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Abstract

The production of heavy oil is gradually becoming more viable, as both the price of
production decreases and the price of oil (over the long term) increases. The reserves of
heavy oil are far greater than the existing reserves of conventional oil, however it is often
not economically desirable to extract. Heavy oil is characterised as a very viscous and dense
substance, which flows very slowly under gravity at atmospheric temperature. As such it
is often necessary to use steam to reduce the viscosity of the oil to enhance production.
Novel production enhancement techniques can utilise a light hydrocarbon solvent to further
increase recovery. The simulation of these reservoirs is not trivial, during production they
undergo large changes in temperature and pressure depending upon the production strategy
used. Furthermore the use of a light hydrocarbon solvent can lead to highly asymmetric
mixtures and the appearance of a second oleic phase. However an accurate simulation is
necessary due to the high cost of the production and the requirement for reliable predictions
for new production enhancement strategies. In this work the thermodynamic models used
to represent the fluid and the methods of flash calculation suitable for multiphase mixtures
are studied. The final aim is to develop a reservoir simulator incorporating some of these
elements.

To accurately represent the fluid phases in equilibrium in a heavy oil reservoir it is
necessary to use an equation of state (EoS). There are a huge number of possible equations
of state (EoS’s) available. In this work, a number of these models are compared for heavy
oil related binary systems to evaluate which are best suited. The accuracy of each model
is compared and it is found that, if the interaction between the water and hydrocarbon
phases is not considered to be important, then the commonly used cubic EoS’s with the van
der Waals mixing rules are suitable (optimally using two binary interaction parameters).
If more complex interactions are considered important to the simulation then the cubic
EoS’s can be used with the Huron-Vidal type mixing rules (using the non-random two-
liquid (NRTL) activity coefficient model). The more complex EoS’s such as cubic plus
association (CPA) or PC-SAFT can also be used and are generally as accurate as the
Huron-Vidal type.
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Another issue associated with thermal simulation is that it is necessary to add an energy
balance to the system of PDEs used. It is common to use the temperature as an additional
primary variable. The resulting isothermal flash specification can lead to some problems
during transient simulation. The fluid in some of the grid-blocks may become narrow
boiling. The enthalpy of a narrow boiling mixture changes rapidly due to very small
changes in the temperature or pressure. This can lead to issues with convergence and
potential oscillations during Newton steps. A related issue is when the solution requires
more phases than components to meet the energy balance equation, this cannot be solved
when using isothermal flash. This can often occur close to steam injection wells (where
components other than water can be stripped away). An approach using the energy directly
in the flash calculation (e.g. isobaric, isenthalpic flash) is explored in this work and an
algorithm presented which takes only slightly more computational resources than the
conventionally used isothermal flash. This is demonstrated to be robust for a number of
mixtures, and an approach tailored for the flash calculation of mixtures containing water is
described.

The issue of multiple co-existing equilibrium phases is also examined. The conven-
tional isothermal flash framework is complex and cumbersome when dealing with more
than two or three phases. A new method (modified RAND) is presented based on the related
chemical equilibrium problem. This method is primarily examined for multiphase isother-
mal flash, with a robust implementation described. An extension to other state function
based flash specifications is developed using the new proposed framework. Furthermore
the conventional method of solving an EoS at a specified temperature and pressure is aban-
doned and a method which co-solves the EoS with the equilibrium equations is described
(vol-RAND). A different approach to solving state function based flash specifications is
also considered, where the EoS is solved at the given state function variables resulting in
a minimisation without non-linear constraints. This proposed approach has not yet been
tested.

Finally a thermal, EoS based reservoir simulator is developed from an isothermal
simulator. The energy balance partial differential equation is added, and the temperature
used as an additional primary variable. The EoS’s compared for heavy oil related fluids
are implemented in the simulator. A multiphase flash algorithm using modified RAND
and stability analysis skipping is added to the simulator. Finally a test case is used to
demonstrate that some of the more complex EoS models can be used and the multiphase
flash algorithm is suitable. With the thermal reservoir simulation tool developed it is
possible to carry out further comparisons and add more complexity in future work.



Resumé på Dansk
Flash Computation og EoS Modellering for Termisk

Kompositionssimulering af Strømning i Porøse Medier

Produktionen af tung olie bliver gradvist mere profitable, i takt med både produktionsprisen
falder og oliepriserne (på lang sigt) stiger. Reserven af tung olie er langt større end de
eksisterende reserver af konventionel olie, men det er ofte ikke økonomisk rentabelt at
producere. Tung olie er karakteriseret som et meget viskøst stof og et stof med høj densitet,
tung olie strømmer meget langsomt under tyngdekraften ved stuetemperature. Derfor er det
ofte nødvendigt at bruge damp for at reducere viskositeten af olien for at forbedre produk-
tionen. Nye produktionsforbedrings teknikker kan udnytte et let kulbrint opløsningsmiddel
til yderligere at øge produktionen. Simulationen af disse reservoirer er ikke trivielt, under
produktion er der store temperaturændringer og trykændringer afhængig af den anvendte
produktionsstrategi. Brugen af et lys kulbrinteopløsningsmiddel kan desuden føre til stærkt
asymmetriske blandinger og udseende lig et sekund oleisk fase. Men præcise simuleringer
er nødvendige på grund af de høje omkostninger ved produktionen og på grund af kravet
om pålidelige forudsigelser, i forbindelse med nye produktionsforbedringsstrategier. Heri
arbejdet med de termodynamiske modeller, der bruges til at repræsentere væsken og studiet
af metoder til flashberegninger egnet til flerfasede blandinger. Det endelige mål er at
udvikle en reservoirsimulator der kan inkorporere nogle af disse elementer.

For nøjagtigt at repræsentere fluidfaserne i ligevægt, i et tungoliereservoir er det
nødvendigt at bruge tilstandsligninger der er et stort udvalg af mulige tilstandsligninger, i
dette projekt er en række af disse modeller blevet sammenlignet med tunge olierelaterede
binære systemer til evaluering af hvilken var bedst egnet. Nøjagtigheden af hver model er
sammenlignet og det er konstateret, at hvis interaktion mellem vand og kulbrinte faser ikke
er vigtig, så er de almindelig brugte kubiske tilstandsligninger med van der Waals blandings
regler egnede (optimalt ved brug af to binære interaktions parametre). Hvis mere komplekse
interaktioner er anset for vigtige for simuleringen så kan den kubiske tilstandsligning bruges
med Huron-Vidal blandingsregler (ved anvendelse af den ikke-tilfældige to-væske (NRTL)
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aktivitetskoefficientmodel). De mere komplekse tilstandsligninger såsom kubisk plus
association (CPA) eller PC-SAFT kan også anvendes og er generelt lige så præcise som
Huron-Vidal typen.

Et andet problem i forbindelse med termisk simulering er, at det er nødvendigt at
tilføje en energi balance til det anvendte system af PDE’er. Det er almindeligt at bruge
temperaturen som en ekstra primær variabel. Den resulterende isotermiske flash speci-
fikation kan medføre nogle problemer under dynamisk simulering. Væsken i nogle af
gitterblokkene kan blive smalkogende. Entalpien af en smal kogende blanding ændres
hurtigt på grund af meget små ændringer i temperaturen eller tryk. Dette kan medføre
til problemer med konvergens og potentielle svingninger under Newton iterationer. Et
relateret problem er, når løsningen kræver flere faser end komponenter, der skal til for
at løse energi balance ligningen, dette kan ikke løses, når der anvendes isothermal flash.
Dette kan ofte forekomme tæt på dampinjektionsbrønde (hvor andre komponenter end
vand kan fjernes). En tilgang ved hjælp af at bruge energien direkte i flashberegningen (fx.
isobarisk, isenthalpisk flash) er udforsket i dette arbejde og en algoritme præsenteret, som
kun bruger en smule mere computer ressourser end den traditionelt anvendte isotermiske
flash. Dette er påvist at være robust for a række blandinger og en fremgangsmåde, der er
skræddersyet til flashberegningen af blandinger der indeholder vand er beskrevet.

Spørgsmålet om flere samtidig sameksisterende ligevægts faser er også undersøgt. Den
konventionelle isotermiske flash metoder er kompleks og besværlige, når de beskæftiger
sig med flere end to eller tre faser. En ny metode (modificeret RAND) er præsenteret
baseret på den relaterede kemiske ligevægt problem. Denne metode undersøges primært
for multifase isotermisk flash med en robust implementering beskrevet. En udvidelse
til andre tilstandsfunktion-baserede flashspecifikationer er udviklet ved hjælp af den nye
foreslåede metode. Desuden er den konventionelle metode til løsning af tilstandsligning
ved en bestemt temperatur og tryk udskiftet med en fremgangsmåde, som co-løser til-
standsligningen med ligevægtsligningerne er beskrevet (vol-RAND). En anden tilgang til
løsning af tilstandsfunktions-baserede flashspecifikationer overvejes også, hvor tilstand-
sligning er løst ved de givne tilstandsfunktionsvariabler, hvilket resulterer i en minimering
uden ikke-lineære begrænsninger. Denne foreslåede tilgang er endnu ikke blevet testet.

Endelig udvikles en termisk tilstandsligning baseret reservoirsimulator fra en isoter-
misk simulator. Energibalancens PDE tilsættes, og temperaturen bruges som en ekstra
primær variabel. Tilstandsligninger sammenlignet med tunge olie relaterede væsker bliver
implementeret i simulatoren. En multifase flash algoritme med modificeret RAND og
stabilitetsanalyse undgåelse tilføjes til simulatoren. Endelig bruges en test sag til at demon-
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strere at nogle af de mere komplekse tilstandslignings modeller kan bruges, og flerfaset
flash algoritme er egnet. Med det termiske reservoir simulerede værktøj udviklet er det
muligt at gennemføre yderligere sammenligninger og tilføje mere kompleksitet i fremtidigt
arbejde.
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Chapter 1

Introduction

The international energy outlook [41] expects the energy demand worldwide will rise by
48% by 2040, with fossil fuels expected to contribute more than 75% in 2040. Petroleum
and other liquid fuels are predicted to provide 30% of the total energy demand in 2040. To
meet this demand it may be necessary to target new sources of fossil fuels.

The motivation for this work was to improve the description and simulation of the
production of heavy oil in the presence of steam and a hydrocarbon solvent. Of the total
known world oil reserves only 30% come from conventional sources while 70% are defined
as heavy oil, extra heavy oil, oil sands and bitumen [53]. At present the cost of production
is often close to the sale price of the oil. It is a desire of the oil industry in general to
greatly reduce the cost of heavy oil production. A number of methods are used to enhance
oil production which will be addressed in more detail in chapter 5. Field scale testing of
enhanced production methods is often prohibitively expensive and may lead to unexpected
results, hence it is desired to have suitable tools to accurately predict production for the
reservoir engineer.

The focus of this work is on the thermodynamic description of the oil and how to
carry out the phase split calculation when the temperature may not be known and there
are up to four, or five phases present in equilibrium. A brief introduction to classical
thermodynamics is given in section 1.1. A more detailed introduction to how equations
of state (EoS’s) are used to describe the thermodynamic properties of fluids is given in
section 1.2. Variations of these EoS models will be tailored in chapter 2 to a number of
heavy oil related systems. The phase equilibrium calculation will be introduced in section
1.3. A method to solve an energy based flash using the conventional approach to phase
split calculations will be presented in chapter 3 and a new approach to solving the phase
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split calculation will be presented in chapter 4. Finally oil reservoir simulation will be
introduced in section 1.4 and in more detail with results presented in chapter 5.

1.1 Classical thermodynamics

Though a thorough review will not be given here there are many detailed books on
the subject of the first and second law of thermodynamics and their applications. The
description given here will focus on the major points of the book from Michelsen and
Mollerup [117]. Here we will start with the description of the internal energy. The internal
energy of an isolated system is a function of all of its extensive variables, in the context of
this work we will ignore a number of contributions and focus only on:

U(S, V,n) (1.1)

where U is the internal energy, S is the entropy, V the volume and n the molar amount
of each component present in the system. The extensive properties of a system are first
order homogeneous functions, additive and proportional to the extent of the system. In
contrast their conjugated intensive properties which are zero order homogeneous functions,
non-additive and uniform throughout a homogeneous system at equilibrium. These are
presented in table 1.1. Since the variables of the internal energy are homogeneous functions
of degree one we can describe it as:

U = S

(
∂U

∂S

)
V,n

+ V

(
∂U

∂V

)
S,n

+
C∑
i=1

(
∂U

∂ni

)
S,V,nj

(1.2)

From table 1.1 this equation can be replaced with the more well known equation for the
internal energy:

U = TS − PV +
C∑

ni=1

µini (1.3)

Table 1.1 Extensive and intensive properties of the internal energy

Extensive properties Conjugated intensive properties

S Entropy T Temperature
V Volume −P Pressure
ni Mole numbers µi Chemical potentials
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Other contributions to the internal energy of a system are not relevant to this work.
From this description of the internal energy it is possible to arrive at a number of other
important state functions. How to arrive at each is not described here but each state function
is presented in table 1.2 as described by Michelsen and Mollerup [117].

Table 1.2 Thermodynamic state functions and their properties

Property U(S, V,n) H(S, P,n) A(T, V,n) G(T, P,n)

S - - −
(
∂A
∂T

)
V,n

−
(
∂G
∂T

)
P,n

V -
(
∂H
∂P

)
S,n

-
(
∂G
∂P

)
P,n

T
(
∂U
∂S

)
V,n

(
∂H
∂S

)
P,n

- -
P −

(
∂U
∂V

)
S,n

- −
(
∂A
∂V

)
T,n

-

µi

(
∂U
∂ni

)
S,V,nj

(
∂H
∂ni

)
S,P,nj

(
∂A
∂ni

)
T,V,nj

(
∂G
∂ni

)
T,P

A number of useful relations can be arrived at from this table which will be used in
chapter 4. Compared with U , S, and H , A and G are functions directly of measurable
quantities, (T, V,n) and (T, P,n) respectively. Most EoS’s are pressure explicit functions
using (T, V,n) as variables, which avoids multiplicity in V at a given (T, P,n). For this
reason, Helmholtz energy is more useful in terms of EoS related derivations.

A residual quantity (M̂ r) is the difference between the property of a real mixture (M̂)

and that of an ideal gas (M̂∗) at the same pressure, temperature. Depending on whether
the ideal gas reference state is selected at the system pressure or volume, two different
residual properties can be obtained.

M̂(T, P,n) = M̂∗(T, P,n) + M̂ r(T, P,n) (1.4)

M̂(T, V,n) = M̂∗(T, V,n) + M̂ r(T, V,n) (1.5)

At an ideal gas state of (P0, V0,n) the two sets of properties become the same, M̂(T, V0,n) =

M̂(T, P0,n). At a real gas state they are not identical. For the Helmholtz energy if we
integrate it from the ideal gas state to the real gas state we can find the difference between
the two states:

A∗(T, V,n)− A∗(T, P,n) =

∫ V

V0

(
∂A∗

∂V

)
T

,ndV −
∫ P

P0

(
∂A∗

∂P

)
T,n

dP

= −nRT ln
V

V0
− nRT ln

P

P0

= −nRT lnZ

(1.6)



4 Introduction

Here we use the relation (
∂A∗

∂P

)
T,n

= P

(
∂V

∂P

)
T,n

to arrive at this result.
For a pure component the change in the chemical potential of an ideal gas from an

arbitrary pressure P0 is

µ∗(T, P )− µ∗(T, P0) = RT ln
P

P0

(1.7)

This can be generalised to a real gas by defining a property, the fugacity, which equals P
for an ideal gas

RT ln
f̂(T, P )

P0

= µ(T, P )− µ∗(T, P0) (1.8)

By subtracting equation 1.7 from 1.8 we can replace P0 by P and obtain the fugacity
coefficient ϕ̂ = f̂/P :

nRT ln ϕ̂(T, P ) = nRT ln
f̂(T, P )

P
= µ(T, P )− µ∗(T, P ) (1.9)

Similarly for a mixture where the pure component chemical potential of an ideal gas is

µ∗
i (T, P,n) = µ∗

i (T, P ) +RT lnxi (1.10)

which can be generalised again for a real fluid to:

RT ln
f̂i(T, P,n)

P0

= µi(T, P,n)− µ∗
i (T, P0) (1.11)

where in this case the fugacity is defined as f̂i = Pxi for an ideal gas. The fugacity
coefficient for a component in a mixture is then found as:

RT ln ϕ̂(T, P,n) = RT ln
f̂i(T, P,n)

Pxi

= µi(T, P,n)− µ∗
i (T, P,n)

=

(
∂Ar

∂ni

)
T,V

−RT lnZ

(1.12)
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The fugacity coefficient defined here is used to solve many different phase equilibrium
problems. It is readily accessible from a pressure-explicit EoS, or one expressed in terms
of the Helmholtz energy.

1.2 Equations of state

For this section we will assume that the EoS is pressure explicit, or expressed in terms
of the Helmholtz energy. This assumption is true for the most commonly used EoS’s
in the oil and gas industry and therefore for those applicable to this work. The fugacity
coefficient was introduced in equation 1.12 and it is shown to be related to the derivative
of the residual Helmholtz energy.

We know the difference between the ideal gas at a given volume and pressure from
equation 1.6, this is used to find

RT ln ϕ̂i(T, P,n) = µi(T, V,n)− µ∗
i (T, V,n)−RT lnZ (1.13)

since µi(T, V,n) = µi(T, P,n). The fugacity coefficient is found from an equation for
the Helmholtz energy as

RT ln ϕ̂i(T, P,n) =

(
∂Ar(T, V,n)

∂ni

)
T,V,nj

−RT lnZ

= − ∂

∂ni

(∫ V

∞

(
P − nRT

V

)
dV
)
−RT lnZ

(1.14)

The residual Helmholtz energy is obtained by integrating a pressure equation P (V, T,n)
at constant temperature. All other properties are then obtained from the equation through
differentiation.

Four EoS’s are considered in this work: SRK [175], PR [135], CPA [91] and PC-SAFT
[67], using the simplified PC-SAFT of von Solms et al. [192] and the simplified CPA of
Kontogeorgis et al. [89]. The first two are cubic EoS’s, CPA is SRK with the addition of the
Wertheim association term from SAFT, while PC-SAFT is a more complex representation
of a fluid based on a perturbed chain representation of the statistical associating fluid theory
derived by Chapman et al. [25, 26].

A full description of each of the models will be left to chapter 2 however a brief
description of the framework used to solve these EoS’s at a given pressure and evaluate
their derivatives will be given here. The PR and SRK EoS’s can be given by a generalised
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cubic EoS:
P =

RT

V − b
− a(T )

(V + δ1b)(v + δ2b)
(1.15)

where for the SRK EoS δ1 = 1 and δ2 = 0 and the PR EoS δ1 = 1+
√
2 and δ2 = 1−

√
2.

For the SRK and PR EoS the a and b parameter are fitted to match the critical pressure
and temperature of each component, this leaves an additional term for the temperature
dependence of the a term.

a(T ) = acα(Tr, ω) (1.16)

The acentric factor ω is often used to find the value of α using a suitable correlation. There
are many different correlations used for this temperature dependence as is discussed in
more detail in chapter 2.

For a mixture, each component has its own ai and bi term related to its critical properties
and acentric factor (and temperature). To find the residual Helmholtz energy of the mixture
we must first define how we mix the component parameters to a mixture parameter. Many
different mixing and combining rules have been attempted and used in modern simulations,
an overview is given by Kontogeorgis and Folas [88]. For example if we assume we use
the van der Waals one-fluid (vdW1f) mixing rules:

D = n2amix =
C∑
i=1

ni

C∑
k=1

nkaik (1.17)

and

nB = n2bmix =
C∑
i=1

C∑
k=1

nkbik (1.18)

then we can find the reduced residual Helmholtz energy from equation 1.14 as:

Ar(T, V,n)

RT
= −n ln

(
1− B

V

)
− D(T )

RTB(δ1 − δ2)
ln

(
1 + δ1B/V

1 + δ2B/V

)
(1.19)

The fugacity coefficient can then found from equation 1.14.
In general we do not specify the volume of a phase when carrying out phase equilibrium

calculations, instead the pressure and temperature are often used. It is therefore necessary
to first find the volume at a defined pressure, and then to find the relevant derivatives at a
constant pressure (and with respect to pressure). A detailed description of the methods to
do this from an EoS is given by Mollerup and Michelsen [120] and in the book Michelsen
and Mollerup [117].
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One important aspect of calculating the properties from a pressure explicit EoS is
finding the volume of a phase at a given temperature, pressure and molar amount. Given
a suitable mixing and combining rule neither the amix or bmix terms are dependent on
the volume. For a cubic EoS, such as that presented in equation 1.15, it is possible to
explicitly calculate the possible volume roots (between one and three). Equation 1.15 can
be rewritten as a cubic polynomial for the volume

V 3 + C1V
2 + C2V + C3 = 0 (1.20)

and the cubic polynomial can be solved (e.g. using Cardano’s method). However this
method alone can result in round-off errors which may lead to errors during phase equilib-
rium calculations [121]. Therefore it is useful to further refine the explicit solution using
Newton’s method. This method is also not limited to any particular EoS and can be used
for the more complex CPA or PC-SAFT EoS’s used in this work.

