

n-paraffin pair could correlate the experimental onset data. The same conclusion, like Crude-5, can 
be drawn for Crude-6 from Fig. 7.6. From Table 7.8, one can observe that Crudes-5 and 6 have almost 

similar properties and SARA fractions. For approach-4, a negative ݇௜௝ value (-0.02) between saturates 

and asphaltenes is used for both Crudes-5 and 6 to decrease the deviations from the experimental data. 
Since there are multiple sets of MW and aromaticity values, which give the same modeling results 
(for approach-4), the experimental MW for the asphaltene component is used to reduce the number 
of adjustable parameters and the aromaticity value is calculated from the experimental data. The 
results of mole fraction of n-paraffin at the asphaltene onset condition for crudes-1 to 6 are mentioned 
in Table 7.16. 

  

(a) (b) 

Fig. 7.5. Crude-5: (a) Amounts of n-paraffin on molar basis at the onset of asphaltene precipitation. (b) Amounts of n-
paraffin on volume basis at the onset of asphaltene precipitation. Experimental data are from Wiehe et al [11]. Solid lines 
are from approach-3, dashed lines are from approach-4 with scenario-1, dotted lines are from approach-4 with scenario-
2. 
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Fig. 7.6. Crude-6:  Amounts of n-paraffin on volume basis at the onset of asphaltene precipitation. Experimental data 
are from Wiehe et al [11]. 

 

Table 7.16. Mole fraction of different n-paraffin at the onset of asphaltene precipitation using CPA and PC-SAFT 
approach.  

n-paraffin 

Mole Fraction of n-paraffin at Asphaltene Onset 
Crude-1 Crude-2 Crude-3 Crude-4 Crude-5 Crude-6 

CPA 
PC-

SAFT 
CPA CPA 

PC-
SAFT 

CPA 
PC-

SAFT 
CPA 

PC-
SAFT 

CPA 
PC-

SAFT 
0.892 0.798 0.870 0.809 0.830 0.575 0.633 0.716 5ܥ݊ 0.887 0.917 0.890 
0.544a 0.827 a - - 6ܥ݊ 0.835 0.874 a 0.810 0.889 0.900 0.916 0.901 
0.881 0.824 0.874 0.863 0.818 0.516 0.697 0.681 7ܥ݊ 0.913 0.909 0.913 
a 0.730 b 0.491 - - 8ܥ݊ 0.846 0.796 b 0.801 0.877 0.899 0.904 0.899 
b 0.724 0.467 - - 9ܥ݊ 0.869 0.779 b 0.815 0.866 0.911 0.896 0.910 
a 0.706 b 0.445 0.643 0.616 10ܥ݊ 0.914 0.773 b 0.830 0.855 0.933 0.887 0.930 
a 0.690 b 0.406 - - 11ܥ݊ 0.793 0.759 b 0.747 0.838 0.857 0.874 0.856 
0.672 0.387 0.593 0.550 12ܥ݊ b 0.774 0.745 b 0.721 0.826 0.843 0.865 0.847 
b 0.657 b 0.371 - - 13ܥ݊ 0.701 0.741 b 0.666 0.812 0.794 0.854 0.798 
b 0.642 b 0.358 - - 14ܥ݊ 0.701 0.718 b 0.655 0.785 0.790 0.831 0.796 
b 0.628 b 0.322 - - 15ܥ݊ 0.639 0.716 b 0.605 0.774 0.742 0.822 0.749 
b 0.615 b 0.291 0.436 0.445 16ܥ݊ 0.640 0.694 b 0.610 0.752 0.738 0.800 0.747 

a Cross-association energy value between ݊ܰܥ -asphaltene is interpolated. 
b Cross-association energy value between ݊ܰܥ -asphaltene is assumed same as that of between maltene/(A+R)-
asphaltene as a conservative measure to show the mole fraction trend with carbon number of n-paraffin. 

 

Asphaltene Precipitation Onsets from Blending of Crudes 

In this section, the modeling approach to calculate the asphaltene precipitation onsets from the blends 
of Crudes-7 and 8 is discussed. Crudes-7 and 8 are from Gulf of Mexico and Middle East respectively 
whose information including the experimental data are referred from Tharanivasan et al [12]. They 
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mentioned that the repeatability (in terms of relative standard deviation) of the measured yields was 

within േ14% and േ5% of the reported yield data at low (n-heptane mass fraction <0.6) and high (n-

heptane mass fraction>0.6) dilution ratios respectively of crude oil or blend. The repeatability for the 

onset measurements was within േ4% of the reported amount of n-heptane at the onset. The 

experimental data of ݊7ܥ precipitant mass fraction at the onset of asphaltene precipitation from the 

blends of Crude-7 or 8 with three different toluene concentrations are available as shown in Fig. 7.7. 