Given an initial estimate for the volume V (e.g. the ideal gas volume) the pressure of a
mixture at temperature T and molar amounts n is found from

P = −
(
∂A

∂V

)
T,n

(1.21)

If we have a pressure specification P spec then we can use Newton’s method to refine our
current estimate for the pressure. With the equation

f = P spec +

(
∂A

∂V

)
T,n

= 0 (1.22)

and its derivative
df
dV

=

(
∂2A

∂2V

)
T,n

(1.23)

The Newton step is evaluated as

V n+1 = V n − f/
df
dV

(1.24)

where V n is the volume at the previous iteration. Using Newton’s method, along with a
suitable method to prevent unstable oscillation (such as bisection), the EoS is often solved
very rapidly.

For the cubic EoS’s the explicit solution is used followed by one Newton step to tighten
the tolerance. For the more complex EoS’s Newton’s method is used with initial estimates
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of slightly greater than the co-volume and the ideal gas state. If there is more than one
stable root, the root with the minimum Gibbs energy is selected. Only if either the vapour
or liquid-like root are desired will they be used, this is sometimes useful to avoid initialising
from both a liquid like trial and vapour like.

1.3 Phase equilibria calculation

Phase equilibrium problems are at the heart of process and reservoir simulation. Here we
will introduce a few basic concepts of phase equilibria which will then be used in chapters
3 and 4. One description of a equilibrium state is that all of the intensive properties defined
in table 1.1 are the same in all of the phases in equilibrium. For convenience we often use
the component fugacities in place of the chemical potentials:

ln f̂i,j = λi, i = 1, 2, ..., C, j = 1, 2, ..., F (1.25a)

with λi used to denote the reduced equilibrium chemical potential.

Pj = P eq, j = 1, 2, ..., F (1.25b)

Tj = T eq, j = 1, 2, ..., F (1.25c)

The conventional phase equilibrium problem is isothermal flash, where we specify the
temperature T eq, pressure P eq, and feed mole amounts z. Since we can solve an EoS at a
specified temperature and pressure, as described in section 1.2, it is necessary that only the
fugacity is equivalent in each phase at equilibrium.

One constraint on the isothermal flash problem is the extent of each of the phases is
limited by the feed amount. This can be described by the material balance constraint

zi −
F∑

j=1

ni,j = 0, i = 1, 2, ..., C (1.26)

How these equations are used to solve the phase equilibrium problem is the discussion of
chapters 3 and 4. A brief summary of the current state of the art of the phase split and
stability analysis will be given in this section.

One important problem associated with phase equilibrium problems is the trivial
solution. The trivial solution is defined as two phases becoming identical in composition
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and other properties
xi,j = xi,l ∀i (1.27)

Many of the methods used to solve phase equilibrium problems will fail if given a trivial
solution. It occurs if poor initial estimates are used and is particularly problematic close
to the critical point of a mixture. At a critical point the problem is degenerate, and two
(or more) of the phases will have exactly the same composition. When close the critical
point, in the critical region, great care must be taken to not remove a phase in error and
high quality initial estimates are necessary.

It may also be noticed that the EoS used can be highly non-linear, and it may be
possible for multiple equilibrium states, which satisfy equation 1.25a to exist. However
only one of these equilibrium states will be completely stable. The only stable system is the
one at the minimum energy. The energy used to describe a system at a given temperature
and pressure is the Gibbs energy

G(n, T, P ) =
F∑

j=1

C∑
i=1

ni,jµi,j (1.28)

It is necessary that, given a stable phase distribution of F phases, G is at the local minimum
in the Gibbs energy (i.e. the Hessian of equation 1.28 is positive definite). If the Gibbs
energy of a phase is not at a local minimum then it is described as intrinsically unstable,
and the current state will undergo spinodal decomposition (i.e. immediately split into
another phase).

The Gibbs energy surface is generally not convex (when using an EoS to describe it).
As such it is possible that a local minimum in the Gibbs energy can be identified which will
correspond to a metastable state. The metastable region is of interest to some applications
(e.g. hydrate formation). To define a phase as stable it is necessary to ensure that there is
no possible mixture which can lead to a reduction in the Gibbs energy. One method to do
so is to check the tangent plane distance function [9] at all possible trial phases:

tpd(w) =
C∑
i=1

wi(ln f̂i(w)− ln f̂i(nj)) (1.29)

A necessary and sufficient condition for a given equilibrium mixture to be stable is for
equation 1.29 to be non-negative at all possible trial compositions w. To check all possible
trial compositions is prohibitively expensive for conventional calculations and as such the
method of Michelsen [109] is often used.
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Instead of the tangent plane distance function a modified tangent plane function is
used:

tm(W ) = 1 +
C∑
i=1

Wi(lnWi + ln ϕ̂i(W )− ln zi − ln ϕ̂I(z)− 1) (1.30)

where Wi are the mole numbers. It is possible to show that a minimum of equation 1.30
is also a minimum of equation 1.29 and that a negative value of tm will correspond to a
negative tangent plane distance. It is therefore only necessary to find all of the minima of
equation 1.30, if all are non-negative then the equilibrium mixture is stable. If any trial
phase is found to be negative then a suitable initial estimate for a trial phase is immediately
available as:

wi =
Wi∑C
i=1Wi

∀i

which, if introduced in an infinitesimal amount, will lead to a reduction in the Gibbs energy.
Monitoring the Gibbs energy for a reduction at each iteration would then ensure that the
trivial solution can be avoided. It is still necessary to select a suitably large number of
initial estimates to not miss any minimum in the modified tangent plane function. The
initial estimates used are tailored to each specific problem.

Once a suitable initial estimate of an incipient phase composition is found it is necessary
to carry out a phase split calculation to find a local minimum in the Gibbs energy (to then
be checked by stability analysis). One common approach is to use an ideal solution
approximation. The fugacity coefficient is evaluated for each component in each phase
from the selected EoS, then set as a constant while the equilibrium equation 1.25a is solved.

To solve the ideal solution problem for two phases the Rachford-Rice equations [147]
are commonly used. For multiple phases it is often preferable to use a convex objective
function which is at a minimum at the solution to the ideal solution problem. Such a
function is described by [114]:

Q(β) =
F∑

j=1

βj −
C∑
i=1

zi ln Êi (1.31)

with

Êi =
F∑

j=1

βj
ϕ̂i,j

(1.32)
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This function is convex with the variables of molar phase fractions β (when there are
more components than phases). Newton’s method with line search can be used to find the
solution in a small number of iterations given any initial estimate.

Once the ideal solution problem is solved the fugacity coefficients can be updated
and another iteration taken (successive substitution). This will be convergent in the vast
majority of examples though divergent cases are possible [73]. Furthermore the rate of
convergence can be intolerably slow for mixtures close to the critical point. As such second
order methods are often desired. The conventional method to solve isothermal flash is given
for two phases by Michelsen and Mollerup [117] and the for multiple phases by Michelsen
[110]. Second order methods for multiphase flash will be described in more detail in
chapter 4. In some cases the assumption that the temperature and pressure are known does
not hold. This will be examined in chapters 3 and 4 with a detailed implementation for
isenthalpic flash given in chapter 3.

1.4 Oil reservoir simulation

Transient simulations of oil reservoirs are carried out to predict future production from the
reservoir, and in some cases to test ways of optimising the production. There are numerous
ways to evaluate the performance of a reservoir with simulation gaining popularity as
computers have become more powerful.

To carry out a reservoir simulation it is first necessary to define a physical model of
the reservoir, based on the geology and geophysics of the rock formation. A mathematical
description of the reservoir as a set of coupled time-dependent non-linear partial differential
equations must then be developed. Third a numerical model incorporating the properties
of the physical models and the mathematical model must be developed. The numerical
model is then implemented in a computer and transient simulation carried out.

Once it is proven that a numerical reservoir simulator can accurately match historical
data, it is then possible to make predictions for the behaviour of the reservoir in the future.
Test cases can then be developed to plan optimal strategies for oil recovery.

Heavy oil reservoir simulation is an active area of research. It is often necessary to
inject high temperature fluids into the reservoir to reduce the viscosity of the oil in place
(e.g. using methods such as steam assisted gravity drainage, SAGD). As it is expensive to
create and inject steam into an oil reservoir it is desired that, first the economics can be
evaluated, and secondly that an optimal strategy can be developed (for example use of a
solvent to enhance recover, e.g. solvent assisted SAGD).
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The final aim of this thesis it is to develop an EoS based, thermal reservoir simulator.
One important aspect of thermal reservoir simulation is the fluid description and the phase
equilibrium calculations, where up to three hydrocarbon phases can co-exist (vapour, heavy
liquid and light liquid) [92]. Furthermore the hydrocarbon solubility in the aqueous phase
can increase at high temperatures (and pressures), as such it may be necessary to also
accurately model the aqueous phase.

The simulator used is based on an existing Composition Simulator (COSI) which is a
fully implicit isothermal simulator. A description of the existing simulator, and the features
added to make it a thermal simulator are described in chapter 5. The simulator is also used
for a brief comparison using some of the results from chapter 2. To test the multiphase
flash methods presented in chapter 4 they will be applied to the reservoir simulator.



Chapter 2

Model Comparison for Phase
Equilibrium in Heavy
Oil/Steam/Solvent Related Systems

During reservoir simulation it is common to use an equation of state (EoS) to accurately
model the fluid properties. One important property is which phases form and how the
components split among the given phases (the phase equilibrium). In heavy oil recovery
there is often a mixture of light and heavy hydrocarbons with water. It is common to use
enhanced recovery techniques such as steam injection. It is therefore necessary to utilise
an EoS which is accurate over a large temperature (and pressure) range.

For simple athermal, nearly symmetric mixtures it is often suitable to use pure compo-
nent parameters with simple mixing and combining rules [88]. The cubic EoS is commonly
employed for this purpose (equation 1.15). However if polar or associating components
are present then it is necessary to use more complex models and mixing rules with binary
interaction parameters. Even with binary parameters it is often difficult to capture the
thermodynamic properties of mixtures exactly, and some derivative properties may show
the wrong trends.

Instead a number of authors have used more complex and theoretically accurate models
based on Wertheim’s pertubation theory to accurately describe mixtures. The SAFT family
of models [25, 26] was recently developed and there are numerous different implementa-
tions with a summary given by Kontogeorgis and Folas [88]. The association term from
SAFT has been combined with the SRK EoS [175] to give the CPA EoS as described by
Kontogeorgis et al. [91], in this work a simplified version is used [89].
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This work aims to compare the cubic EoS’s [135, 175], using one, two or three binary
interaction parameters with more advanced EoS’s. The models used with the cubic EoS’s
are: the van der Waals one fluid (vdW1f) mixing rules; the Huron-Vidal mixing rules
[79]; the modified Huron-Vidal mixing rules MHV1 [113] and MHV2 [44]; HV, MHV1
and MHV2 use the NRTL activity coefficient model [156] or its variant NRTLHV [79].
The cubics are compared with the advanced EoS’s CPA [89, 91] and simplified PC-SAFT
[67, 192]. A detailed description of each of the models used is given in section 2.1.

Though the use of temperature dependent binary interaction parameters can be justified
theoretically [42] it can lead to problems outwith the temperature used for regression.
There is often insufficient data to obtain reliable temperature dependent parameters over
the range of temperature relevant to the thermal recovery of heavy oil (where temperature
changes of >200K are possible). For these reasons, we have not introduced empirical
temperature dependence into the binary interaction parameters in our comparison, though
this option can be investigated in the future if further improvement is needed for specific
systems.

There are a large number of articles, performing similar work (namely comparing EoS
with the aim to demonstrate the capability of a new one, or highlight a deficiency of an
existing one). All of the relevant articles cannot be given though some important and
relevant works are highlighted. Boukouvalas et al. [16] gives a comparison of MHV2
with LCVM for asymmetric hydrocarbon pairs using UNIFAC, showing that MHV2 with
UNIFAC is not well suited for this purpose. Knudsen et al. [86] compared the LCVM, WS
and MHV2 EoS for binary and ternary mixtures of supercritical fluids, concluding that the
MHV2 and LCVM models are the most promising. Orbey and Sandler [131] compared a
number of models using UNIQUAQ model for asymmetric systems, and proposed a new
model to overcome some of the drawbacks of the others. A number of group contribution
models were compared by Ahlers et al. [4] who showed that a volume translated PR with a
modified UNIFAC was best suited to the considered mixtures. Similarly the more modern
models (PC-SAFT and CPA) have been compared numerous times. For example Voutsas
et al. [193] compared the performance of CPA to PC-SAFT for a number of polar and
associating mixtures. Yan et al. [199] compared SRK with HV with NRTLHV to CPA for
reservoir fluids with water, showing that both models were equally capable. Perez et al.
[137] compared the cubic EoS to both PC-SAFT and SAFT VR-Mie with an interest for
their application to carbon capture and storage modelling, concluding that the SAFT-VR
Mie EoS is the most accurate for VLE and density data.
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For heavy oil simulation it is necessary to determine if the simple cubic EoS’s with the
van der Waals mixing rules are sufficient, or if improved results are obtained using complex
mixing rules or more advanced EoS’s. To evaluate each model a number of binary test
systems are investigated. In conventional compositional reservoir simulation the aqueous
phase is modelled as a pure separate phase, however during the production of heavy oils
it is possible to have mixtures where the composition of hydrocarbon components in the
aqueous phase is non-negligible. Therefore the first system of interest for this work is
mixtures of hydrocarbons with water.

Many oil reservoirs contain considerable amounts of carbon dioxide. Carbon dioxide
is also a potential candidate for injection to enhance oil recovery (and is commonly used in
this way). It is soluble in the liquid oleic phase. Injection can lead to near miscible fluids
which are close to the critical conditions. Therefore its equilibrium in the reservoir is of
interest and mixture of hydrocarbons with carbon dioxide are also investigated.

Finally new enhanced oil recovery techniques use a light hydrocarbon solvent such
as ethane, propane or n-butane to further enhance recovery during steam injection. Such
a solvent can lead to the production of two separate liquid hydrocarbon phases (i.e. one
heavy hydrocarbon containing very long parafins and asphaltenes, and a separate lighter
oleic phase containing smaller hydrocarbon components). Therefore we include a number
of asymmetric hydrocarbons pairs in the model comparison. All of the experimental data
used in this work is given in section 2.2.

The data collected for the model comparison is only the phase equilibrium data. The
density of the mixtures and other mixture properties are not tested here. In practice, the
Peneloux volume translation [134] is often employed to improve the density output from
cubic EoS’s. Either the absolute average relative deviation (AARD) or mean absolute
deviation (MAD) is used depending upon the experimental data. This is described along
with the regression method used in section 2.3.

The model comparison involves 17 models with 31 pure components, 45 binary pairs
and over 6000 data points. Instead of presenting the overwhelming details for each system,
we provide the tables with the optimal binary interaction parameters and corresponding
deviations in appendix A. In section 2.4 a few representative systems are analysed and the
conclusions based on all of the results are made. The parameters found are the optimum
for the experimental data used however may not be suitable outwith the narrow range of
the experimental conditions. This is particularly the case for the very flexible models using
complex mixing rules with multiple binary parameters where the binary parameters should
be used with care.
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2.1 Models used

It is common to use the vdW1f mixing rules with a cubic EoS. The general cubic EoS
(equation 1.15) was discussed in section 1.2, along with a brief mention of the vdW1f
mixing rules. The vdW1f mixing rules give a quadratic composition dependency for both
parameters:

amix =
C∑
i=1

xi

C∑
j=1

xjaij (2.1a)

bmix =
C∑
i=1

xi

C∑
j=1

xjbij (2.1b)

The vdW1f mixing rules are often combined with the classical combining rules, with the
geometric mean rule for the cross-energy term and the arithmetic mean rule for the cross
co-volume parameter:

aij =
√
aiaj(1− kij) (2.2a)

bij =
bi + bj

2
(1− lij) (2.2b)

where kij is the commonly used binary interaction parameter for the cross-energy binary
pair and lij is the binary parameter for the cross co-volume. lij is not often used, but will
be in this work.

For the PR and SRK EoS, the temperature dependence of equation 1.16 is defined as

a(T ) = ac(1 + m̂(1−
√
Tr)

2) (2.3)

based on the SRK EoS [175] where m̂ is found as

m̂SRK = 0.48 + 1.574ω − 0.176ω2 (2.4)

The PR78 EoS is based on the PR [135] but with a modified correlation for the temperature
dependence as

if ω ≤ 0.491, m̂PR = 0.37464 + 1.54226ω − 0.26992ω2

if ω > 0.491, m̂PR = 0.379642 + 1.48503ω − 1.64423ω2 + 0.016666ω3
(2.5)

This correction is often necessary as the original formulation [135] is regressed to fit
only the first 10 n-alkanes. Extrapolation outwith these components can lead to poor
vapour pressure estimates [177]. This is not as necessary for SRK where the value of m̂ is
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determined for the saturated vapour pressure at T = 0.7Tc for acentric factors between 0
and 0.5 rather than fitting to experimental data and is better suited to extrapolation [117].
Improved correlations are available for both models (e.g. PRSV [177] for PR and the
Mathias-Copeman temperature dependence [102] for SRK) however these are not used in
this work.

Other mixing rules are possible and many have been attempted. A highly successful
mixing rule is that given by Huron and Vidal [79]. The method uses the definition for the
excess Gibbs energy from an EoS

gE(T, P, z) = ln f̂(T, P, z)−
C∑
i=1

zi ln f̂i(T, P ) (2.6)

where for a cubic EoS, as given in equation 1.15, the mixture fugacity is defined by

ln

(
f̂ b

RT

)
=
PV

RT
− 1− ln

(
V − b

b

)
− a

RTb (δ2 − δ1)
ln

(
V + δ2b

V + δ1b

)
(2.7)

and similarly each of the pure component fugacities are:

ln

(
f̂ibi
RT

)
=
PVi
RT

− 1− ln

(
Vi − bi
bi

)
− ai
RTbi (δ2 − δ1)

ln

(
Vi + δ2bi
Vi + δ1bi

)
(2.8)

Using the excess Gibbs energy, Huron and Vidal [79] used the limit of infinite pressure
to arrive at their new mixing rule (assuming a linear mixing rule on the cross co-volume
parameter):

lim
P→∞

V = b, Vi = bi

a

bRT
=

C∑
i=1

zi
ai

biRT
− δ2 − δ1

ln 1+δ2
1+δ1

gE∞

(2.9)

This allowed for any suitable model for the excess Gibbs energy at infinite pressure to be
combined with a cubic EoS. One choice is the NRTL equation [156]:

gE =
C∑
i=1

zi

∑C
k=1 zj exp

(
−α̃ji

Cji

RT

)
Cji

RT∑C
j=1 zj exp

(
−α̃ji

Cji

RT

) (2.10)
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Or a modification thereof given by Huron and Vidal [79].

gE =
C∑
i=1

zi

∑C
j=1 zjbj exp

(
−α̃ji

Cji

RT

)
Cji

RT∑C
j=1 zjbj exp

(
−α̃ji

Cji

RT

) (2.11)

Equation 2.11 is particularly useful as it can be reduced to the vdW1f mixing rules and the
classical combining rules for the cross energy term by setting

α̃ij =0, Cji = ĝji − ĝii, ĝii = −a
b

δ2 − δ1

ln 1+δ2
1+δ1

ĝji = −2

√
bibj
bi + bj

√
ĝiiĝjj(1− kij)

(2.12)

This allows for the well known binary parameters for hydrocarbon pairs to be combined
with mixtures containing highly non-ideal fluids. Note that this is equivalent to using
binary interaction parameters with a temperature dependence described as

Cj,i

RT
= C1

j,i + C2
j,i

√
T + C3

j,iT (2.13)

This is the temperature dependence obtained from the √
aiiajj term. Of course if the

temperature dependence described in equation 2.13 is used then the HV NRTLHV mixing
rules can exactly replicate the vdW1f mixing rules for the a term.

An alternative formulation can be developed by using the limit of zero pressure. From
this we find an excess Gibbs energy of

gE0 +
C∑
i=1

zi ln
b

bi
= Q̂−

C∑
i=1

ziQ̂ (2.14)

where Q̂ is a function of Q̂ (a/(bRT )) only. Q̂ is only defined in the region where the
cubic EoS has a liquid like root at zero pressure and as such it is common to approximate
the value of the Q̂-function with a straight line [113]:

a

bRT
=

1

q1

(
gE0 +

C∑
i=1

zi ln

(
b

bi

))
+

C∑
i=1

zi
ai

biRT
(2.15)
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which due to its similarities is referred to as the modified Huron Vidal mixing rule 1
(MHV1). A quadratic approximation is also possible [44] (MHV2):

q1

(
a

bRT
−

C∑
i=1

zi
ai

biRT

)
+ q2

(( a

bRT

)2
−

C∑
i=1

zi

(
ai

biRT

)2
)

= gE0 +
C∑
i=1

zi ln

(
b

bi

)
(2.16)

The zero pressure limit does not put a restriction on the mixing rule used for the cross
co-volume term, though for this work it is assumed to be linear.

For this study we use the classical combining rules with the vdW1f mixing rules, the
NRTL equation with HV, MHV1 and MHV2, and the modified NRTLHV with HV. All of
these models used the pure component critical point and acentric factor to determine the
pure component parameters for the EoS. The critical properties and acentric factor are
reported in table 2.1.

Table 2.1 Pure component critical parameters

Component name Component ID Tc (K) Pc (bar) ω

Ethane C2 305.32 48.72 0.0995
Propane C3 369.83 42.48 0.1523
Butane C4 425.1 37.96 0.2002
Pentane C5 369.83 33.7 0.2515
Hexane C6 507.6 30.25 0.3013
Octanea C8 568.7 24.9 0.3996
Nonane C9 594.6 22.9 0.4435
Decane C10 617.7 21.1 0.4923
Undecane C11 639 19.5 0.5303
Dodecane C12 658 18.2 0.5764
Tetradecane C14 693 15.7 0.643
Pentadecane C15 708 14.8 0.6863
Hexadecane C16 723 14 0.7174
Eicosane C20 768 11.6 0.9069
Docosane C22 787 10.6 0.973
Tetracosane C24 804 9.8 1.071
Octacosane C28 832 8.44 1.2375
Dotriacontane C32 855 7.5 1.377

Continued on next page
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Table 2.1 – continued from previous page

Component name Component ID Tc (K) Pc (bar) ω

Hexatriacontane C36 874 6.8 1.526
Octatriacontane C38 882 6.42 1.571
Tetracontane C40 889.6 6.12 1.64
Tetratetracontane C44 903.1 5.59 1.78
Hexatetracontane C46 909.2 5.36 1.849
Tetrapentacontane C54 929.5 4.6 2.128
Hexacontane C60 941.8 4.16 2.337
Water H2O 647.13 220.55 0.3449
Carbon dioxide CO2 304.21 73.83 0.2236
Hydrogen sulphide H2S 373.53 89.629 0.0942
Benzene Bz 562.16 48.98 0.21
Toluene Tol 591.8 41.06 0.2621
Ethylbenzene C2Bz 617.2 36.06 0.3026

The pure component data described in table 2.1 is taken from DIPPR for all components
except hydrocarbons above C36. For the components larger than C36 it was necessary to
use a correlation to obtain the properties, the methodology described by Duarte et al. [51]
was used in this work.

The classical combining rules and the excess Gibbs energy type mixing rules are
compared with some more modern models. The first of these is simplified PC-SAFT
[192], referred to herein as PC-SAFT. This model splits the contributions to the Helmholtz
energy into contributions from the ideal gas, the hard sphere chain reference system, the
dispersion, and the association

A = AIG + AHC + ADisp + AAssoc (2.17)

The full details of the PC-SAFT EoS and its simplified variant are explained in the work of
Gross and Sadowski [67] and von Solms et al. [192]. For this work we need to know the 3
pure component parameters for non-associating fluids: the chain length m̃; the segment
diameter σ; and the segment energy ϵ̃. The pure component parameters are reported in
table 2.2.
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Table 2.2 PC-SAFT pure component parameters

Component ID m̃ σ (Å) ϵ̃/R (K)

C2 1.607 3.521 191.4
C3 2.002 3.618 208.1
C4 2.332 3.709 222.9
C5 2.690 3.773 231.2
C6 3.058 3.798 236.8
C8 3.818 3.837 242.8
C9 4.208 3.845 244.5
C10 4.663 3.838 243.9
C11 4.908 3.889 248.8
C12 5.306 3.896 249.2
C14 5.900 3.940 254.2
C15 6.286 3.953 254.1
C16 6.649 3.955 254.7
C20 7.985 3.987 257.8
C22 8.690 3.982 253.9
C24 9.387 3.990 254.6
C28 10.782 4.002 255.7
C32 12.176 4.011 256.5
C36 13.571 4.019 257.1
C38 14.268 4.022 257.4
C40 14.965 4.025 257.7
C44 16.359 4.030 258.1
C46 17.057 4.032 258.3
C54 19.845 4.039 258.9
C60 21.937 4.043 259.3
H2O 2.0 2.345 171.7
CO2 2.073 2.785 169.2
H2S 1.684 3.027 227.7
Bz 2.465 3.648 287.4
Tol 2.815 3.717 285.7

Continued on next page
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Table 2.2 PC-SAFT pure component parameters

Component ID m̃ σ (Å) ϵ̃/R (K)

C2Bz 3.080 3.797 287.4

The pure component properties for PC-SAFT were obtained from [181], including the
correlation for the properties of components larger than C20:

m = 0.0249MM + 0.9711 (2.18a)

mϵ̃ = 6.5446MM + 177.92 (2.18b)

mσ3 = 1.6947MM + 23.27 (2.18c)

where MM is the molecular weight of the alkane component. For associating components
two additional pure component parameters are necessary, the volume of association β̃ÃiB̃i

and the energy of association ϵ̂ÃiB̃i . Only water was considered as associating for PC-
SAFT in this work. For the water component there are a large number of possible
parameters sets when using PC-SAFT. A number of these are compared by Liang [99], the
parameter set used here is from that work using the 4C scheme with a association energy
of ϵ̂/R = 1704.06K and a association volume of β̃ = 0.3048.

For the regression it is necessary that there is a binary interaction parameter. For
the PC-SAFT EoS the Lorentz-Bertholet combining rules are used with a single binary
parameter on the segment energy:

ϵ̃ik =
√
ϵ̃iϵ̃k(1− kik) (2.19)

The combining rules for the other terms do not have an interaction parameter.
The association term used for the SAFT EoS can also be applied to the cubic EoS’s.

This was presented by Kontogeorgis et al. [91] as a cubic plus association (CPA) EoS
and its simplified variant [89] is used here (referred to as only CPA in this work). One
difference between CPA and SRK is that instead of determining the ac and bc from the
critical point, and m̂ from the acentric factor, these terms are regressed to fit the saturated
liquid density and vapour pressure. The pure component parameters are reported in table
2.3.

For CPA with H2S two implementations are given (a and b). Scheme a has the hydrogen
sulphide component defined with a 3B association scheme while scheme b has the hydrogen
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Table 2.3 CPA pure component parameters from [188]

Component ID a/(bR)(K) b(L/mol) m̂ ϵ̃/R(K) β̃

C1 959.028 0.0291 0.44718 N/A N/A
C2 1544.548 0.0429 0.58473 N/A N/A
C3 1896.453 0.057834 0.6307 N/A N/A
C4 2193.083 0.072081 0.70771 N/A N/A
C5 2405.105 0.091008 0.79858 N/A N/A
C6 2640.03 0.10789 0.8313 N/A N/A
C7 2799.762 0.12535 0.9137 N/A N/A
C8 2944.911 0.14244 0.99415 N/A N/A
C10 3190.542 0.17865 1.13243 N/A N/A
C12 3471.038 0.21624 1.19531 N/A N/A
Bz 2867.193 0.07499 0.7576 N/A N/A
Tol 3051.36 0.09214 0.8037 N/A N/A
C2Bz 3192.838 0.10872 0.8539 N/A N/A
H2O 1017.34 0.0145 0.6736 2003.25 0.0692
H2Sa 1590.10 0.0292 0.5022 654.27 0.0583
H2Sb 1878.15 0.0285 0.6027 N/A N/A
CO2 1551.22 0.0272 0.7602 N/A N/A

sulphide described as non-associating, though it is solvating into the water. A number of
other components are described as solvating into water and the cross association volume of
association is a given binary parameter (not regressed) from [188]. The values are reported
in table A.4.

For CPA the vdW1f mixing rules are used with the classical combining rules with a
single kij as in equation 2.2a. This is the only binary parameter used for the CPA EoS.

2.2 Experimental data

To compare the models it is first necessary to regress optimum binary interaction parameters.
For models using NRTL three binary parameters are found for each pair (α̃ij , Cji, and Cij).
For the cubic EoS the vdW1f mixing and classical combining rules both the lij and kij are
fitted. For CPA and PC-SAFT only a single ki,j is fitted. To fit these binary parameters
it is first necessary to select relevant binary pairs. Since this work is focused on the
simulation of heavy oil recovery using steam and solvent it is desired to have asymmetric
hydrocarbon pairs (similar to heavy oil and solvent) and pairs involving carbon dioxide
with heavy hydrocarbons. Since steam is used binary data for water hydrocarbon pairs
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are also necessary. Many simulators do not include hydrocarbon solubility in the aqueous
phase, however it may happen in relevant quantities at the conditions encountered in heavy
oil recovery.

We focused only on the phase envelope calculations in this work (not density or
derivative properties) and as such only saturation point data is used. The experiments to
generate saturation point data are often carried out at the bubble point, in some cases the
incipient vapour phase composition is also recorded. For water-hydrocarbon pairs it is
more common to just measure the solubility of water in the hydrocarbon or the solubility
of the hydrocarbon in the aqueous phase. Both of these are saturation point type data,
though the type of objective function used can differ.

In table 2.4 the temperature and pressure range, and number of data points (both
saturation and with incipient phase composition given), are given for binary pairs of ethane
with a heavy hydrocarbon. Similar tables are given for pairs of propane with a heavy
hydrocarbon (table 2.5) and carbon dioxide with a heavy hydrocarbon (table 2.6). The
binary pairs including water (table 2.7) are split into two rows showing data where the
composition of the aqueous phase is known, or the hydrocarbon phase is known (either
liquid or vapour). Some of the experimental data is measured at conditions where neither
phase is close to pure, these data points are described as bubble points and are given in
brackets (with the number of points with the incipient phase reported given in brackets in
the aqueous phase column).

For clarification the data is split into two types. Experimental data referred to as
saturation point or bubble point (with incipient phase composition) is matched by setting
the temperature and feed phase composition to a constant value and varying the pressure,
while data referred to as compositional is matched by carrying out a flash calculation. Only
binary pairs with water are occasionally treated as compositional all other pairs are treated
as saturation point type.

Often data smoothing is used on experimental data to make the fitting of models simpler.
However this is not done in this work. This meant that there is a significant error range in
the experimental data used with different authors often showing very different results at
the same conditions. This can lead to a more complex regression process as the data is
not smooth and the derivative properties of the data are not smooth. Furthermore a lot of
the experimental data used for some binary pairs is in the close to critical region or where
the change in pressure with composition (P-xy line) is almost vertical. It was therefore
necessary to use a robust regression method.
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Table 2.4 Experimental data for binary pairs with ethane

ID T range (K) P range (bar) Sat data & comp references

C10 277.6-510.9 3.4-117.2 249 125 20, 59, 151, 167, 202
C12 273.2-373.15 3.6-62.8 145 0 96, 97, 105
C16 262.3-453.15 5.4-163.2 233 0 46, 148, 167
C20 264-450.7 5.05-168.5 305 0 60, 141, 167
C22 294.95-367.9 1.7-99.1 119 0 142
C24 300.8-368.7 8.4-144 134 0 140, 148
C28 330-423.2 5.9-164.8 64 4 60, 76, 148, 167
C36 350-573.3 3.68-224.3 79 0 60, 167, 184
C44 373.2-423.2 3.9-29.8 15 0 60

Table 2.5 Experimental data for binary pairs with propane

ID T range (K) P range (bar) Sat data & comp references

C10 277.6 - 510.9 1.7 - 68.9 103 51 80, 153
C12 419.2 - 457.7 4.5 - 76.8 25 25 59
C14 378 - 408 29.7 - 63.7 36 0 165
C20 279.29 - 358.1 4.03 - 32.5 210 0 64
C32 378.2 - 408.2 46 - 93.3 48 0 166
C36 353.1 - 408.2 31.6 - 99.3 44 0 1, 164
C38 378.2 - 408.2 46.2 - 100.8 45 0 164
C40 322.8 - 434.7 20.7 - 133.1 122 0 1, 101, 164
C44 378.2 - 408.2 52.7 - 114.9 48 0 164
C46 378.2 - 408.2 40.3 - 116.3 57 0 164
C54 378.2 - 408.2 74.6 - 136.7 33 0 164
C60 351.7 - 431.3 13.4 - 142.6 114 0 139, 164
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Table 2.6 Experimental data for binary pairs with CO2

ID T range (K) P range (bar) Sat data & comp references

C8 322.4 - 372.5 15.0 - 137.7 48 48 146, 196
C9 315.1 - 418.8 20.3 - 167.7 44 44 22, 80
C10 277.6 - 510.9 3.4 - 188.4 170 170 33, 123, 146, 152
C11 315 - 418.3 23.7 - 200.5 42 42 22
C12 313.2 - 343.2 9.5 - 143 36 10 59, 126
C15 293.2 - 353.2 5.1 - 105.3 85 77 168, 169, 179
C16 297 - 323.2 4.3 - 168.4 32 0 126, 179
C20 310.2 - 473.2 4.6 - 303.5 170 0 54, 61, 78, 126, 159, 162
C24 329.7 - 573.2 9.4 - 301.6 63 10 126, 162, 185
C28 338.5 - 573.5 8.07 - 289.5 80 5 61, 76, 126, 162
C36 344 - 573.3 5.2 - 289.8 65 0 61, 126, 184

Table 2.7 Experimental data for binary pairs with water

ID T range (K) P range (bar) HC phase aq phase references

C1 274.3 - 510.9 0.6 - 1000 179 54 28, 29, 43, 82, 128
48, 98, 118, 158, 201

C2 278.1 - 510.9 3.2 - 682 129 35 6, 27, 43, 84, 118, 150
C3 274.2 - 663.2 1.0 - 1872 53 464 7, 31, 36, 47, 87, 93
C4 278.2 - 707 1.0 - 3101 120 233 12, 23, 154, 180, 200

11, 36, 45, 95, 157, 195
C5 273.2 - 625.2 1 - 678.9 4 55 63*12, 40
C6 273.2 - 699 1 - 2270 103 18 63*129, 200
C10 293.2 - 613 0.1 - 251 45 (22) 17 (22) 56, 70, 163, 182, 194
C12 298.2 - 633 1 - 249.2 15 (23) 15 (23) 56, 163, 176, 182
Bz 273.2 - 573.2 0.04 - 810 100 155 63*8, 40, 125
Tol 273.2 - 583.2 0.015 - 461 72 113 63*40, 83, 125
C2Bz 273.2 - 568.1 1.0 - 107 39 66 63*32, 132
CO2 273.2 - 573.2 4.7 - 1200 243 342 19, 68, 85, 189

10, 49, 50, 74, 160
84, 106, 127, 161, 183

H2S 273.2 - 444.3 0.3 - 344 153 188 21, 30, 35, 170, 198
* Reference to list of other references (with compiled data).
Numbers in brackets indicate the number of experimental data points treated as saturation
points rather than compositional points.
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2.3 Regression method

To evaluate which model is best suited, the experimental data is compared to the correlation
from the model. To do this it is necessary to first fit the binary parameters. Some of the
experimental data was difficult to reproduce for some of the models, or was in difficult
to calculate areas such as the critical region. In some cases it was not possible for a data
point to be reproduced with a model (i.e. experimental two phase data is in a region where
the model predicts only a single phase). These issues lead to a complex objective function,
where the derivative properties are often discontinuous. Since no initial estimates are used
for the model binary parameters it is necessary to have a very robust regression method.

To regress the parameters, each data point is assigned to a deviation function. A data
point is considered once for a saturation pressure, once for an incipient phase composition,
and once for the composition of one phase at a given temperature and pressure. Therefore
if the experimental data reported both the saturation point pressure and incipient phase
composition, then two deviation functions are used. The objective function to minimise is
taken as the l2 norm of the system of equations defining the deviations:

Θ =

√√√√NDat∑
k=1

θ2k (2.20)

where if the experimental data point is treated as a saturation point then the pressure
deviation is defined as a relative deviation:

θk =
Pexp,i − Pcalc,i

Pexp,i

(2.21)

The pressure is calculated using a given thermodynamic model at a given temperature
and bulk phase composition. If the incipient phase composition is also reported then an
absolute deviation is used:

θk = yexp,i − ycalc,i (2.22)

For data that is treated as compositional (both VLE and LLE), a relative error is used,
ensuring the component present in a smaller amount is used on the denominator:

θk =
yexp,i − ycalc,i

max(yexp,i, 1− yexp,i)
(2.23)

The experimental composition is found by carrying out a flash calculation at a given
temperature and pressure. As well as the objective function, the absolute average deviations
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are evaluated based on the summations of the absolute of the deviations defined in equations
2.21, 2.22, and 2.23.

For some of the binary pairs much of the experimental data is located close to a critical
point. This means that calculating the saturation point corresponding to this data is not
simple. The approach given by Michelsen and Mollerup [117] to find a saturation point is
used in this work as a first attempt. If the composition of the incipient phase is specified
in the reference used then it is used as an initial estimate at the experimental pressure.
Otherwise an initial estimate is generated from the Wilson K-factor approximation

lnKi = ln

(
Pc,i

P

)
+ 5.373 (1 + ωi)

(
1− Tc,i

T

)
(2.24)

where, at a bubble point, the initial incipient phase composition could be estimated from
yi = Kizi for each component.

Following initialisation 10 steps are taken using an ideal solution approximation. As
described in section 1.3, the ideal solution approximation assumes that the composition
derivative of the fugacity coefficient is zero. At a bubble point Newton’s method is used
on:

f =
C∑
i=1

ziKi − 1 = 0 (2.25)

to find the saturation point based on the thermodynamic model used. One iteration of the
method proceeds as

1. Evaluate the K-factors at the current pressure and composition

lnKi = ln ϕ̂i,l(z, P )− ln ϕ̂i,v(y, P )

2. Evaluate the equation 2.25.

f =
C∑
i=1

ziKi − 1 = 0

If suitably close to zero then output result.

3. Evaluate the pressure derivative of equation 2.25

df
dP

=
C∑
i=1

ziKi

(
∂ ln ϕ̂i,l

∂P
− ∂ ln ϕ̂i,v

∂P

)
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4. Take the Newton step

P n+1 = P n − f/
df
dP

5. Update the incipient phase composition

yn+1
i = ziKiP

n+1

6. Check if the result is trivial. If not trivial then another iteration can be taken.

Often for nearly ideal mixtures, or if the thermodynamic model is extremely close to the
experimental data, then the result would be found without significant problems. However
in many cases it is necessary to switch to a second order method to find the saturation
point. The system of equations used is:

fi = lnKi + ln ϕ̂i(T, P,y)− ln ϕ̂i(T, P, z) = 0, ∀i (2.26a)

fC+1 =
C∑
i=1

(yi − xi) = 0 (2.26b)

with Ki = ln(yi/xi). The full Jacobian is found based on this system of equations.
Generally the solution is found within 5 second order iterations. After 10 second order
iterations, or if the trivial solution is found then the method is abandoned. This was found
to be common close to the critical region. As such a backup method was implemented.

Two further methods were attempted to find the the model saturation point at the same
temperature as found experimentally. The first is to construct the whole phase envelope
and interpolate to the experimental temperature. This starts from an easy initial point then
generates extremely accurate initial estimates for other points on the phase envelope using a
cubic polynomial extrapolation as described by Michelsen [108]. With the phase envelope
constructed it is simple to interpolate and find the exact temperature and composition
corresponding to any pressure. Unfortunately a number of issues with numerical precision
were encountered when finding the vapour phase of mixtures containing a light hydrocarbon
with a heavy hydrocarbon, as such this method was abandoned in favour of a more laborious
search using stability analysis.

Stability analysis as described in equation 1.29 is carried out with a number of initial
estimates. The method described by Michelsen [109] is used with the modified tangent
plane function. As initial estimates for stability analysis, the pure component compositions
are used along with an ideal gas based on the feed phase, and a liquid based on the Wilson
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K-factors. If the incipient phase composition is specified with the experimental data then
it is also used as an initial estimate. The objective function to minimise is the modified
tangent plane

tm(W ) = 1 +
C∑
i=1

Wi (lnWi + ln ϕ̂(T, P,W )− ln zi − ln ϕ̂i(T, P, z)) (2.27)

the successive substitution method is used to obtain initial estimates

lnW
(k+1)
i = ln zi + ln ϕ̂i(T, P, z)− ln ϕ̂i

(
W (k)

)
(2.28)

The successive substitution methods is used with two steps of acceleration using the
dominant eigenvalue method [130]. A switch is then made to a second order minimiser.
Newton’s method is used with the ideally scaled Hessian and gradient described by
Michelsen and Mollerup [117]. The restricted step method is used to ensure convergence
to a minimum.

At the saturation point the minimum in the modified tangent plane distance is zero.
As such if any of the trial phases found a negative tangent plane distance at one pressure
and no negative solution is found at a different pressure, then bounds could be set on
the problem and a method to guarantee convergence to the saturation point used (e.g.
bisection), with the pressure the only variable. This is used until the solution is found to a
suitable tolerance. Initial bounds are also set on the pressure defined as Pmax = 2× Pexp

and Pmin = 0.5× Pexp. If there is no phase transition within this range then the data point
is described as a failed data point.