Also, the experimental data of ݊16ܥ mass fraction at the onset of asphaltene precipitation from the 
blend of Crude-7 with three different concentrations of Crude-8 are available as shown in Fig. 7.8. 
The approaches-3 and 4 parameters, as shown in Table 7.10 and 7.12 respectively, are calculated 
from the experimental data of Figs. 7.7 and 7.8 and the model fitted results are also shown in the same 
figures. As shown in Fig. 7.7, both approaches can correlate the experimental data. Fig. 7.8 shows 
that only approach-3 can correlate the non-linear behavior whereas approach-4 shows almost a linear 
trend between two extremes, which represent pure Crude-7 result (left) and pure Crude-8 result (right). 
For approach-3, this non-linearity increases with the difference between the self-association energies 
for the Crude-7 and Crude-8 asphaltenes. In other words, a large difference between the solubility 
parameters of asphaltene component of Crudes-7 and 8 is required. However, for approach-4, the 
appropriate parameters could not be found, which can show the non-linearity. The minimum in this 
non-linear behavior is very important to decide the correct order of crudes to prepare the blend. For 
example, in this case, the minimum is close to the extreme of pure Crude-8 as shown in Fig. 7.8. 
Therefore, one should always prepare the blend by adding Crude-8 into Curde-7 and not the other 
way. The experimental data for the blend of Crude-7 and Crude-8 with three different toluene 
concentrations are also available as shown in Fig. 7.9. This figure shows that the approach-3 
predictions have minor deviations while the approach-4 predictions have moderate deviations from 
the experimental data. One can also analyze that the trend between two extremes becomes more linear 
as the toluene concentration is increased. It would also be interesting to study the blend of three or 
more asphaltenic crudes, however, we could not find such experimental data from the literature. 
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Fig. 7.7. Crude-7 and 8:  Amount of n-Heptane at the onset of asphaltene precipitation for the blend of different 
concentrations of crude oil and toluene. Experimental data are from Tharanivasan et al [12]. 

 

Fig. 7.8. Amount of n-Hexadecane at the onset of asphaltene precipitation for the blend of different concentrations of 
Crude-7 and 8. Experimental data are from Tharanivasan et al [12]. 
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Fig. 7.9. Amount of n-Heptane at the onset of asphaltene precipitation for the blends of Crude-7, 8 and toluene at three 
different concentrations of toluene. Symbols represent the experimental data from Tharanivasan et al [12]. 
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7.4 Conclusions 

Based on the results found in this work we conclude that the solubility of asphaltene fraction in 
solvent at precipitation onset condition can be calculated from experimental data of onset composition 
for different n-paraffin precipitants. The solubility of asphaltene fraction is not dependent upon the 
number of solvent (maltene) components. The asphaltene fraction can be treated as monodisperse 
(single component) rather than polydisperse (multiple components) to calculate onset composition of 
the precipitant. The results for Crudes-5 and 6 show that the CPA EoS based approach-3 (with one 
adjustable parameter) can accurately correlate the onset composition while the PC-SAFT EoS based 
approach-4 without association term (with two adjustable parameters) has moderate deviations. 
Approach-4 needs binary interaction parameters to correlate the onset composition. With the 
modeling approaches used in this work, the asphaltene yield during the addition of a precipitant can 
only be correlated with given experimental data of asphaltene yield with the same precipitant. The 
approaches consider the asphaltene fraction as multiple components having different solubility 
parameters to correlate asphaltene yield. For the CPA EoS based approaches-1 and 2, different self-
association energies are used to define multiple asphaltene components. For the PC-SAFT EoS based 
approach-4, different pure component parameters are used to define multiple asphaltene components. 
In addition, one adjustable parameter linked to the specific precipitant is also used. For approaches-1 
to 3, it is the cross-association energy between precipitant and asphaltene. For approach-4, it is the 

݇௜௝ value between precipitant and asphaltenes. It is also shown from the results of Crudes-3 and 4 that 

when ݇௜௝ values (for n-paraffin- asphaltene pairs) for approach-4 are not used, the model predictions 

of asphaltene yield for different n-paraffin precipitants are not in agreement with the observed 
physical behavior of asphaltene precipitation: (a) In the first case it has been observed that the 
asphaltene yield decreases or remains constant with the carbon number of n-paraffin (b) In the second 
case the mole fraction of n-paraffin precipitant at onset condition is known to decrease with the carbon 
number of n-paraffin. A detailed study of the PC-SAFT parameters of n-paraffins (especially for n-
heptane to n-decane) is required to establish monotonic trend of the mole fraction of n-paraffin 
precipitants at the onset conditions versus the carbon number of n-paraffin. It is also observed from 
the results of Crudes-7 and 8 that approach-3 correlates and predicts the non-linear trend of onset 
condition for the blend (Fig. 7.8 and 7.9) while approach-4 cannot. It should be noted that similar 
approach based on the CPA EoS has already been studied with respect to the asphaltene precipitation 
onset conditions from the reservoir fluid in our previous studies [20-22]. 
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Chapter 8. Conclusions and Recommendations 

8.1 Conclusions  

 In this project, a modeling approach is developed to model asphaltene precipitation using the 
Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-
SAFT) equations of state (EoS). There are few studies of asphaltene modeling with the CPA 
and PC-SAFT (without association term) EoS in the literature. The PC-SAFT (including 
association term) is first applied in this work for asphaltene modeling. The modeling approach 

is very simple and divides the ܥ଺ାfraction into only two components (heavy component and 
asphaltene) in order to calculate asphaltene onset conditions. 