If instead of a saturation point, the experimental data is treated as a compositional
point, then a flash is carried out at the specified temperature and pressure. Stability analysis
is used to generate a trial phase and the Rachford-Rice equations solved for the phase
fraction (and initial composition). The conventional second order two-phase flash method
is then used [117]. Stability analysis is then tested again, if the two-phase mixture is
found to be unstable then the multiphase Rachford-Rice equations are solved for the three
phases (returning the solution to two-phase) and the conventional restricted step method
is used for final two-phase convergence. If no trial phase could be identified then the
input composition is changed. The trial for the input composition are first based on the
composition data (i.e. at the halfway point between the two reported phases). Subsequent
trials are then moved from an initial estimate of z1 = 0.5 up and down by 0.1 at a time.
Giving up to 12 initial estimates (including pure component and the first based on the
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experimental data). If no two-phase solution is found then the point is considered to have
failed.

To incorporate the failed data points into the objective function it is necessary to give
them a set value. This is set at θk = 1.1, to ensure that this is not better any of the successful
data points where a maximum successful deviation of θk = 1 is set.

2.4 Results and Discussion

Due to the large number of results it is not possible to present all of them. Instead the
different systems will be viewed individually with the ethane and propane with large
hydrocarbons in section 2.4.1. Binary pairs including carbon dioxide will be presented
in section 2.4.2 and finally binary pairs involving water will be presented in section 2.4.3.
For each system a few select examples will be used to demonstrate the results. The full
tabulated binary parameters and deviations are given in appendix A

2.4.1 Asymmetric Hydrocarbons

The first set of systems investigated are mixtures of alkanes with ethane. The experimen-
tal data ranges and binary pairs investigated are presented in table 2.4. The optimum
interaction parameters are presented in appendix A in table A.1.

The lightest pair considered is n-decane with ethane. Figure 2.1 presents the P-x enve-
lope for this binary pair (along with experimental data) at 277.6K and 510.9K. At the lower
temperature all of the models are reasonably accurate, though problems are immediately
evident when using the zero pressure mixing rules (MHV1). At low temperatures there is
no obvious difference between SRK and PR, however as the temperature is increased a
small deviation at high pressures is noticeable. Temperature independent binary parameters
do not allow for the high temperature bubble point curve to be matched accurately, except
when using the PC-SAFT EoS.

The difficulty with the zero pressure limit models (MHV1 and MHV2), when combined
with the NRTL gamma model, is further displayed in figure 2.2 between the binary of
ethane with n-octacosane. For such a pair the zero pressure mixing rules are completely
unsuitable at high ethane mole fractions, where a liquid liquid split is predicted at high
temperatures. The results for MHV2 are similar to (and often worse than) MHV1. Similar
problems are evident when the zero pressure mixing rules are combined with UNIFAC,
with a number of models being developed in an attempt to overcome these issues (e.g.
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Fig. 2.1 Plot showing the P-x projection of ethane with n-decane at 277.6K (solid lines, circles)
and 510.9K (dashed lines, crosses). The models used are PR with kij (black), PR with MHV1
(red), PR with HV using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan). The
experimental data is from Reamer and Sage [151]. The parameters used are given in table A.1.

LCVM [16] GCVM [39] or CHV [131] a more comprehensive list is given by Kontogeorgis
and Folas [88]). It has been suggested that the poor results from the zero pressure models
are due to the two combinatorial contributions (one from the cubic EoS and one from
the activity coefficient model) being dissimilar in size [90]. NRTL has no combinatorial
contribution and, even when using fitted parameters, it can be concluded that NRTL is not
suitable for combination with MHV1 or MHV2 for representing asymmetric hydrocarbon
pairs.

In figure 2.2 there are larger deviations between the models. Much of the experimental
data is in the region very close to pure ethane (not that presented in the figure). The
resulting phase envelope is therefore distorted as the models attempt to match the near
critical data, often causing them to miss the data far from the critical point. The only
model which matches the bubble point data accurately is PC-SAFT in the presented figure,
the vdW1f mixing rules with an lij also match the bubble point data, though at the cost
of accuracy in the near pure ethane region. PR and SRK with the vdW1f mixing and
combining rules with two binary parameters are excellent for modelling these mixtures.
The infinite pressure gE mixing rules are acceptable though not excellent for this pair.
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Fig. 2.2 Plot showing the P-x projection of ethane with nC28 at 473.3K (solid lines, circles) and
573.15K (dashed lines, crosses). The models used are PR with kij (black), PR with MHV1 (red),
PR with HV using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan). The
experimental data is from Huang et al. [76]. The parameters used are given in table A.1.

The average results for all of the pairs are reported in table 2.8. This table shows: the
total number of failed data-points, the AARD in pressure over all of the experimental data
points (from equation 2.21); the MAD over all data points (from equation 2.22); and the
objective function for all data-points (from equation 2.20). Though the objective function
has no real significance, it is useful to present which model is best suited to these binary
pairs. This shows that the worst performing models on average, are the zero pressure type
mixing rules. The vdW1f mixing rules are very accurate, particularly with an lij or two
binary parameters. The three best models are vdW1f with 2 BIPs, HV with NRTLHV and
PC-SAFT.

Similar to ethane and n-decane the propane and n-decane binary pair can be modelled
effectively by each of the models, as demonstrated on figure 2.3. In this figure we include
PR with HV and NRTL, it is clear for this simple pair that this model is as good as the others.
PC-SAFT is the best for modelling both the low temperature and high temperature data.
The other models struggle without a temperature dependent binary interaction parameter.
However PC-SAFT does slightly miss the critical region predicted by the other models.

A P-T projection is given in figure 2.4 instead of a P-x plot (this is because much of the
experimental data is gathered at a constant composition rather than constant temperature).
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Table 2.8 Result summary for binary pairs of ethane with a large n-alkane. Results for SRK not
included in summary. Asterisk is used to highlight the recommended models.

Model Failures P deviation (%) y deviation (×102) Objective function

PR (kij) 5 8.38 0.88 5.65
PR (lij) 4 5.85 0.87 3.79
PR 2 BIP* 2 3.66 0.88 2.69
PR MHV1 1 11.42 0.75 6.08
PR MHV2 2 31.96 0.79 15.14
PR HV 1 6.61 0.90 4.02
PR HV NRTLHV* 1 5.00 0.85 2.87
PC-SAFT* 1 4.79 0.62 3.03
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Fig. 2.3 Plot showing the P-x projection of propane with n-decane at 277.59K (solid lines, circles)
and 510.93K (dashed lines, crosses). The models used are PR with kij (black), PR with HV using
NRTL (red), PR with HV using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan).
The experimental data is from Reamer and Sage [153]. The parameters used are given in table A.2.
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It is noticeable that each of the models predicts significantly different high pressure, high
temperature regions of the phase envelope. Though the experimental temperature is over a
reasonably large range as described in table 2.5 (between 279.29K and 358.1K), it does
not describe the high pressure and high temperature regions. In this instance the red line
indicates the vdW1f mixing rules with only an lij . It is clear that it is as capable as the other
models for this binary pair. PC-SAFT predicts a higher cricondenbar and cricondentherm
than the other models at 25.4% propane, though without experimental data it is not clear if
this is accurate or not. There is very little difference between SRK and PR.
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Fig. 2.4 Plot showing the T-P projection of propane with nC20 at 94.97% propane (solid lines,
circles) and 25.4% propane (dashed lines, crosses). The models used are PR with kij (black), PR
with lij (red), PR with HV using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan).
The experimental data is from Gregorowicz et al. [64]. The parameters used are given in table A.2.

Propane with both n-decane and n-eicosane are relatively simple pairs and can be
adequately represented by all of the models (excluding the zero pressure excess Gibbs
energy models). However more significant differences are found with more asymmetric
pairs as shown by figure 2.5. In this figure the red line represents the HV model with NRTL.
There are significant differences in this pair between the HV with NRTL model and the
other models, it predicts much lower bubble point pressures than all of the other models.
This may be due to the experimental data used being very close to the critical point of
the mixture leading to poor representation at lower propane mole fractions. This is a risk
when using the very flexible NRTL model with its 3 binary interaction parameters. Even



36Model Comparison for Phase Equilibrium in Heavy Oil/Steam/Solvent Related Systems

though the models for NRTL and NRTLHV are similar, the results for HV with NRTHHV

are much closer to the other models and it is in fact the best at correlating the experimental
data with an average deviation in pressure of less than 2 percent. The PC-SAFT model is
not accurate for this binary pair, this is possibly due to poor correlation of the C36 pure
component parameters for PC-SAFT.
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Fig. 2.5 Plot showing the P-x projection of propane with nC36 at 378.2K (solid lines, circles) and
408.2K (dashed lines, crosses). The models used are PR with kij (black), PR with HV using NRTL
(red), PR with HV using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan). The
experimental data is from Schwarz and Nieuwoudt [164]. The parameters used are given in table
A.2.

The other optimal models for each of the asymmetric binary pairs with experimental
data close to the critical point are the vdW1f mixing rules with two binary interaction
parameters. This is shown in figure 2.6 which is for the most asymmetric pair considered.
For this mixture none of the models are excellent with large deviations for each. For this
pair there is experimental data close to the critical point and some further from the critical
point from Peters et al. [139]. The overall best model is the vdW1f mixing rules with two
binary parameters. One interesting difference between SRK and PR is that SRK predicts a
LLE region at a much lower pressure than PR. This is presented in figure 2.6 where a high
pressure LLE region for SRK is found at less than 300 bar while for PR the region is above
300bar. The excess Gibbs energy mixing rules predict the region at much higher pressures.
Without experimental data in this region it is not clear which model is more accurate.
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However the LLE region is extremely sensitive to the binary interaction parameter used
(with larger values of kij creating a larger LLE region).
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Fig. 2.6 Plot showing the P-x projection of propane with nC60 at 378.2K (solid lines) and 408.2K
(dashed lines). The models used are PR with kij (black), PR with kij and lij, PR with HV using
NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan). The experimental data is from
Schwarz and Nieuwoudt [164]. The parameters used are given in table A.2.

The results for the binary pairs of propane with a large n-alkane are summarised in
table 2.9. For the asymmetric hydrocarbon pairs, the models which are suitable are: the
vdW1f mixing rules with two binary interaction parameters; the HV NRTLHV model, often
with the non-randomness parameter close to zero; and PC-SAFT in the region far from
the critical point, but only for pairs where the pure component parameters are fitted to
experimental data rather than an extrapolation.

2.4.2 Carbon Dioxide

Mixtures of carbon dioxide with alkanes are more dissimilar and exhibit LLE at much
lower asymmetries and pressures than mixtures of ethane or propane with large alkanes.
The quadrupolar moment of CO2 is very large, models which take this quadrupolar term
into account have been demonstrated to be well suited for modelling CO2 [66]. However
the addition of a quadrupolar term is not simple. Though adequate results are obtained
the additional complexity is not necessarily desirable depending on the mixture being
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Table 2.9 Result summary for binary pairs of propane with a large n-alkane. Results for SRK not
included in summary. Asterisk is used to highlight the recommended models.

Model Failures P deviation (%) y deviation (×102) Objective function

PR (kij) 5 7.43 0.44 11.02
PR (lij)* 1 4.58 0.46 6.61
PR 2 BIP* 1 3.07 0.40 5.26
PR MHV1 0 6.39 0.39 10.79
PR MHV2 6 24.23 0.53 28.05
PR HV 12 8.60 0.50 11.00
PR HV NRTLHV* 1 3.58 0.46 6.88
PC-SAFT 0 7.65 0.62 9.52

considered. It is possible to represent mixtures containing CO2 without such complex
models. For example the mixture of n-C8 with CO2 in figure 2.7 is adequately represented
with most of the considered mixing rules.

Though the use of the vdW1f mixing rules with an lij alone is not suitable it is of use
when combined with a kij . The best model for fitting this data is PC-SAFT with a kij.
Using the zero pressure mixing rules (MHV1 or MHV2) can lead to an LLE region at
low CO2 compositions, though they are not shown in figure 2.7. For larger asymmetries a
separate LLE is predicted at high pressures and high CO2 concentrations by other mixing
rules.

Figure 2.8 demonstrates the predicted CO2 rich LLE region for the binary pair of CO2

with n-decane. The region is predicted at much higher pressures by the excess Gibbs
energy mixing rules. With the regressed binary parameter, the use of PR with the vdW1f
mixing rules on the kij leads to the prediction of an LLE region which coincides with the
VLE region for this mixture, this is very sensitive to the binary parameter used. When
using two binary parameters this region is predicted at a higher pressure. There is no
experimental data available for the LLE region and the prediction from PR with the vdW1f
mixing rules is likely an error (though the given parameter fits the experimental data
most accurately). There is a significant difference between SRK and PR, especially for
the pressure expected for the LLE critical point. The use of the more complex HV with
NRTLHV leads to generally worse results than the simple vdW1f mixing rules. If the HV
with NRTLHV mixing rules used the temperature dependence describe in equation 2.13
then it could at least reproduce the results from the vdW1f mixing rules. More significant
difference between the models can be found with more asymmetric pairs such as shown in
figures 2.9 and 2.10.
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Fig. 2.7 Plot showing the P-x projection of carbon dioxide with nC8 at 313.2K (solid lines) and
372.5K (dashed lines). The models used are PR with kij (black), PR with kij and lij, PR with HV
using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan). The experimental data
is from Weng and Lee [196] (blue), and R. Jimenez-Gallegos and Elizalde-Solis [146] (red). The
parameters used are given in table A.3.
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Fig. 2.8 Plot showing the P-x projection of carbon dioxide with nC10 at 510.93K (solid lines) and
277.59K (dashed lines). The models used are PR with kij (black), PR with kij and lij, PR with HV
using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan). The experimental data is
from Reamer and Sage [152]. The parameters used are given in table A.3.
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Fig. 2.9 Plot showing the P-x projection of carbon dioxide with nC20 at 373.2K (solid lines) and
310.2K (dashed lines). The models used are PR with kij (black), PR with kij and lij, PR with HV
using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan). The experimental data is
from Sato et al. [162] (blue), Gasem and Jr. [61] (red), and Huie et al. [78]. The parameters used
are given in table A.3.

There are significant differences between the vdW1f mixing rules, PC-SAFT and the
HV with NRTLHV for both figures 2.9 and 2.10. The best model in general for both of
these mixtures is the vdW1f mixing rules with two binary interaction parameters (though
with only a kij the results are often excellent). PC-SAFT can struggle in some regions
though it is excellent for much of the phase envelope as well.

The results are summarised in table 2.10. In general it is possible to conclude that
for mixtures of CO2 with hydrocarbons that the simple cubic EoS’s with a single kij or
two binary parameters with the vdW1f mixing rules are optimal. There are no significant
advantages of using the HV with NRTLHV mixing rule in spite of its three binary interaction
parameters. PC-SAFT is generally accurate though there are some indications of problems
for the mixture presented in figure 2.9. Additional pure component terms to account for
the quadrupolar terms have not been investigated in this study.
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Fig. 2.10 Plot showing the P-x projection of carbon dioxide with nC36 at 573.2K (solid lines) and
373.2K (dashed lines). The models used are PR with kij (black), PR with kij and lij, PR with HV
using NRTLHV (blue), PC SAFT with kij (green) and SRK with kij (cyan). The experimental data is
from Tsai et al. [184] (blue) and [61] (green). The parameters used are given in table A.3.

Table 2.10 Result summary for binary pairs of CO2 with a large n-alkane. Results for SRK not
included in summary. Asterisk is used to highlight the recommended models.

Model Failures P deviation (%) y deviation (×103) Objective function

PR (kij)* 40 8.53 8.76 8.15
PR (lij) 128 17.24 6.66 15.03
PR 2 BIP* 22 6.14 7.74 5.89
PR MHV1 31 24.53 10.31 11.78
PR MHV2 77 33.65 6.35 16.78
PR HV 7 19.20 12.90 8.30
PR HV NRTLHV* 20 10.65 8.72 6.41
PC-SAFT 58 6.32 11.90 9.00
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2.4.3 Water

Some more complex systems involving water are also investigated. In general the vdW1f
type mixing rules are not considered to be suitable for these mixtures. To remedy these
difficulties some complex models have been developed (e.g. CPA).

The first example considered is the mixture of carbon dioxide with water. This is
presented in figure 2.11. For this mixture, the vdW1f mixing rules with only a single
parameter is not suitable, however reasonable results (accurate to within an order of
magnitude) are obtained when using two parameters.
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Fig. 2.11 Plot showing the CO2 in the aqueous phase (solid) and water in the CO2 rich phase
(dashed) at 298.15K. The models used are SRK with kij (black), SRK with kij and lij (red), SRK
with HV and NRTLHV (blue), CPA with kij (yellow), CPA with kij and solvation, β = 0.1836,
(green) and PC-SAFT with kij (cyan). Experimental data from [68] (circles), [189] (crosses), [85]
(diamonds), [74] (plus sign), and [84] (asterisk).

The most accurate models are the excess Gibbs energy mixing rules, both the MHV
types and the HV type. For CPA two models are considered, the first with only the water
considered as associating, the second with a fitted cross-association volume with CO2

solvating into the water. The cross association energy is one half of the water association
energy. For PC-SAFT only the water is considered associating. With only the water
considered as associating, the model is inaccurate at representing the CO2 rich phase. The
use of solvation does improve the representation of the CO2 rich phase but is still not
as accurate as the excess Gibbs energy type models. PC-SAFT suffers from the same
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drawback as CPA without solvation for the CO2 and cannot adequately represent both
liquid phases simultaneously.

The mixture of water with methane can be well represented by most of the models.
This is demonstrated in figures 2.12 and 2.13. The vdW1f mixing and combining rules
with a single parameter on the kij is capable of representing either the water in hydrocarbon
rich phase or the hydrocarbon in the aqueous phase, but not both simultaneously. However
using both a kij and lij, it is possible to adequately represent both phases at low temperature,
although more significant deviations are encountered at high temperatures as shown in
figure 2.13.
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Fig. 2.12 Plot showing C1 in the aqueous phase (solid line) and water in the C1 rich phase (dashed)
at 298K. The models used are SRK with kij (black), SRK with kij and lij (red), SRK with HV and
NRTLHV (blue), CPA with kij (green) and PC-SAFT with kij (cyan). Experimental data from [43]
(circles), [29] (crosses), [28] (diamonds), [118] (plus sign), and [201] (asterisk).

The excess Gibbs energy type mixing rules are suitable at low pressures, however there
are some small deviations at very high temperature (510.9K). The best model for methane
with water is CPA or PC-SAFT, these model can represent the equilibrium at all conditions
with only a single binary parameter. As the size of the hydrocarbon is increased from
methane to n-butane, the simple vdW1f mixing rules become less suitable. For mixtures
of water with butane the representation of both the aqueous and hydrocarbon rich phases
simultaneously is not accurate using any of the models at all temperatures. This is shown
in figures 2.14 and 2.15. The use of temperature dependent parameters leads to more
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Fig. 2.13 Plot showing C1 in the aqueous phase (solid line) and water in the C1 rich phase (dashed)
at 510.93K. The models used are SRK with kij (black), SRK with kij and lij (red), SRK with HV
and NRTLHV (blue), CPA with kij (green) and PC-SAFT with kij (cyan). Experimental data from
Olds et al. [128]

accurate results, but is not considered here. In this instance the vdW1f mixing rules with a
kij and lij is not suitable over a large temperature range, though can be accurate for a small
temperature range at low pressures (P<100 bar).

The most accurate models are PC-SAFT, CPA and HV with NRTLHV. Each of these is
suitable without temperature dependent binary interaction parameters, though HV with
NRTLHV does match the low temperature experimental data better at the cost of larger
deviations at higher temperatures.

For mixtures of water with n-decane (shown in figure 2.16) there is a low pressure VLE
and a high pressure LLE region (which are separate). There is not much data available at
elevated temperatures on the water rich phase composition. However based on the data
available MHV1 is the most accurate. Of the other models HV with NRTLHV is the most
accurate with CPA also suitable. The vdW1f mixing rules are extremely poor for this
mixture. PC-SAFT has results similar to CPA.

More complex mixtures where solvation is possible include aromatics with water. The
example of benzene with water is presented in a P-x diagram in figure 2.17. The results
at very high temperature for CPA are not suitable. The best model for this binary are
the excess Gibbs energy type mixing rules. At this temperature (573.2K) there is a low
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Fig. 2.14 Plot showing C4 in the aqueous phase (solid line) and water in the C4 rich phase (dashed)
at 310.9K. The models used are SRK with kij (black), SRK with kij and lij (red), SRK with HV and
NRTLHV (blue), CPA with kij (green) and PC-SAFT with kij (cyan). Experimental data from [154]
(circles) and [95] (crosses)
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Fig. 2.15 Plot showing C4 in the aqueous phase (solid line) and water in the C4 rich phase (dashed)
at 510.9K. The models used are SRK with kij (black), SRK with kij and lij (red), SRK with HV and
NRTLHV (blue), CPA with kij (green) and PC-SAFT with kij (cyan). Experimental data from [154]
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Fig. 2.16 Plot showing C10 in the aqueous phase (solid line) and water in the C10 rich phase (dashed)
at 573.2K. The models used are SRK with kij (blue), SRK with kij and lij (green), SRK with MHV1
(cyan), SRK with HV and NRTLHV (red), CPA with kij (black). Experimental data from [70]
(circles) and [194] (diamonds)
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Fig. 2.17 Plot showing the P-x projection of water with benzene at 573.2K. The models used are
SRK with kij (blue), SRK with MHV1 (cyan), SRK with HV and NRTLHV (red), CPA with kij
(black). Experimental data from [40]
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pressure VLE region and a high pressure LLE region. CPA and the vdW type models
represent a continuous envelope, which differs from the excess Gibbs type mixing rules
which can represent two distinct two-phase regions.

The final mixture of interest is the mixture of water with hydrogen sulphide. Both
of these components can be considered as associating. Therefore they are generally very
difficult to accurately model. The majority of the experimental data available is only at very
low pressures, where most models can accurately predict the data (nearly ideal). However
some high temperature, high pressure data is available. Figure 2.18 is a P-x projection at
444.26K.
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Fig. 2.18 Plot showing the P-x projection of water with H2S at 444.26K. The models used are SRK
with kij (blue), SRK with MHV1 (cyan), SRK with HV and NRTLHV (red), CPA with kij (black).
Experimental data from [170] (circles) and [21] (crosses) at 443K.

None of the considered models can accurately match the experimental data. The
flexible excess Gibbs energy type models are the most successful. The use of a single
binary parameter with the vdW1f mixing rules can accurately correlate some of the data
but is inaccurate at elevated pressures. The use of CPA with both water and hydrogen
sulphide treated as associating components can accurately represent the low pressure data
but is inaccurate at elevated pressures. The vdW1f mixing rules with two parameters is as
accurate as the more complex models.

The summary of results for the water containing systems is reported in table 2.11. For
CPA the results are shown for the model both with and without solvation. In the case of
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Table 2.11 Result summary for binary pairs of water with hydrocarbons. The error are reported
under each heading where Aq refers to the deviation in the calculation of hydrocarbon content
in the aqueous phase, similarly for HC, DP refers to deviation in bubble point pressure and DY
in incipient phase concentration. Results for SRK not included in summary. Asterisk is used to
highlight the recommended models, note that MHV1 and MHV2 are not recommended due their
problems with asymmetric alkane systems, though are suitable for water mixtures.

Model Failures Aq (%) HC (%) DP (%) DY (×102) Objective fun

PR (kij) 45 78.41 31.85 10.04 14.86 41.49
PR 2 BIP 29 47.82 31.78 23.42 21.78 29.75
PR MHV1 55 31.76 31.56 30.17 28.36 25.27
PR MHV2 62 24.59 32.00 51.17 34.94 25.45
PR HV 72 34.13 44.03 32.41 25.53 28.15
PR HV NRTLHV* 44 25.55 26.72 7.05 19.45 22.75
PC-SAFT* 17 29.75 29.24 15.74 27.05 26.87
CPA* 12 32.87 27.34 11.43 12.76 26.23
CPA Solv* 12 29.02 21.22 11.43 12.76 14.28

the model with solvation the results for the pairs without solvation are also included (e.g.
water with methane). Because none of the hydrocarbons considered here is very large the
zero pressure mixing rules are suitable. The most consistently accurate model is HV with
NRTLHV. However CPA with solvation for some pairs is also very accurate. PC-SAFT is
accurate for some mixtures, however struggles without additional terms for solvation or a
quadrupolar term for some mixtures.

2.5 Conclusion

A large number of models have been tested with a large number of systems. There are
a number of conclusions which can be drawn from the results. The first is that it is not
suitable to use the zero pressure models (MHV1 and MHV2) with NRTL for binary pairs
of highly asymmetric hydrocarbons. Similar problems are encountered when using other
activity coefficient models (e.g. UNIFAC).

It is suitable to have only a single binary parameter (kij) on only slightly asymmetric
hydrocarbons using the vdW1f mixing rules. However on very asymmetric hydrocarbon
mixtures it is necessary to include a binary parameter on the lij term. For mixtures
containing CO2 with a hydrocarbon, the vdW1f mixing rules are superior to all other tested
mixing rules. With only a single parameter on the kij it is possible to obtain accurate results
up to even n-C36. A second parameter does not significantly improve the results.
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For mixtures of water with methane or ethane it is possible with the vdW1f mixing
rules, when using two binary parameters, to represent both phases accurately at low- to
moderate- pressures. As the length of the carbon chain increases to three or four, the use of
a parameter on the lij term adds very little benefit and it is necessary to use more complex
mixing rules to represent both phases simultaneously over a wide temperature range. The
vdW1f mixing rules cannot represent both the CO2 and water rich phases in the binary
pair containing both. For mixtures of water with hydrogen sulphide, a single parameter
leads to inaccurate results, however with two parameters the results are similar to the more
complex models.

Two infinite pressure limit models are considered in this work. The first is the HV with
the standard implementation of NRTL, the second is HV with a modified NRTLHV. In
almost all cases considered the second model is more successful, and it has the additional
benefit of being reduced to the vdW1f mixing rules for hydrocarbon containing mixtures.
For asymmetric hydrocarbon binary pairs, the models are suitable though there are a large
number of parameter sets which produced similar accuracy in the results, but different
phase envelopes. The use of three parameters allows the models to be very flexible,
however this also requires a lot of experimental data to ensure the correct parameter set is
used. The models are generally suitable for CO2 with hydrocarbons although the results
are often not as good as the simple vdW1f mixing rules.

For mixtures containing water and hydrocarbons the use of HV with NRTLHV is capable
of representing both phases simultaneously, although results at very high pressures are not
as good as CPA. The model is the best for mixtures of water with CO2 and water with H2S.
The energy terms do not need to be made temperature dependent (although temperature
dependence will lead to more accurate results in the regressed region).

The CPA model was not considered for the hydrocarbon pairs. For non-associating
components it is identical to SRK, although the pure component parameters (ai, bi and m̂i)
are generally determined by fitting to the experimental vapour pressure and liquid density
rather than from the critical point and acentric factor as is done for SRK. For mixtures
of water with light hydrocarbons, CPA is very accurate using a single binary parameter.
However it is not accurate at high temperatures for long chain hydrocarbons with only
a single binary parameter. For mixtures of water with CO2 solvation is necessary, and
the results are often not as accurate as the excess Gibbs energy models. For mixture of
water with H2S where both components are associating, CPA is not as accurate as the
excess Gibbs models, and is not much better than the vdW1f mixing rules with two binary
parameters. As the number of associating components increases, the computational cost of
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CPA increases significantly as the solution of the volume root requires a minimisation in
an inner loop. Mixtures containing water and a solvating hydrocarbon can be accurately
represented using CPA, however the results are normally not as good as HV with NRTLHV .

PC-SAFT is tested on all binary pairs. For the asymmetric hydrocarbons it is accurate
with only a single binary parameter. However for the binary pairs containing very large
hydrocarbons some of the results are poor. It is suspected that this may be due to the linear
extrapolation used to determine the pure component parameters for C20+. For CO2 the
model is accurate with results similar to the vdW1f type mixing rules. When modelling
water there is a large number of different pure component parameters available. In general
the results are not as good as when CPA is used however are often much better than the
vdW1f type mixing rules.

The best results for hydrocarbon pairs are obtained using the vdW1f mixing rules with
a lij or PC-SAFT when accurate pure component data is available. For mixtures of CO2

with hydrocarbons the vdW1f mixing rules with a kij are best. For mixtures of water with
small hydrocarbons CPA and PC-SAFT are the most accurate. For all other mixtures the
flexible HV with NRTLHV mixing rules are the most accurate. For systems containing
mixtures of water with short and long chain hydrocarbons with CO2 and H2S (commonly
found in oil reservoirs) it would be best to use a model which uses the above recommended
mixing rules for each pair. The most simple implementation would use the vdW1f type
mixing rules for hydrocarbon pairs and pairs with CO2 and a hydrocarbon, while using
the more flexible HV with NRTLHV when sufficient experimental data is available. CPA
or PC-SAFT could also be used, though there are a number of issues with implementing
these models in a reservoir simulation, including that they are much more computationally
demanding.



Chapter 3

Multiphase Isenthalpic Flash using the
Conventional Flash Framework

3.1 Introduction

The conventional equilibrium problem is the isothermal flash, with (T, P, z) specified.
However in some cases the temperature is not known and instead an energy is specified. A
related equilibrium problem is the isenthalpic flash, with (H,P,z) specified. The solution
to the isenthalpic flash is the global maximum of the entropy. The same tangent plane
stability analysis as discussed in section 1.3 can be used to check if a new phase can be
introduced.

The isenthalpic flash problem is relevant to a number of industrially important processes.
It can be used to describe adiabatic expansion processes and steady state flow. There is
renewed interest in its applicability to the simulation of thermal recovery of heavy oil, e.g.
using steam injection [72]. For this thermal simulation it is necessary to add an energy
balance to the system of equations used to carry out transient reservoir simulation. An
additional variable must also be added, this is often chosen as either the temperature or
the internal energy. When specifying the temperature, problems can be encountered for
narrow boiling mixtures, as the energy and volume can change dramatically due to a small
change in the temperature. Instead it can be preferable to use internal energy as a variable
leading to an energy based flash (often isenthalpic flash) [17].

Isenthalpic flash problem can be solved with general thermodynamic models like EoS’s.
They provide a consistent and accurate description of fluid phase behaviour over a wide
temperature and pressure range. There is a desire to use EoS’s to simulate the production
from oil reservoirs using thermal recovery techniques, especially when solvents are used
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in combination with steam injection. However, flash calculation with an EoS is more
complex than ideal solution models, and can become a bottleneck in the simulation speed.
As a trade-off, one can limit the number of grid blocks in a simulation. Most commercial
thermal reservoir simulators (e.g. CMG STARS) use temperature dependent K-value
correlations instead of an EoS. In such a case it is common to use a correlation for the
residual enthalpy of the phases, which is not always thermodynamically consistent with the
employed K-value correlation. The system in such a situation reduces to an ideal solution
where a simplified procedure can be used.

Most early work on the isenthalpic flash problem focused on calculations for two
phases (e.g. [15]). The first fully multiphase implementation was described by Michelsen
[111], where both a first order direct substitution approach and a second order approach
were presented. The direct substitution algorithm has been investigated by a number of
authors. Alternatives to the acceleration were suggested by Agarwal et al. [3] along with a
combined approach using direct substitution and a nested isothermal flash. Carrying out
simultaneous phase split and stability analysis calculations was presented by Gupta et al.
[69] as an alternative to the sequential approach to the phase split calculation and stability
analysis, this was further examined by Zhu and Okuno [204]. Narrow boiling fluids were
investigated by Zhu and Okuno [203] who suggested using bisection for degenerate cases.
Heidari et al. [72] used the negative flash to avoid stability analysis.

For nearly ideal mixtures direct substitution is rapidly convergent, however the rate
of convergence is slow for non-ideal mixtures and may even become divergent. Large
scale simulation may involve millions of separate flash calculations. The linear rate of
convergence and lack of a guarantee of convergence can be problematic for simulation.
A robust approach is required and a more rapid second order approach desired. One
possible solution is the direct maximisation of the entropy. This was used by Brantferger
et al. [17] for reservoir simulation with a robust implementation developed by Sun et al.
[178] where the cost was compared to isothermal flash. Michelsen [115] demonstrated
a general solution strategy for two-phase isenthalpic flash, as well as several other state
function based flash specifications. He proposed to use a Newton approach for efficiency
with a Q-function maximisation approach for robustness. The Q-function maximisation
approach is essentially a nested loop approach with an isothermal flash in the inner loop
and an outer loop maximising the Q-function to determine the temperature. The Q-function
maximisation is used as a backup when direct solution of the equilibrium equations by the
Newton approach fails.
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In this work we extend the two-phase work of Michelsen [115] to the general multiphase
isenthalpic flash. For the Q-function maximisation method, challenging cases will be
highlighted and solutions proposed. A full algorithm will be described for the general
solution of the multiphase isenthalpic flash problem, capable of dealing with narrow boiling
and degenerate cases and dynamically adding and removing phases. For thermal recovery
of heavy oil, the general algorithm is tailored by including a separate phase for initialisation
and using the Rachford-Rice type equations to improve early steps in the partial Newton
method with poor initial estimates. For commercial thermal recovery simulators, the
temperature dependent K-factors and separate correlations for heat capacities are typically
used as the thermodynamics model. For this ideal solution case, we propose a formulation
as an extension of the isothermal flash formulation for ideal solutions [107]. It has one
additional equation for the enthalpy balance and can be solved by the Newton approach
in the majority of cases. A nested loop procedure with the outer loop searching for
temperature is used as a fallback method. It should be noted that the ideal solution model
employed in commercial simulators is not always thermodynamically consistent. If the
correlations for K-factors and for heat capacities are consistent, the outer loop can be
treated as a maximisation.

We first present how to solve the multiphase isenthalpic flash for K-factor based
thermodynamics in section 3.2.1. How to solve the general multiphase isenthalpic flash
using full thermodynamics is also presented, with partial Newton (3.2.3), Newton (3.2.2),
and Q-function maximisation (3.2.4) methods described. How each of these methods
can be tailored to thermal simulation of heavy oil production is described in section
3.2.5. A general implementation for each of the described methods is given in section 3.3.
The presented methods are tested on seven isenthalpic flash examples, for both the ideal
solution case and with general EoS based thermodynamics in section 3.4. Each example
is tested over a wide pressure and molar enthalpy range so as to evaluate the robustness
and efficiency of the proposed methods. The computational cost of the isenthalpic flash
is compared with that of the isothermal flash at the same conditions (specified pressure
and converged temperature), showing that the additional cost would not be prohibitive for
reservoir simulation.

3.2 Isenthalpic flash

For a mixture of C components with molar amounts {zi} at pressure P spec and enthalpy
Hspec the aim of isenthalpic flash is to find the number of phases F , with phase fractions
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{βj}, the composition of each phase {xi,j} and the equilibrium temperature T eq. From
table 1.2 and the (S,H, P,n) surface we know that the solution to the isenthalpic flash
corresponds to the maximum in the entropy:

max
S(H,P,n)

R
(3.1a)

subject to the material balance constraints

F∑
j=1

ni,j − zi = 0, ∀i (3.1b)

and non-negativity of any component in any phase

ni,j ≥ 0, ∀i, j (3.1c)

Direct entropy maximisation was investigated by Brantferger et al. [17] and Sun et al.
[178]. However thermodynamic models are commonly solved at a given (T, P,n) for
each phase rather than (H,P,n). The enthalpy is then described as a constraint which
is nonlinear in the variables. Most implementations of isenthalpic flash carry out some
form of constrained maximisation, or simply solve for the equilibrium conditions, with the
enthalpy specification met at the solution.

For any intermediate solution of F phases, stability analysis [109] can check if an
additional phase should be introduced and provide an initial composition estimates for the
new phase. A phase split step is subsequently performed to determine the new equilibrium
distribution at the specified pressure and enthalpy. In this study we employ essentially the
same stability analysis and mainly focus on the variations in the other parts of the flash
procedure.

In many simulations a full EoS is not used. Instead correlations are used to evaluate
both the K-values and the enthalpy of the liquid phases (or enthalpy of vaporisation). The
solution procedure for these ideal solutions is simpler than when using full thermodynam-
ics.

3.2.1 Ideal solution

In the ideal solution approximation it is assumed that the fugacity coefficient for each
component in each phase is available as a function of temperature and pressure ϕ̂i,j(T, P ).
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The residual enthalpy of the phases must also be available using a suitable correlation.
Using the fugacity coefficients, the composition of each phase is found as:

xi,j =
zi

Eiϕ̂i,j

Ei =
F∑

k=1

βk
ϕ̂i,k

(3.2)

with temperature derivatives

∂xi,j
∂T

= xi,j

(
−∂ ln ϕ̂i,j

∂T
− ∂ lnEi

∂T

)
(3.3)

∂ lnEi

∂T
= −

∑F
k βkxik

∂ ln ϕ̂i,k

∂T

zi
(3.4)

and phase fraction derivatives
∂xi,j
∂βk

= −xikxij
zi

(3.5)

The system of equations which must be satisfied at equilibrium is:

fj = 1−
C∑
i

xij j = 1, 2, ..., F (3.6)

and
fF+1 = H −Hspec (3.7)

The enthalpy is found from:

H =
F∑

j=1

βj

C∑
i=1

xi,jhi,j =
F∑

j=1

βj

C∑
i=1

xi,j(h
IG
i,j + hri,j) (3.8)

The Jacobian for this system of equations is

Jjk = −
NC∑
i=1

∂xi,j
∂βk

(3.9)

Jj,F+1 = −
C∑
i=1

∂xi,j
∂T

(3.10)

JF+1,j =
C∑
i=1

xi,jhi,j +
F∑

k=1

βk

C∑
i=1

hi,k
∂xi,k
∂βj

(3.11)
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the ideal gas terms cancel in the difference in equation 3.11 to leave:

JF+1,j =
C∑
i=1

xi,jh
r
i,j +

F∑
k=1

βk

C∑
i=1

hri,k
∂xi,k
∂βj

(3.12)

and finally

JF+1,F+1 ≈
1

R

F∑
j=1

βj

(
Cp,j +

C∑
i=1

hij
∂xij
∂T

)
(3.13)

This approximation is exact at the solution. If the temperature derivatives of the component
enthalpies are readily accessible from the equation used then it may be replaced with:

JF+1,F+1 =
C∑
i=1

F∑
j=1

(
nij

∂hi,j
∂T

+ βjhi,j
∂xij
∂T

)
(3.14)

If the thermodynamic model employed is consistent then the temperature derivative of the
fugacity and the residual heat capacity are related through:

RT 2∂ ln ϕ̂ij

∂T
= −hri,j (3.15)

in which case equation 3.12 can be replaced by

JF+1,j = RT 2Jj,F+1 (3.16)

Alternatively a symmetric system of equations can be arrived at by dividing equation 3.7
by RT 2.

The presented system of equations and Jacobian will be convergent in the majority of
cases. However in some cases it is necessary to nest the isothermal flash in an inner loop
with the temperature updated in the outer loop.

3.2.2 Newton’s method

When each phase is represented using an EoS the ideal solution may no longer be appropri-
ate. Instead the fugacity coefficients are now also functions of composition ϕ̂i,j(T, P,nj).
The equilibrium equations and enthalpy constraint can be solved directly using Newton’s
method. As in the conventional isothermal flash framework, for each component set its
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mole number in a certain phase as dependent through the material balance:

ni,J(i) = zi −
F∑

j ̸=J(i)

ni,j ∀i (3.17)

where J(i) represents the phase for component i where the component is present in the
greatest amount. The equilibrium equations are

fl = ln f̂i,j − ln f̂i,J(i), l = 1, 2, ..., C(F − 1),

i = 1, 2, ..., C, j = 1, 2, ..., F, j ̸= J(i)
(3.18)

and the enthalpy constraint

fC(F−1)+1 =
Hspec −H

RT
(3.19)

These equations lead to a symmetric Jacobian with elements

Jl,o = (δj,m − δj,J(k))
∂ ln f̂i,j
∂nk,m

+ (δJ(i),J(k) − δJ(i),m)
∂ ln f̂i,J(i)
∂nk,J(i)

,

l = 1, 2, ..., C(F − 1), o = 1, 2, ..., C(F − 1), i = 1, 2, ..., C, k = 1, 2, ..., C,

j = 1, 2, ..., F,m = 1, 2, ..., F, j ̸= J(i),m ̸= J(k) (3.20)

with δj,m representing the Kronecker delta function. The derivative of the fugacity is:

∂ ln f̂i,j
∂nk,j

=
δi,k
ni,j

− 1

βj
+
∂ ln ϕ̂i,j

∂nk,j

The remaining row and column are

JC(F−1)+1,l = Jl,C(F−1)+1 = T

(
∂ ln f̂i,j
∂T

− ∂ ln f̂i,J(i)
∂T

)
(3.21)

with the final equation:

JC(F−1)+1,C(F−1)+1 = −Cp

R
(3.22)

The variables used for this Jacobian are ∆nj,∆ lnT . This is the extension of the im-
plementation of Michelsen [115] to the multiphase case. Alternatively it is possible to
use component yields θi,j = ni,j/zi in place of mole numbers as variables as shown by
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Paterson et al. [133]. This may lead to a better conditioned Jacobian but the resulting
convergence behaviour is similar.

3.2.3 Partial Newton

The full Newton method often requires an accurate initial estimate. For the isothermal
flash successive substitution using the multiphase Rachford-Rice equations is commonly
carried out for a small number of iterations. Similarly for isenthalpic flash it is possible to
use direct substitution, this is similar to successive substitution but due to the temperature
dependence of the fugacity coefficients, they must be updated at each iteration.

From the ideal solution equations given here it is possible to obtain the direct substitu-
tion equations by setting one phase fraction as dependent through the material balance

βF = 1−
F−1∑
j=1

βj

and replacing equation 3.6 with:

fj =
C∑
i=1

(xiF − xij) j = 1, 2, ..., F − 1 (3.23)

The Jacobian of equations 3.23 and 3.7 with one phase fraction set as dependent can be
found and will be similar to that presented by Michelsen [111]. The direct substitution
method is often useful for early iterations, and to remove phases from the system of
equations when necessary.