 The developed modeling approach (using the CPA/PC-SAFT EoS) can predict the gas 
injection effect on asphaltene onset condition. It can successfully be used to study the 
enhanced oil recovery (EOR) by gas injections before implementing it (EOR). The approach 
is temperature dependent and needs one experimental onset condition for a given temperature. 
It is believed that around 3-4 experimental onset points are required in the temperature range 
of interest.  

 It is also shown that the CPA/PC-SAFT model with the developed modeling approach is not 
very sensitive to the molecular weight or molar amount of asphaltenes for the prediction of 
onset conditions during different amounts of gas injection. However, the model need the 
correct amount of asphaltene (mass basis) in order to predict amount of precipitated asphaltene 
during the reservoir oil depressurization. The model does not need the amount of saturates, 
aromatics and resins fractions. 

 The developed modeling approach using both CPA and PC-SAFT EoS are compared with the 
modeling approach from the literature based on the PC-SAFT (without association term) term 
EoS. It is found that the PC-SAFT (without association term) model cannot correlate the 
asphaltene upper onset pressure boundary for certain fluids and needs temperature 
dependency. The PC-SAFT (without association term) can also predict the gas injection effect 
after correlating the experimental data for a given temperature. 

 The modeling approach is studied with the Soave-Redlich-Kwong (SRK) EoS using both 
classical and Huron-Vidal mixing rules. Asphaltenes are considered a non-associating 
component for these SRK based models. It is found that the SRK based models can also 

predict the gas injection effect but the molar amount of asphaltene in ܥ଺ା fraction needs to be 
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fixed to a certain value at which the binary interaction parameters for gas/light alkanes-
asphaltenes pairs are regressed. 

 It is shown that the modeling approach is not affected when the ܥ଺ା fraction is divided into 

multiple heavy and one asphaltene components instead of one heavy and one asphaltene 
component. Thus, it can easily be integrated with existing PVT simulators. 

 The models presented in this work cannot predict the asphaltene yield from degassed crudes 
but can correlate the experimental data. 

 The models presented in this work can predict the onset conditions when different n-alkane 
precipitants are used. The models can also predict the asphaltene stability when more than 
two crudes are blended based on the experimental data of each binary system. 

 A MATLAB tool is developed to calculate asphaltene phase envelope with or without gas 
injection and PVT properties of reservoir fluids. It is disseminated and being used by 
consortium company members. 

8.2 Recommendations 

 Based on this work, we propose that higher pressure measurement for the asphaltene upper 
onset point for a given temperature is not required with reservoir oil but relatively simple 
ambient or near ambient pressure measurement of the amount of n-pentane/n-heptane 
precipitant at the onset condition when added into stock tank oil (STO) is sufficient. We need 
this measurement at different temperatures in the temperature range of interest. Once we have 
these experimental data for STO, we can add separator gas into STO, with known separator 
gas composition and GOR, and the model can then predict the asphaltene phase envelope for 
the given reservoir fluid. This proposed method needs to be validated. 

 The modeling approach presented in this work is temperature dependent. The future research 
should focus to remove this temperature dependency possible by accurately characterizing 
STO from certain measurements. 

 The modeling approach presented in this work is applied to the SRK EoS considering 
asphaltenes as a non-associating components. One can also study the PC-SAFT (without 
association term) EoS with this approach. 

 We propose a method to calculate asphaltene stability in blends. For example, we need to 
blend crudes A, B, C and D. Based on the proposed method, asphaltene precipitation data (n-
heptane amount at the onset of asphaltene precipitation) for binary systems crude-A/B/C/D 
and reference crude are required. This proposed method needs to be validated. 
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 One can explore the application of density functional theory or Monte-Carlo method to model 
asphaltene precipitation. 
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 Kelvin = ܭ

݉௜ = Number of segments/spheres per chain/molecule of component ݅ 
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 n-heptane = 7ܥ݊

 ܰ n-Paraffin of carbon number = ܰܥ݊
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 ௜௝ = Non-randomness factor for the pair of component ݅ and ݆ in Huron-Vidal mixing ruleߙ

஺೔஻ೕߚ  
= Association volume between site A of molecule of component i and site B of molecule of component  
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 Packing fraction = ߟ
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஺೔஻ೕ
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߱ = Acentric factor 
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