An alternative partial Newton method is possible starting from the full Newton method.
Making an ideal solution approximation, the composition derivative of the fugacity coeffi-
cient can be set to zero:

∂ ln ϕ̂i,j

∂nk,j

= 0 (3.24)

Otherwise the system of equations and Jacobian is the same as presented for Newton’s
method in equations 3.20 to 3.22. This leads to a simple Jacobian where the explicit inverse
is readily available for part of the matrix for the two-phase case, reducing the number
of variables from C + 1 to 2. For the multiphase case a similar reduction in variables is
possible though more complex. An alternative is presented in chapter 4.
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The partial Newton method will be convergent when the mixture is not highly non-ideal
[111]. However the rate of convergence can be intolerably slow, with a nested isothermal
flash often outperforming the computational cost of the partial Newton method alone.

The update from the Newton-Raphson iteration is only convergent to the desired
solution with a suitably close initial estimate. Often non-convergent updates can be
encountered when more than one eigenvalue from the Newton update is negative. In these
cases a small number of additional partial Newton steps can be useful, or a reduction of the
impact of the composition derivatives of the fugacity coefficient using a suitable scaling
factor can aid in convergence (i.e. instead of setting the derivatives to zero, equation
3.24, reduce them by a half). Doing so for a small number of iterations can help with the
convergence while not significantly increasing the computational cost of the method. In
practice it is often best to just switch to Q-function maximisation if convergence problems
are encountered.

3.2.4 Q-function Maximisation

Michelsen [115] demonstrated that using a nested loop for (P, T ) flash, the (P,H) flash
problem could be posed as a maximisation of a suitable objective function:

Q =
Gmin(T )−Hspec

RT
(3.25)

with the gradient
∂Q

∂ 1
T

=
H −Hspec

R
(3.26)

and the Hessian
∂2Q

∂
(
1
T

)2 = −T
2Cp,min

R
(3.27)

with

Cp,min =
F∑

j=1

βjCp,j +
C∑
i=1

F∑
j=1

(
∂Hj

∂ni,j

− ∂HF

∂ni,F

)
∂ni,j

∂T
(3.28)

where the first term is the pure phase heat capacity and the second is the heat capacity
of phase change. The Hessian requires the solution to the flash equations and is always
negative.

Instead of evaluating the Hessian directly, it is possible to use the Jacobian presented
in equations 3.20 - 3.22 to evaluate the same temperature step. The step in the component
amounts can be used as an initial estimate for the next nested isothermal flash iteration.
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The convergence in the temperature is quadratic, and using a robust and efficient isothermal
flash solver the Q-function maximisation is efficient.

3.2.5 Thermal simulation

In thermal simulation it is often the case that, close to the wellbore the number of phases
can exceed the number of components (e.g. one component, two phases or two components
in three phases).

The case where there are more phases than components is of obvious concern since
it does not exist when using (P, T ) flash. Therefore using temperature as a variable is
not possible and variable substitution or isenthalpic flash must be used. Using a nested
isothermal flash is susceptible to oscillations if F > C. Similarly at the solution when
F > C the Gibbs energy of both stable roots to the EoS will be identical for one or more
phases and may lead to the wrong root being chosen.

There are a number of possible solutions to deal with this problem. For Newton’s
method and the partial Newton methods, selecting the desired root to the EoS is possible
in a manner proposed by Michelsen [111]. For Q-function maximisation it would be
necessary to find the transition temperature then split the two oscillating phases to meet
the enthalpy constraint and material balance. This will require a few additional iterations
to find the transition temperature.

An alternative which will work with both Q-function maximisation and Newton’s
method (or a partial Newton method) is to introduce a tolerably small amount of an
additional component (e.g. 10−8). This will remove the discontinuity in the enthalpy
though the use of Q-function maximisation may have issues due to the highly narrow
boiling nature of the new mixture.

For initialisation of the vapour liquid equilibrium a simple K-value correlation is often
used (for example [115] proposed the use of the Wilson K-factors). This can be used with a
second correlation for the solubility of water in oil allowing for a three phase initialisation.
The solubility of water in the oleic phase was modelled based on the correlation of [52],
where the fugacity coefficient for each phase is calculated as:

ϕ̂v
i = 1∀i, , ϕ̂l

i = KWilson
i i ̸= w, ϕ̂a

w = KWilson
w (3.29)

ϕ̂l
w = exp

(
lnKWilson

w + 21.263− 0.0595T + 0.0000408T 2
)
,

ϕ̂a
i = 1010, i ̸= w

(3.30)
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The residual enthalpy of each phase was evaluated using equation 3.15. The ideal
solution method given above was used to solve this ideal solution problem. In general the
initial estimates provide reasonably accurate temperature and phase composition estimates
which can be used with Newton’s method following only a small number of partial Newton
steps. More complex correlations are possible for the solubility of components in the
aqueous phase, though often their solubility is very small and a large constant value for the
fugacity coefficient is suitable.

The stability analysis for such systems can also be simplified. Instead of using each
pure component as an initial estimate it is generally sufficient to use the water component,
lightest component, heaviest component and an intermediate, to initialise the stability
analysis.

Though the initial estimate from the initialisation is often close to the solution temper-
ature, the molar amount of some components in the aqueous phase may be far from the
solution. When using the partial Newton method such deviations can lead to very slow
rates of convergence, the direct substitution method directly calculates the composition of
each phase based on the fugacity coefficients and does not run into such difficulties.

The partial Newton method can be improved in the early steps by using an update based
on the Rachford-Rice equations. Once the partial Newton update is found (∆nj,∆T ), the
change in the dependent mole number of component i can be found as

∆ni,F = −
F−1∑
j=1

∆ni,j

and the update to the equilibrium K-factors evaluated:

∆ lnKi,j =
∆ni,j

ni,j

+

∑C
i=1∆ni,F

βF
− ∆ni,F

ni,F

−
∑C

i=1 ∆ni,j

βj
(3.31)

For each component where the fugacity difference between the phases is large (e.g. if
| ln f̂i,j − ln f̂i,F | > 1), an estimate for the new molar amount can be evaluated from

ni,j =
βjKi,jzi

1 +
∑F−1

j=1 βk (Ki,k − 1)
(3.32)
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where the values for βj have been updated as βn+1
j = βn

j +
∑C

i=1∆ni,j . For component i
the dependent phase is found as

ni,F =
βF zi

1 +
∑F−1

j=1 βk (Ki,k − 1)
(3.33)

And the flow of component i is then rescaled by zi.

ni,j =
zini,j∑F
j=1 ni,j

(3.34)

This update ensures the poor initial estimate of the hydrocarbon components in the aqueous
phase do not cause significant convergence issues. Though described for updating only the
components in the aqueous phase the general method is sometimes useful following large
temperature changes where the solubility of some components can change by one or more
orders of magnitude (in either the full or partial Newton implementations).

The update can also provide an estimate for the composition of a phase which might
be removed:

xi,j =
Ki,jzi

1 +
∑F−1

j=1 βk (Ki,k − 1)
(3.35)

This composition estimate can be useful either to attempt to re-introduce the phase or as an
initial estimate for stability analysis. In simulation if the deleted phase is close to the phase
boundary it will provide an excellent initial estimate to be stored for stability analysis
skipping using the shadow phase method of [149].

3.3 Implementation

A number of different methods for isenthalpic flash have been presented. These can be split
between those which use K-factor approximations (ideal solution) and full thermodynamics
(Newton’s method, partial Newton, and Q-function maximisation). For each of these a
suitable implementation is necessary.

3.3.1 Ideal solution

Given an initial estimate with F phases at temperature T one iteration of the ideal solution
procedure is carried out as:



3.3 Implementation 63

1. For each phase evaluate the thermodynamic properties

ln ϕ̂i,j,
∂ ln ϕ̂i,j

∂T
, hi,j, Cp,j

2. Calculate the composition of each phase

xi,j =
zi

Eiϕ̂i,j

Ei =
F∑
k

βk
ϕ̂i,k

and the temperature derivatives from equations 3.3 and 3.4.

3. Evaluate the gradient from equations 3.6 and 3.7 and the Jacobian from equations
3.9 - 3.13.

4. Factorise and solve the system of equations to find the update to the phase fractions
and temperature

(∆β,∆T )T = −J−1f

5. Evaluate the new phase fractions βn+1 = βn + α̌∆β and temperature T n+1 =

T n + α̌∆T . If any phase fraction becomes negative then reduce the step length
modifier so one phase is set to zero. Limiting the step in temperature may be
necessary to avoid stepping outwith the bounds on the ideal gas heat capacity
correlation, normally α̌ = 1.

6. If no phase has been deleted then check for convergence and output the result.

7. If a phase is removed then iterations can continue with the remaining phases. It can
be checked if the deleted phase can be re-introduced. If ∆β > 0 for the removed
phase then it can be re-introduced and iterations continued.

The proposed method is useful for systems where the enthalpy and fugacity coefficients are
represented using separate models. If the proposed method is not convergent for the ideal
solution case, it is necessary to nest an isothermal flash. The isothermal flash problem can
be solved using the gradient and Hessian (equations 3.6 and 3.9) of the equation

Q =
F∑

j=1

βj −
C∑
i=1

zi lnEi
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using the algorithm described by Michelsen and Mollerup [117] chapter 11 for solving the
multiphase ideal solution phase split of Michelsen [107].

One example of an ideal solution model is the Wilson K-factor approximation as given
in equation 2.24. The vapour phase can be assumed to be an ideal gas ϕ̂v

i = 1 and the
liquid phase fugacity is equal to the Wilson K-factor.

3.3.2 Partial Newton

Two partial Newton methods have been described. The first is direct substitution and the
second is a partial Newton method based on the full Newton method with the composition
derivatives of the fugacity coefficients set to zero. The implementation for direct substitu-
tion can follow the procedure described by Michelsen [111]. The partial Newton method
described as a simplification of the full Newton method can be carried out as:

1. For each phase evaluate the thermodynamic properties

ln ϕ̂i,j,
∂ ln ϕ̂i,j

∂T
, Hj, Cp,j

2. Evaluate the gradient and Jacobian, then using the properties of the Jacobian solve
for ∆n,∆ lnT .

3. For each phase find ∆βj =
∑C

i=1 ∆ni,j . If for any phase −∆βj > βj then it may
be necessary to remove that phase. To do so it will be necessary to use equations
3.31-3.35 to avoid violating the material balance.

4. If for a component i there is a very large difference in the fugacity between phases
(e.g. | ln f̂i,j − ln f̂i,F | > 1) then for that component use equations 3.31-3.35 to
update molar amount of that component in each phase.

5. After taking a step, if a phase is deleted, then use its composition estimate from 3.35
in the next iteration. If at the next step ∆βj < 0 for the deleted phase, then it should
be removed from the system of equations, otherwise it can be re-introduced.

6. If following a step any of the phases are oscillating between vapour and liquid it
indicates that a new phase must be introduced. If there is no vapour phase in the
current mixture one can be introduced as an ideal gas (i.e. ϕ̂IG

i,j = 1). Otherwise if a
liquid must be introduced, stability analysis can be attempted, if not successful then
a switch to Q-function maximisation is necessary.
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Often it is best to take only a small number of partial Newton steps before switching to
a full Newton method. In the given implementation 5 steps of partial Newton were used
before a switch to the full Newton method. One advantage of the partial Newton method is
that it is likely to under-predict the step-size, reducing the likelihood of phase identification
switching and oscillations. It also means that it is likely that if the method predicts a phase
should be removed then it is safe to do so. The convergence of direct substitution and that
of the partial Newton method are similar and either can be used.

3.3.3 Newton’s method

One iteration with the full Newton method can be taken as:

1. For each phase evaluate the thermodynamic properties

ln ϕ̂i,j,
∂ ln ϕ̂i,j

∂nk,j

,
∂ ln ϕ̂i,j

∂T
, Hj, Cp,j

2. For each component define the phase present in the greatest amount as dependent
through the material balance. The components in the remaining phases are the
independent variables.

3. Evaluate the system of equations defined by equations 3.18 and 3.19 and the Jacobian
defined in equations 3.20-3.22.

4. Factorise the Jacobian using a suitable method for a symmetric, indefinite matrix. If
more than one eigenvalue is negative then it may indicate there will be convergence
issues, the step can be attempted or can be damped by reducing the influence of the
partial derivatives of the fugacity coefficients. In the presented implementation the
derivatives were reduced by half once if more than one eigenvalue was negative,
though there is little benefit compared to using more partial Newton steps.

5. Evaluate the step. For each phase evaluate ∆βj =
∑C

i=1 ∆ni,j . If for any phase
−∆βj > βj then it may be necessary to remove the phase. If the phase is present in
only a small amount (e.g. βj < 0.01) then a partial Newton step is used to ensure that
the phase can be safely removed. Otherwise if the phase is present in a significant
amount then it is possible the step is too large, using a step length modifier the step
should be taken, ensuring that no component becomes negative.
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6. Check for convergence. If converged output the result. If the deviation in enthalpy
has increased significantly it is likely the step has been too large, apply a step length
modifier (α̌ = 1/3 used in this implementation) and attempt the step again.

7. If it is clear that the solution is oscillating or there are excessive steps in temperature
or phase fraction then a switch to Q-function maximisation may be necessary. In the
presented implementation the maximum number of iterations taken before a switch
to Q-function maximisation was (F + 1) × 10, where F is the current number of
phases.

3.3.4 Q-function maximisation

The use of a nested isothermal flash is often more costly than direct Newton’s method for
isenthalpic flash, however the cost can be minimised by using Q-function maximisation.
Two implementations of Q-function maximisation are possible, one where stability analysis
is only used at the local maximum of the Q-function, and a second where stability analysis
is used at each iteration to ensure the global minimum of the Gibbs energy is found,
this is more costly but necessary for some difficult cases. In general stability analysis is
carried out at each step only when it is clear there are issues with convergence, in this
implementation if a phase was introduced or removed multiple times, or after 10 iterations
(where an iteration is the evaluation of the Newton step in temperature), stability analysis
was used at each iteration. For example given a mixture of F phases one iteration is taken
as

1. Carry out isothermal flash using the F phases to find the local minimum in Gibbs
energy. Optionally carry out stability analysis with isothermal flash to find the global
minimum.

2. Evaluate the Q-function from equation 3.25. Evaluate the Newton step from the
Gradient and Hessian or from equations 3.18 - 3.22. Take the step in temperature
and update the composition.

3. At the new temperature solve the isothermal flash using the F phases to find the local
minimum in Gibbs energy. Optionally carry out stability analysis with isothermal
flash to find the global minimum.
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4. Re-evaluate the Q-function, if it has increased then accept the step and check for
convergence, otherwise use a line search in temperature until the Q-function has
increased.

5. If converged then carry out stability analysis if it has not yet been checked.

Stability analysis is a computationally expensive element of isothermal flash calculations,
in particular when multiple phases are involved. In general it is best to avoid it when
possible. However in a number of cases it is necessary to carry out stability analysis
multiple times when maximising the Q-function.

The enthalpy and heat capacity of example 1 at 1 bar is presented in figure 3.1. When
close to a phase boundary the heat capacity of phase change in equation 3.28 increases
rapidly, with a discontinuity at the boundary. This can lead to poor convergence when
using a Q-function maximisation in the region close to the phase boundary, and is the
problematic region when carrying out reservoir simulation with temperature as a variable.
An overstep leading to the removal of a phase can lead to increase in the Q-function (and
Gibbs energy), even if the phase should be present at equilibrium. Often close to a phase
boundary it is necessary to carry out stability analysis at multiple iterations to avoid the
trivial solution.

Another case where it may be necessary to carry out stability analysis before reaching
a local solution is demonstrated in figure 3.2. This figure shows the enthalpy of the LLE,
VLE and VLLE solutions to the isothermal flash for example 1 at 1 bar.

In the range between −6700K < H/R < −5175K it is not possible to find a solution
using only two phases. It is necessary to introduce a third phase (aqueous). Given only
two phases the solution will oscillate between the VLE and LLE solutions. In some cases
when using the partial Newton or full Newton method an intermediate two-phase solution
can be found, though one phase is intrinsically unstable.

3.4 Results

We deal with a number of examples in the results section. These are summarised in table
3.1. Each mixture is modelled as either an ideal solution (IS), using the Peng Robinson
(PR) EoS [135] or the SRK EoS [175]. A detailed description of each mixture is given in
appendix B.

For the ideal solution we have only a single methodology to solve the isenthalpic flash
problem given in the implementation. This was limited to using only 25 iterations before
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Fig. 3.1 The enthalpy and combined heat capacity (of both the pure phases and of phase change),
for example 1 between 200K and 500K at 1 bar. Equation 3.27 is −T 2× the combined heat
capacity. Change from LLE to VLLE at 322.1K and from VLLE to VLE at 365.8K correspond to
the discontinuities in the combined heat capacity.
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Fig. 3.2 The enthalpy of the VLE, LLE and VLLE solutions to the isothermal flash at 1 bar between
200K-500K for example 1. It is not possible to meet an enthalpy constraint between H/R=-5175K
and H/R=-6700K with only two phases.



3.4 Results 69

Table 3.1 Summary of mixtures considered in this work

Components Max phases System description Model
Example 1 20 3 heavy oil and water PR
Example 2 7 3 synthetic oil and water IS
Example 3 7 2 natural gas SRK
Example 4 2 2 C1 & nC4, narrow boiling PR
Example 5 5 3 oil and water PR
Example 6 5 4 C1, C2, C3, CO2, H2S SRK
Example 7 2 3 n-butane and water PR

a backup nested loop approach was used. To demonstrate the convergence of the ideal
solution isenthalpic flash implementation example 1 is considered with the Wilson K-factor
approximation (assuming only two phases), with the residual enthalpy found from equation
3.15. The ideal solution flash problem was solved using the implementation given at an
enthalpy of H/R = −4000K and pressure of P = 20bar. An initial estimate of T = 300K
and β = 0.5 was used. The temperature and vapour phase fraction are shown in figure 3.3
with the solution found to a tolerance in the l2 norm of the system of equations less than
10−10. On the fourth iteration the vapour phase was re-introduced and increased in fraction
to β = 0.345 at the solution temperature of T = 511.2K. Even with a very poor initial
estimate for the temperature, it is clear that the given implementation of isenthalpic flash
can solve the phase split calculation rapidly.
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Fig. 3.3 Convergence for ideal solution approximation of example 1. Initial estimate of β = 0.5
and T = 300K and a solution of β = 0.345 and T = 511.2K.

To demonstrate that the method can work over a larger range of conditions example 2
was flashed using a small step in enthalpy and pressure over a range of −6000K < H/R <



70 Multiphase Isenthalpic Flash using the Conventional Flash Framework

5000K (with a reference temperature of Tref = 300K) and 1bar < P < 100bar. This
approximately corresponds to temperatures of 120K-700K. The water in the oleic phase and
the aqueous phase were modelled using equations 3.29 and 3.30. Two million isenthalpic
flash conditions in total were specified and solved using the ideal solution implementation
described above. To compare the computational cost of the method with isothermal flash,
the solution temperature and specified pressure were used with the algorithm presented in
Michelsen and Mollerup [117] chapter 11. The phase envelope and number of iterations to
solve the ideal solution isothermal and isenthalpic flash are presented in figure 3.4. Each
iteration is considered as solving for the Newton step.
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Fig. 3.4 Comparison of the number of iterations necessary to solve the isenthalpic and isothermal
flash for example 2. The colour indicates the number of iterations required to find the solution, with
different scaling on the colours used.

Figure 3.4 shows that in most of the region scanned the number of iterations necessary
is very small, this is despite a constant initialisation temperature of T = 300K which is
very far from the solution at some specifications. Problems are encountered when close
to the critical temperature of each component. This is noticeable on figure 3.4 where an
increase in the number of iterations follows the isotherms close to the critical temperature
of each component. The cause of this is the model used for the residual enthalpy which
decreases to zero at the critical temperature (causing a small discontinuity in the heat
capacity).

The ideal solution isenthalpic flash cost approximately 3.3 times as much as the ideal
solution isothermal flash. Using only a nested isothermal flash for isenthalpic flash, the
cost was 4.8 times more than the isothermal flash. The large increase in the cost of
isenthalpic flash is due to the repeated evaluation of the fugacity coefficients and enthalpy
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at each iteration and initial estimate of temperature being far from the solution. Isothermal
flash only requires a single evaluation of the fugacity coefficients. When using the ideal
solution model, the flash is only a small contribution to the overall simulation cost and the
proposed method should be sufficient. Using an EoS is significantly more computationally
demanding.

For the remaining examples (and example 1) an EoS is used to evaluate the fugacity
coefficients and residual enthalpy. For compositional reservoir simulation the flash cal-
culations may limit the size of the reservoir simulation. For isenthalpic flash to be viable
it is necessary that the increase in computational cost is not prohibitive when compared
to isothermal flash. For each of the examples a large region of the phase envelope was
scanned and the time to carry out an isenthalpic flash recorded. At the solution temperature
the problem was re-initialised and an isothermal flash was carried out for comparison.

To compare the results it is necessary to clarify the implementation details. The
Wilson K-factor was used for initialisation, with an aqueous phase introduced if water was
present in the example as described by equations 3.29 and 3.30. Following initialisation
5 partial Newton steps were used, with phases removed where necessary. If oscillations
were detected then a new phase was introduced if possible or a switch to Q-function
maximisation made. The solution was found using the full Newton method, with a limit of
(F − 1)× 10 steps before it was deemed a failed point and a switch made to Q-function
maximisation, where each step is counted as the evaluation of the Newton step.

For isothermal flash the same Wilson K-factor approximation was used at the solution
temperature to the isenthalpic flash. The initial estimate was improved using 3 steps of
successive substitution followed by a switch to a second order minimiser. For two phases
the ideally scaled restricted step was used [117]. For the multiphase case there is no ideal
scaling factor, there are various possible implementations, often with Murray’s method
of lines preferred. Here we chose to use a trust region implementation with the Hessian
described in Michelsen [110]. This often lead to more decompositions than using only a
perturbed decomposition, however the number of iterations is similar (where each iteration
is counted as the evaluation of the Newton step not once per decomposition).

The wall clock time of the isenthalpic flash, Q-function maximisation alone and
isothermal flash was recorded. Each method was implemented in FORTRAN and the wall
clock time of each method recorded along with the number of iterations. The results for
each of the considered examples is given in table 3.2. Example 7 is not included as there is
no 3-phase region in (P, T ) space. The cost of each method is given relative to the cost of
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the isothermal flash. A switch to Q-function maximisation was necessary in less than 1%
of the cases.

Table 3.2 Computational cost comparison of (P,H) and (P, T ) flash

Mixture Cost relative to (P, T ) flash
(P,H) Flash Q-Function

Example 1 1.12 3.77
Example 3 1.65 5.39
Example 4 1.75 10.84
Example 5 1.63 5.64
Example 6 1.71 6.34

The phase envelope of example 3 is shown in figure 3.5 alongside the number of
isothermal and isenthalpic flash iterations. This example is a relatively simple natural gas,
it is relatively narrow boiling but would not present significant challenges when solved
using a nested isothermal flash. In total isenthalpic flash required 1.07 times as many
iterations as isothermal flash. All examples required between 1.05− 1.3 times as many
iterations for isenthalpic as isothermal flash over the full phase envelope.
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Fig. 3.5 Comparison of the number of iterations necessary for isothermal flash and isenthalpic flash
for example 3. The iteration counter is for only the second order method used.

The number of second order iterations required for (P, T ) and (P,H) flash is small over
most of the phase envelope. In the close to critical region both isothermal and isenthalpic
flash require more iterations, though in total only a tiny fraction (0.01%) require a switch
to Q-function maximisation.
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It is noticeable that outwith the two-phase region isothermal flash uses no iterations
while isenthalpic flash often requires a small number. This is because with isothermal flash
the Gibbs energy of the feed mixture composition can be compared with the initial estimate
from the Wilson K-factor approximation and the estimate discarded if the two-phase Gibbs
energy is greater than the single phase Gibbs energy. However this is not possible in
isenthalpic flash, which must continue until the phase is removed by an iteration of the
partial Newton method, which in some cases uses a small number of full Newton steps
before it is clear that the phase can be safely removed.

Although table 3.2 indicates that the cost of Q-function maximisation is between 5-6
times greater than (P, T ) flash, if the stability analysis used is tuned for the mixture then the
cost can be significantly reduced. For example 3 it is necessary only to carry out stability
analysis for one gas and one liquid estimate (e.g. from the Wilson K-factor approximation).
Doing this reduces the cost for this example from 5.39 to 3.1 times greater than isothermal
flash. Similar results are found for examples 1, 5, and 6.

Example 4 is a narrow boiling mixture, it is therefore difficult to solve using a nested
isothermal flash. This can be viewed in table 3.2. Close to the bubble curve the phase
fraction of vapour changes very rapidly from 0 to 0.99 in (P, T ) space as the methane
component evaporates. In this region the Hessian of the Q-function (equation 3.27) changes
rapidly with the temperature (and is discontinuous at the phase boundary) in a manner
similar to that shown in figure 3.1. This leads to oversteps, or understeps increasing the
number of iterations necessary. The phase envelope and number of iterations required for
(P, T ) flash and (P,H) flash is given in figure 3.6.
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Fig. 3.6 Comparison of the number of iterations necessary for isothermal flash and isenthalpic flash
for example 4. The iteration counter is for only the second order method.
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Solving the isenthalpic flash problem directly for this mixture is often successful. The
mixture is narrow boiling in that for a very small change in temperature there is a very
large change in enthalpy, however this is not a problem if we specify the enthalpy. A
large change in enthalpy will only lead to a relatively small change in temperature and
the problem can be solved quite easily. The additional cost of isenthalpic flash is not
significantly different from the other mixtures for this narrow boiling example. For the
Q-function maximisation oversteps were common and often it was necessary to use a fully
robust implementation with stability analysis carried out at every iteration.

Example 5 is a mixture containing water. This mixture contains a heavy oil pseudo-
component and a light gas pseudo-component along with two intermediate components,
and is typical of what may be used for the simulation of thermal recovery with a light
solvent component. The phase envelope is given in figure 3.7. For this example the
modified initialisation procedure including water was used.
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Fig. 3.7 Comparison of the number of iterations necessary for isothermal flash and isenthalpic flash
for example 5. The iteration counter is for only the second order method.

Using the modified initialisation procedure ensures that the heavy oil mixtures with
water can be dealt with without any additional difficulty. The only region with a significant
increase in the number of iterations when compared with the isothermal flash is the close
to critical VLE region. In this region the initial estimate may indicate multiple phases,
which must be removed before more accurate initial estimates are generated from stability
analysis, and it is often necessary to switch to Q-function maximisation. Close to the
VLLE to LLE and VLLE to VLE boundary there is not a significant change in the number
of iterations.
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Example 1 is similar to example 5 but with a larger number of components and less
light components. Over the full phase envelope the conclusions are the same as example
5, with difficulty only in the close to critical region. However table 3.2 shows that the
computational cost is much closer to that for isothermal flash. This is in part due to the
increased number of components, the dominant term in the computational cost is the
decomposition of the Jacobian (or Hessian) in this example. These are almost of the same
size and therefore differ only slightly in cost. Though the additional cost compared to
isothermal flash is moderate, the use of 20 components is often prohibitively expensive for
reservoir simulation.

A more complex system is considered in example 6. This is not relevant to heavy oil
reservoir simulation but does test the generality of the implementation for isenthalpic flash.
Up to four phases can co-exist at low temperatures. The hydrogen sulphide, carbon dioxide
and methane can each form a separate nearly pure phase along with a vapour phase. The
region where up to four phases are in equilibrium is presented in figure 3.8 along with the
number of iterations for convergence with the presented implementation of isenthalpic
flash.
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Fig. 3.8 Phase envelope and number of (P,H) flash iterations necessary. The enthalpy range
corresponds to temperatures between 110K and 200K. The backup Q-function maximisation was
necessary in 10% of cases.
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The initialisation was based on the two-phase Wilson K-factor approximation. To
introduce each of the remaining liquid phases it was necessary to carry out stability
analysis. Without a good initial estimate for each of the new phases there is a significantly
larger number of switches to Q-function maximisation (10% in this example). The region
where this happened most often is visible in figure 3.8 as the region where more than
15 iterations were often necessary. Table 3.2 presents the computational time over the
region of 1bar < P < 120bar and −2000K < H/R < 1000K where the cost, and number
of switches to Q-function maximisation, was similar to other mixtures. Over the region
presented in figure 3.8 the computational cost of isenthalpic flash was 2.3 times the cost of
isothermal flash.

Example 7 is an equimolar mixture of water and n-butane. Often this mixture can have
more phases present in equilibrium than components. The (P,H) phase envelope for the
mixture is given in figure 3.9, this figure also shows the number of second order isenthalpic
flash iterations necessary to solve the phase split calculation.
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Fig. 3.9 Heat plot showing the number of second order iterations necessary to solve the phase split
problem for an equimolar mixture of water and butane. The three phase region corresponds to
a discontinuity in the enthalpy in the (P, T ) space. The (P,H) region scanned corresponds to a
temperature range of 300K to 580K.
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Even in the region where there are more phases than components there are no significant
problems encountered using the proposed methods. Q-function maximisation was used
in less than 0.1% of cases. There are an increased number of iterations at the boundary
between VLE and LLE and the boundary between two and three phases. This is often due
to the introduction and removal of phases. When the initialisation, or stability analysis,
indicated that more phases than components were necessary the type of root desired from
the EoS was selected. This is a simple and effective way to deal with the case where there
are more phases than components.

3.5 Conclusion

A new method and algorithm have been described to solve the ideal solution isenthalpic
flash. With the combination of a nested isothermal flash the ideal solution isenthalpic
flash is convergent in all tested cases. The ideal solution is commonly used in reservoir
simulations. The cost of ideal solution isenthalpic flash is greater than that for isothermal
flash, for the tested case the time for isenthalpic flash was around 3 times greater than
isothermal flash. However the ideal solution flash often does not dominate reservoir
simulation costs and with the given implementation can more easily deal with narrow
boiling mixtures which may cause problems if temperature was used as a variable.

An extension of the two-phase Newton’s method to the multiphase isenthalpic flash
problem has been presented. This can be simplified using an ideal solution approximation
to a partial Newton method. As a backup a robust Q-function maximisation is used. An
implementation has been described which enables the addition and removal of phases
during the course of iterations. The cost of isenthalpic flash using the described procedure
is 1.1 to 2.3 times that of isothermal flash for the tested cases.

When using a partial Newton method early iterations can be slower than direct substi-
tution. An update based on the equilibrium K-factors and the Rachford-Rice equations is
presented which improves early iterations, and is well suited when there is a large devia-
tion between component fugacities in different phases. Using this update a composition
estimate is available for a phase that has been removed, this is useful for re-introduction of
the phase or for checking its stability once the phase split calculation is concluded.

The Q-function maximisation was considered for multiphase isenthalpic flash. When
using only a local minimum in the Gibbs energy the method is only marginally more
computationally expensive than the presented isenthalpic flash. However a number of
cases were used to demonstrate that it is often necessary to repeatedly carry out stability
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analysis to obtain the solution, leading to a restrictively slow implementation. The full cost
of Q-function maximisation was 3-11 times more than isothermal flash. The Q-function
maximisation should only be used as a backup, in particular for narrow boiling type
mixtures.

For thermal simulation of an oil reservoir a third aqueous phase can be introduced
during the initialisation. This makes the method convergent in a larger number of examples
without resorting to Q-function maximisation. The cost of three-phase isenthalpic flash is
very similar to three-phase isothermal flash using this initialisation method.

A narrow boiling example was considered and it was demonstrated that due to the
narrow boiling nature in (P, T ) space, Q-function maximisation struggles to find the
solution. However when solving the equilibrium equations directly in (P,H) space, there
is no problem with the presented method. This is the main benefit of using isenthalpic
flash instead of isothermal flash.

A complex multiphase problem was investigated, and in the region where up to four
phases were in equilibrium it was demonstrated that the isenthalpic flash could be solved
rapidly and robustly. An increased number of switches to Q-function maximisation were
necessary, however with a better initialisation (e.g. from a previous time-step) this would
not be the case. The overall speed was around half the speed for isothermal flash for this
complex example.

Finally a case where more phases than components are present in equilibrium was
examined. It was shown that the presented implementations can easily deal with this
case, though a comparison with isothermal flash is not possible. These cases are rarely
encountered and the main difference between them and a narrow boiling mixture is that
the root from the EoS must be selected.

Overall, the study in this chapter presents how to handle the general multiphase
isenthalpic flash problem and how to adjust the method for heavy oil-water systems
encountered in thermal recovery simulation. For the special case where ideal solution
thermodynamics is used, a simple formulation is proposed to solve the problem. Although
the focus of this paper is on multiphase isenthalpic flash, the methods discussed here can
be easily extended to multiphase flash with other state function based specifications (e.g.
(P, S), (V, T ), (V, U) and (V, S)).



Chapter 4

Modified RAND Framework for Phase
Split Calculations

4.1 Introduction

The classical example of the phase equilibrium problem is isothermal flash, with the
temperature, pressure, and molar feed specified. This is at the heart of many process and
reservoir simulation tools. The conventional approach to solve the isothermal flash problem
involves alternating use of stability analysis [9] and phase split calculation, as described in
section 1.3. Stability analysis based on the tangent plane distance criterion can in principle
be used to determine if the current state is a global minimum in the Gibbs energy. The
method proposed by Michelsen [109] and its variants are widely used for stability analysis
in practical calculations. The problem is essentially a global search over all possible trial
compositions and one can resort to global optimisation methods [75, 103]. Such methods
are generally too expensive to use for multicomponent systems. The phase split calculation
solves the equilibrium equations given a number of phases, the solution corresponds to
the local minimum in the Gibbs energy [110]. If there is no advance knowledge about the
maximum number of phases in a system, it is necessary to check the local minimum from
the phase split calculation with stability analysis to ensure the Gibbs energy cannot be
reduced further by the introduction of a new phase.

Chemical reaction equilibrium has the same equilibrium criterion as only physical
(phase) equilibria, i.e. minimum in the Gibbs energy at a given temperature and pressure,
although the calculation methods for the two types of equilibria have largely been devel-
oped separately. Smith and Missen [174] provide an excellent summary of the classical
methods for chemical reaction equilibrium calculations. They distinguish between stoi-
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chiometric methods and non-stoichiometric methods. Among the non-stoichiometric ones,
the RAND approach [197] was discussed under the category of Brinkley-NASA-RAND
(BNR) algorithms [18, 77, 197]. They showed the RAND approach could be applied to
a single phase reaction for ideal solution systems. The approach can also be extended to
multiphase ideal solution systems with reactions. For ideal solution systems, the system of
equations can be reduced to E + F linear equations, where E is the number of elements in
the system and F the number of phases. Smith and Missen [174] gave a short discussion
on the extension of RAND to non-ideal systems by providing the linearised equilibrium
equation (first step of the RAND algorithm) for a single-phase system and the element
balance equation. This results in C + E equations. No further discussion is given in their
book on how to solve these equations. If there are F phases, the number of equations will
become CF +E. Since chemical reaction systems often involve a large number of species
such an approach can be impractical for a single phase [65]. Greiner [65] provided a
practical approach to use RAND for non-ideal solutions, reducing the number of equations
to E + F . A possible variant of Greiner’s non-ideal RAND formulation and its extension
to multiple phases was briefly outlined in the book of Michelsen and Mollerup [117].

There are numerous studies on chemical reaction equilibrium. In terms of flash
algorithms with chemical reaction equilibirum, apart from those mentioned above or
already summarised in Smith and Missen [174], several other important contributions
include Gautam and Seider [62], Castier et al. [24], Michelsen [112], Perez Cisneros et al.
[138], and Phoenix and Heidemann [145]. Although the method of Castier et al. [24] gives
second order convergence, it is prone to problems caused by round-off errors. Another large
category of calculation methods is global optimisation, such as McDonald and Floudas
[103], McDonald and Floudas [104], Bonilla-Petriciolet and Segovia-Hernández [14] and
Bonilla-Petriciolet et al. [13]. Similar to global optimisation for stability analysis, global
optimisation for chemical reaction equilibrium is much less efficient and requires a huge
number of iterations. Some recent algorithmic studies are reviewed by Bonilla-Petriciolet
et al. [13].

A problem related to the isothermal flash equilibrium problem are the general state
function based specification flash. The isenthalpic based flash is discussed in detail in
chapter 3, however there are six state function based flash specifications as described in
table 1.2 (where the (U, S, V,n) and (H,S, P,n) surfaces can be described using either
the entropy, internal energy or enthalpy). Each of these specifications and a potential
use is presented in table 4.1. How to solve each of these state function based flash
specifications for two phases is discussed by Michelsen [115] who presented a Q-function
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maximisation with the isothermal flash nested in an inner loop. Another approach was
also presented by Michelsen [115] who demonstrated that a similar Q-function approach
could be used if the conventional (P, T ) thermodynamics were abandoned in favour of
the natural variables to solve an EoS (V, T ). Numerous implementations to solve the
(P, T ) phase split problem using (V, T ) based thermodynamics have been presented with
early work given by Nagarajan et al. [124]. This area of research is of particular interest
when using more complex EoS’s [136], where the solution to the density root described in
section 1.2 is more complex.

Table 4.1 State function and associated flash specification

Flash specification State function Example use

(P, T ) G Commonly used for transient simulation
(V, T ) A Storage tank model
(P,H) −S Steady state flow
(P, S) H Reversible expansion and compression
(V, U) −S Unsteady state flow
(V, S) U None yet but fits the general scheme

In this chapter we will first introduce a new modified RAND framework. An in detail
discussion on the modified RAND method is given in section 4.2 where the isothermal
flash will be considered in the presence of chemical reactions and the simplifications when
there are no reactions is given. A detailed implementation is given in section 4.2.1 and a
suggested procedure for correcting ascent steps given in section 4.2.2.

The extension to specifications other than (P, T ) is also given. First we will consider
how the state function based flash specifications can be solved using (P, T ) based ther-
modynamics with the new modified RAND framework. This is done in section 4.3 in a
manner similar to Michelsen [115] with the final matrix being general for all of the state
function based flash specifications, even in the presence of chemical reactions.

The use of (P, T ) based thermodynamics will be abandoned in section 4.4 where first
vol-RAND will be presented. This method co-solves the pressure explicit EoS with the
equilibrium equations. This is particularly useful for complex EoS’s such as CPA or
PC-SAFT. Vol-RAND can be used to solve both the (P, T ) flash and the (V, T ) flash using
a suitable objective function. A generalisation based on vol-RAND is presented in section
4.4.2. This method has not been tested but presents a method to solve each of the state
function based flash specifications by solving the EoS at the state function variables rather
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than using them as a constraint. Some results for modified RAND and vol-RAND are
presented in section 4.5.

4.2 Modified RAND formulation

Using the conventional (P, T ) based thermodynamics the equilibrium equation 1.25 allow
the isothermal phase split problem to be posed as a minimisation of the Gibbs energy given
an arbitrary number of phases F :

min G(T, P,n) =
C∑
i=1

F∑
j=1

µi,jni,j (4.1)

subject to the equality constraints, which in the presence of chemical reactions differs from
equation 1.26. The components are not conserved but some reaction invariant elements
are, leading to an elemental balance:

C∑
i=1

Al,i

(
F∑

j=1

ni,j

)
− b̂l = 0, l = 1, 2, ..., E (4.2)

and inequality constraints (i.e. that no component can be present in a phase in a negative
amount):

ni,j ≥ 0, i = 1, 2, ..., C, j = 1, 2, ..., F (4.3)

The chemical potential described in equation 4.1 can be split into

µi,j = µ0
i +RT ln f̂i,j = µ0

i +RT (lnxi,j + ln ϕ̂i,j + lnP ) (4.4)

In the absence of chemical reactions it is possible to drop the reference state contribution
to the chemical potential µ0

i . The Lagrangian for the constrained minimisation (equations
4.1 and 4.2) is:

L(n, λ̂) =
F∑

j=1

C∑
i=1

ni,jµi,j −
E∑
l=1

λ̂l

(
C∑
i=1

Al,i

(
F∑

j=1

ni,j

)
− b̂l

)
(4.5)



4.2 Modified RAND formulation 83

where λ̂ are the Lagrange multipliers and are equivalent to the equilibrium elemental
potential [117]. The stationarity equations of 4.5 are:

∂L
∂ni,j

= µi,j −
E∑
l=1

λ̂lAl,i = 0, ∀i, j (4.6)

and
∂L
∂λ̂l

= −
C∑
i=1

Al,i

(
F∑

j=1

ni,j

)
+ b̂l = 0, ∀l (4.7)

where equation 4.6 describes the equilibrium in the presence of chemical reactions and is
similar to equation 1.25 and equation 4.7 describes the elemental balance.

We aim to use Newton’s method to perform phase split calculations. To do so we first
linearise equation 4.6 around the current composition, temperature, and pressure, then
divide by RT to obtain for each phase

µi,j

RT
+

1

RT

C∑
k=1

∂µi,j

∂nk,j

∆nk,j +
1

RT

∂µi,j

∂T
∆T +

1

RT

∂µi,j

∂P
∆P −

E∑
l=1

λlAl,i = 0 (4.8)

with λl = λ̂l/(RT ). The Gibbs energy is a homogeneous function of degree one in the
molar amounts of the components, an immediate consequence of which is:

nT
j

∂µj

∂ni,j

= 0, ∀i

commonly referred to as the Gibbs-Duhem equation. Equivalently this can be written as

∂µj

∂nj

nj = 0, ∀j (4.9)

demonstrating that the matrix from the second term of equation 4.8 is singular with the
vector of molar amounts of each component, nj , lying in the null-space of the matrix. A
consequence of this is that we cannot immediately isolate the composition correction from
equation 4.8. Instead it is possible to use the description of the chemical potential, equation
4.4, and its derivative to split the matrix as:

1

RT

∂µi,j

∂nk,j

=
δi,k
ni,j

− 1

βj
+
∂ ln ϕ̂i,j

∂ni,j

(4.10)
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Here we introduce a matrix mj for each phase with an element of this matrix defined by:

mi,k,j = βj

(
1

RT

∂µi,j

∂nk,j

+ 1

)
=
δi,k
xi,j

+ βj
∂ ln ϕ̂i,j

∂nk,j

(4.11)

Rewriting equation 4.8 in vector-matrix format:

(
mj − 11T

)
∆nj = βj

(
ATλ− µj

RT
− ej∆T − γj∆P

)
(4.12)

with 11T the matrix of ones. For convenience we have defined:

ej =
1

RT

∂µj

∂T
, and γj =

1

RT

∂µj

∂P
(4.13)

Using the relation 1Tnj = βj , we obtain:

mj∆nj = 1∆βj + βj

(
ATλ− µj

RT
− ej∆T − γj∆P

)
(4.14)

From the Gibbs-Duhem equation (4.9) it is clear that mjxj = 1 and therefore Mj1 = xj ,
with Mj = m−1

j . These relations are used to isolate the composition correction to each
phase:

∆nj = xj∆βj + βjMj

(
ATλ− µj

RT
− ej∆T − γj∆P

)
(4.15)

Multiplying equation 4.15 by 1T from the left we obtain:

∆βj = 1T∆nj = 1T
(
xj∆βj + βjMj

(
ATλ− µj

RT
− ej∆T − γj∆P

))
(4.16)

Using the relations 1Txj = 1 and 1TMj = xT
j , the ∆βj cancel to leave:

xj

(
ATλ− ej∆T − γj∆P

)
= gj, ∀j (4.17)

with gj is the molar reduced Gibbs energy

gj =
1

RT

C∑
i=1

xi,jµi,j (4.18)

Linearisation around the elemental balance, equation 4.7 yields for each element:

C∑
i=1

Al,i

(
F∑

j=1

(ni,j +∆ni,j)

)
− b̂l = 0 (4.19)
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Given a composition which meets the elemental balance, equation 4.19 can be rewritten
for all elements as

A
(

F∑
j=1

∆nj

)
= 0 (4.20)

Substitution of equation 4.15 into equation 4.20 we obtain

A
(

F∑
j=1

βjMj

)
ATλ+AX∆β −A

(
F∑

j=1

βjMjej

)
∆T

−A
(

F∑
j=1

βjMjγj

)
∆P = A

(
F∑

j=1

βjMj
µj

RT

)
(4.21)

with X = (x1,x2, ...,xF ). For the isothermal flash equilibrium problem we specify the
pressure and temperature. In this case the ∆P and ∆T terms can be set equal to zero. This
simplifies equation 4.15 to:

∆nj = xj∆βj + βjMj

(
ATλ− µj

RT

)
(4.22)

and equation 4.17 to:
XTATλ = g (4.23)

with eequation 4.21 given by:

A
(

F∑
j=1

βjMj

)
ATλ+AX∆β = A

(
F∑

j=1

βjMj
µj

RT

)
(4.24)

These E + F equations, 4.23 and 4.24, relate the E + F variables (λ,∆β) in isothermal
multiphase flash required in equation 4.22. The system of equations to be solved for
isothermal flash is: (

A
∑F

j=1 βjMjAT AX

(AX)T 0

)(
λ

∆β

)
=

(
u1

u2

)
(4.25)
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with

u1 = A
(

F∑
j=1

βjMj
µj

RT

)

u2,j =
C∑
i=1

xi,j
µi,j

RT
, ∀j

(4.26)

The update to the molar amounts of the components in each phase is then found from
equation 4.22.

In the absence of chemical reactions it is possible to make a number of simplifications.
The elemental feed becomes the component feed bi = zi, the formula matrix is the identity
matrix A = I , and the reduced chemical potential can be replaced by the fugacity ln f̂j

for each phase. The matrix in equation 4.25 reduces to(∑F
j=1 βjMj X

XT 0

)(
λ

∆β

)
=

(
u1

u2

)
(4.27)

with

u1 =
F∑

j=1

βjMj ln f̂

u2,j =
C∑
i=1

xi,j ln f̂ , ∀j
(4.28)

An ideal solution approximation, as described in section 1.3, can be arrived at by assuming
the composition derivatives of the fugacity coefficient are equal to zero. In this case the
Mj matrix becomes diagonal with elements xi,j . Therefore the top left C ×C elements of
matrix 4.27 are replaced by

F∑
j=1

βjMj = Z (4.29)

with Z a diagonal matrix with elements zi. Instead of factorising the full RAND matrix, it
is possible to reduce the size of the system of equations to be solved from C + F to F :

−
(
XTZ−1X

)
∆β = u2 −XTZ−1u1 (4.30a)

λ = Z−1 (u1 −X∆β) (4.30b)
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Because Z is diagonal, no matrix inversion is needed. These equations 4.30 can be used as
an alternative to the multiphase Rachford-Rice of Michelsen [114], either for successive
substitution or as a partial Newton method with the fugacity coefficients updated at each
iteration.

Although the method is derived using constrained minimisation, the convergence can
be monitored using the Gibbs energy since the linear elemental balance constraints are
satisfied at each iteration. Following an increase in the Gibbs energy line search can be
used to find a suitable correction. Given a suitable initial estimate, the rate of convergence
will be quadratic, in fact for the same initial estimate the update from modified RAND
will be identical to the conventional method. The method is well suited to multiphase
calculations as all components in all phases are treated in the same manner (unlike in the
conventional method). This leads to a well structured and simple implementation.

4.2.1 Isothermal flash Implementation

The structure of the modified RAND procedure allows for chemical reactions to be easily
incorporated, however for simplicity the following implementation is described in the
absence of chemical reactions for F phases:

1. Calculate the total molar amount of each phase

βj =
C∑
i=1

ni,j

and the composition vectors
xj = nj/βj

Collect the composition vectors into a matrix

X = (x1,x2, ...,xF )

2. Using a suitable equation of state evaluate the fugacity and the scaled composition
derivatives of the fugacity coefficients.

ln f̂i,j, βj
∂ ln ϕ̂j

∂nj
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3. For each phase generate the matrix

mj =

(
diag

(
1

xj

)
+ βj

∂ ln ϕ̂j

∂nj

)
and its inverse

Mj = m−1
j

4. Form the system of equations (∑F
j=1 βjMj X

XT 0

)

and the vectors

u1 =
F∑

j=1

βjMj ln f̂j, u2,j =
C∑
i=1

xi,j ln f̂j ∀j

Then solve the symmetric system of equation to find the reduced equilibrium chemi-
cal potentials and the change in the phase molar amounts(∑F

j=1 βjMj X

XT 0

)(
λ

∆β

)
=

(
u1

u2

)

5. Calculate the update to the mole amount of each component in each phase

∆nj = xj∆βj + βjMj

(
ATλ− ln f̂j

)
6. Check that the step is in a descent direction in the Gibbs energy

C∑
i=1

F∑
j=1

∆ni,j ln f̂i,j < 0 (4.31)

If this inequality does not hold, then the Newton step is ascending in the Gibbs
energy and a line-search will not lead to a reduction in the Gibbs energy, it is then
necessary to modify the procedure and Newton step to a descent direction. This is
dealt with in section 4.2.2. Otherwise given a suitable step length modifier the step
will lead to a decrease in the Gibbs energy.
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7. Take the step, ensuring there is a reduction in the Gibbs energy using a step length
modifier if necessary. Check for convergence, if not converged then proceed to
another iteration.

The logarithmic dependence of the chemical potential on the component mole fraction
means that the inequality constraint can be easily met using a suitable step length modifier,
or by using equations 3.31 to 3.35 for that component.

If a step shows that −∆βj > βj then the phase may need to be removed from the
current distribution to arrive at the local minimum in the Gibbs energy. This can be done
using the method described in equations 3.31 to 3.35, or by fully solving the ideal solution
approximation for example by using the algorithm described by Michelsen and Mollerup
[117] in chapter 11.

4.2.2 Correction of the modified RAND step

For the (P, T ) specification it is possible to monitor the convergence of the modified RAND
method by using the system Gibbs energy. Each step should lead to a reduction in the
Gibbs energy. In the majority of cases where the modified RAND correction corresponds
to a descent direction, the proper stepping can be found through a line search. However in
some rare cases the inequality given in equation 4.31 will not hold, in which case a line
search between 0 and 1 will not lead to a reduction in the Gibbs energy.

During the iteration, if all phases are intrinsically stable (i.e. the Hessian of the Gibbs
energy of a phase is not indefinite), the direction will be descending. If one or more phases
are intrinsically unstable, the direction may become ascending in the Gibbs energy. An
ascent direction can be revealed by checking equation 4.31. In general this inequality will
only not hold in the near critical region or in some challenging multiphase mixtures.

An indefinite m matrix (corresponding to an unstable phase) will be revealed during
the inversion of the m matrix (note the phase index is dropped in this discussion for
convenience). It is possible to correct the direction to a descent direction by modifying
the indefinite matrix to a positive definite one in a suitable manner. However an arbitrary
correction to the m matrix will lead to the violation of the requirement that M1 = x which
is used to obtain equation 4.15. An optimal correction is one which minimally impacts the
positive curvature directions of the Hessian of the Gibbs energy, while correcting for the
negative eigenvalue, and which does not violate the requirement of M1 = x.
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To find this update we first introduce a matrix Q̃. The matrix m can be rewritten

m = D−1/2Q̃D−1/2 (4.32)

where D is diagonal with elements xi. The elements of Q̃ are given by

Q̃i,k = δi,k +
√
xixk

∂ ln ϕ̂i

∂xk
(4.33)

For an ideal solution, all eigenvalues of this matrix equal 1. At the limit of intrinsic stability,
exactly one eigenvalue is zero. The case of an indefinite M corresponds to one negative
eigenvalue of Q̃ (i.e. the phase is intrinsically unstable).

The numerically smallest eigenvalue of Q̃ can be evaluated using the inverse iteration

Q̃−1û =
1

λmin

û (4.34)

with λmin the minimum absolute eigenvalue and û the corresponding normalised eigenvec-
tor. Equation 4.34 can be rewritten as:

D1/2Q̃−1D1/2D−1/2û =
1

λmin

DD−1/2û (4.35)

or equivalently,

D−1Mŵ =
1

λmin

ŵ, û = D1/2ŵ (4.36)

In general the numerically smallest eigenvalue of Q̃ is also negative. To correct for this
negative eigenvalue we add to Q̃ the matrix ϵûûT , where ϵ + λmin = d > 0. Here d is
chosen to be a small positive number, e.g. 0.01. This corresponds to adding to Q̃−1 the
contribution kûûT with k = 1/d− 1/λmin, and thus adding to M the contribution kvvT ,
where vi = ûi

√
xi. This update preserves the property M1 = x due to the orthogonality

of eigenvectors as both û and
√
x are eigenvectors of Q̃.

As we have already evaluated the matrix M , this eigenvalue and eigenvector are
found with minimal additional effort. Substituting the corrected matrix into the system of
equations for isothermal flash, equation 4.27, we obtain(∑F

j=1 βjMj X

XT 0

)(
λ

∆β

)
=

(
u1

u2

)
+ α̂

(
v

0

)
(4.37)
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with
α̂ = βjkv

T
(
ln f̂j − λ

)
(4.38)

The matrix on the left hand side is already available in a factorised form. The system of
equations is solved to find (

λ

∆β

)
=

(
λ0

∆β0

)
+ α̂

(
λ1

∆β1

)
(4.39)

The α̂ term is found from the closing equation

α̂ = βjkv
T
(
ln f̂j − λ0 − α̂λ1

)
(4.40)

The update to the unstable phase is then calculated as:

∆xj = Mj

(
λ− ln f̂j

)
+ kvT

(
λ− ln f̂j

)
v (4.41)

∆nj = xj∆βj + βj∆xj (4.42)

For the remaining phases the relation in equation 4.15 remains unchanged. We note that
λ0 and ∆β0 have already been evaluated to determine the direction in equation 4.31.

If the numerically smallest eigenvalue of Q̃ is positive additional steps will be necessary
to identify the negative eigenvalue. If more than one matrix is indefinite then it may be
necessary to correct all indefinite matrices. Such instances are rare in practical applications.

Though this correction is shown for only phase equilibria, the M matrix can in principle
be updated in the same way and the procedure modified in a similar manner in the presence
of chemical reactions. The update will preserve the property M1 = x and will not require
the re-factorisation or inversion of any additional matrices.

The two-phase case, in the absence of chemical reactions, is a special case of multiphase
flash. This can be posed in a simple manner using Newton’s method on the Gibbs energy
with one phase set as dependent. The molar amount of each component can be defined
through the material balance:

ni,l = zi − ni,v (4.43)

the gradient of the reduced Gibbs energy is then:

fi = ln f̂i,v − ln f̂i,l (4.44)
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an element of the Hessian is

Hi,k =
1

βl

(
δi,k
xi

+ βl
∂ ln ϕ̂i,l

∂nk

)
+

1

βv

(
δi,k
yi

+ βv
∂ ln ϕ̂i,v

∂nk

)
− 1

βlβv
(4.45)

The correction is found from the Newton step

∆nv = −H−1f (4.46)

To avoid round-off errors the update should be applied to the component present in the
smaller amount (∆ni,l = −∆ni,v).

If the Hessian is not positive definite the direction generated may not be towards a
minimum in the Gibbs energy. For the two-phase case the Hessian is well scaled and an
ideal solution correction vector for restricted step implementation is possible using the
diagonal correction:

si =
zi

xi,lxi,v
(4.47)

The positive definite Hessian is found as

Ĥ = H + α̌s (4.48)

where α̌ is evaluated in a way to ensure that the Hessian is positive definite (e.g. using the
method of Hebden [71]), as recommended by Michelsen and Mollerup [117]. This method
will lead to rapid convergence in the vast majority of cases, and the additional work of
multiple factorisations to find the positive definite Hessian is often not prohibitive due to
the small size of the two-phase Hessian.

An alternative is to use the procedure correction for the modified RAND method. The
Hessian in equation 4.45 can be rewritten

H =
1

βl
ml +

1

βv
mv − 11T

βlβv
(4.49)

with the m matrix defined in equation 4.11. The Hessian will only be indefinite if at least
one of the m matrices is indefinite.

We assume that ml is indefinite with a single negative eigenvalue. The minimum
eigenvalue λmin and corresponding eigenvector û of the Q̃l matrix based on this ml matrix
can be evaluated from equation 4.36. To correct for the negative eigenvalue we add to ml
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the correction kvvT with k + λmin ≥ 0 with

vi =
ui
xi,l

An indefinite Hessian reveals itself in the factorisation step, however a new factorisation
with the modified Hessian can be avoided. We may write

H∆nv = −f − α̂v (4.50)

with α̂ = k
βl
vT∆nv. Using the factorised Hessian we find

∆nv = ∆n0
v − α̂∆n1

v (4.51)

with the closing relation

α̂ =
k

βl
vT
(
∆n0

v − α̂∆n1
v

)
(4.52)

Usually k = −λmin is an adequate correction. Following the update to ∆nv the update
will be in a descent direction however it may be necessary to use a line search to obtain a
decrease in the objective function.

4.3 State function constraints

Though the isothermal flash is the conventional phase equilibrium problem there are
a number of other flash problems which are commonly encountered. The example of
isenthalpic flash was discussed in detail in chapter 3. This was based on the conventional
flash framework where the equality constraints are eliminated by setting one phase as
dependent on the others through the material balance. In a manner similar to Michelsen
[115] it is possible to solve a number of other state function based flash specifications but
starting from the modified RAND framework. From the derivation given in section 4.2
we have an equation for the update to the molar amount of each component in each phase
(4.15)

∆nj = xj∆βj + βjMj

(
ATλ− µj

RT
− ej∆T − γj∆P

)
with C + F + 2 variables. We also have C + F equations defined in equations 4.17 and
4.21.

XT
(
ATλ− ej∆T − γj∆P

)
= g
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A
(

F∑
j=1

βjMj

)
ATλ+AX∆β −A

(
F∑

j=1

βjMjej

)
∆T

−A
(

F∑
j=1

βjMjγj

)
∆P = A

(
F∑

j=1

βjMj
µj

RT

)

The additional two equations can be defined from the constraints. From table 4.1 it is clear
that there are four possible constraint equations. For the (P, S) and (V, S) specifications,
the entropy is constrained:

S(T, P,n)− Sspec = 0 (4.53a)

For the (P,H) specification the enthalpy is constrained:

H(T, P,n)−Hspec = 0 (4.53b)

for the (V, T ), (V, S) and (V, U) specifications the volume is constrained:

V spec − V (T, P,n) = 0 (4.53c)

Finally for the (V, U) specification the internal energy is constrained:

U(T, P,n)− U spec ≈ H(T, P,n)− U spec − PV spec (4.53d)

This approximation is exact at the solution and can be safely used.
Each of these four equality constraints are non-linear in the independent variables.

Linearisation of each constraint yields:

S − Sspec

RT
+

Cp

RT 2
∆T − 1

RT

∂V

∂T
∆P −

F∑
j=1

eT
j ∆nj = 0 (4.54a)

H −Hspec

RT 2
+

Cp

RT 2
∆T − 1

RT

(
∂V

∂T
− V

T

)
∆P −

F∑
j=1

ξTj ∆nj = 0 (4.54b)

V spec − V

RT
− 1

RT

∂V

∂T
∆T − 1

RT

∂V

∂P
∆P −

F∑
j=1

γT
j ∆nj = 0 (4.54c)
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H − U spec − PV spec

RT 2
+

Cp

RT 2
∆T − 1

RT

(
∂V

∂T
+
V spec − V

T

)
∆P −

F∑
j=1

ξTj ∆nj = 0

(4.54d)

where we have defined

ξj =
1

R

∂
µj

T

∂T
(4.55)

It is desirable to arrive at a single symmetric matrix for all six state-function based
flash specifications. To do so it is necessary to make a number of simplifications. The
temperature derivative of the reduced chemical potential can be split as

∂
µj

T

∂T
=

1

T

∂µj

∂T
− µj

T 2
(4.56)

In the summation term in equation 4.54d, the second term from the RHS of equation 4.56
will be:

F∑
j=1

µT
j

RT 2
∆nj (4.57)

At equilibrium, the reduced chemical potentials of each phase are related to the reduced
equilibrium elemental potential through

µj

RT
= ATλ (4.58)

therefore

F∑
j=1

µT
j

RT 2
∆nj =

1

T

F∑
j=1

(
ATλ

)T
∆nj =

λT

T
A
(

F∑
j=1

∆nj

)
= 0 (4.59)

This is zero because, given a composition which satisfies the elemental balance, equation
4.20 is satisfied.

It is therefore possible to relace ξj in equations 4.54b and 4.54d with ej for each
phase. The pressure derivative in equation 4.54b is not used in any specification and can be
dropped. At the solution, the volume will be identical to the volume specification, therefore
the third term in equation 4.54d can be simplified to

1

RT

∂V

∂T
∆P
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Using these simplifications the four equations in 4.54 can be rewritten as:

Cp

RT 2
∆T − 1

RT

∂V

∂T
∆P −

F∑
j=1

eT
j ∆nj = rT (4.60a)

− 1

RT

∂V

∂T
∆T − 1

RT

∂V

∂P
∆P −

F∑
j=1

γT
j ∆nj = rP (4.60b)

where rT and rP are defined in table 4.2.

Table 4.2 The elements of rT and rP for a given specification

Flash specification rT rP

(T, P ) - -
(P,H) 1

RT 2 (H
spec −H) -

(P, S) 1
RT

(Sspec − S) -
(V, T ) - 1

RT
(V − V spec)

(V, U) 1
RT 2 (U

spec + PV spec −H) 1
RT

(V − V spec)
(V, S) 1

RT
(Sspec − S) 1

RT
(V − V spec)

The composition correction to each component in each phase defined in equation 4.15
is substituted into equations 4.60 to obtain:

−
F∑

j=1

βje
T
j MjATλ−

F∑
j=1

xT
j ej∆βj +Cx∆T +Ω∆P = rT −

F∑
j=1

βje
T
j Mj

µj

RT
(4.61)

−
F∑

j=1

βjγ
T
j MjATλ−

F∑
j=1

xT
j γj∆βj +Ω∆T +Ψ∆P = rP −

F∑
j=1

βjγ
T
j Mj

µj

RT
(4.62)

Here we have used

Cx =
Cp

RT 2
+

F∑
j=1

βje
T
j Mjej

Ω =
F∑

j=1

βje
T
j Mjγj −

1

RT

∂V

∂T
=

F∑
j=1

βjγ
T
j Mjej −

1

RT

∂V

∂T

Ψ =
F∑

j=1

βjγ
T
j Mjγj −

1

RT

∂V

∂P

(4.63)
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A common symmetric matrix with the specifications given in table 4.2 from equations
4.17, 4.21, 4.61 and 4.62 is then:

A
∑F

j=1 βjMjAT AX −t −q

(AX)T 0 s1 s2

−tT sT1 Cx Ω

−qT sT2 Ω Ψ




λ

∆β

∆T

∆P

 =


u1

u2

u3

u4

 (4.64)

with

u3 = rT −
F∑

j=1

βje
T
j Mj

µj

RT

u4 = rP −
F∑

j=1

βjγ
T
j Mj

µj

RT

t = A
F∑

j=1

βjMjej

q = A
F∑

j=1

βjMjγj

s1,j = −xT
j ej ∀j

s2,j = −xT
j γj ∀j

(4.65)

Once the system of equations is solved using the symmetric matrix, the update to the
molar amount of each component in each phase is found from equation 4.15. To select
each flash specification, the only change necessary is given in table 4.2. Only the (P, T )

specification has a suitable objective function to minimise (the Gibbs energy). For the
other state function based flash specifications, the Newton iteration with accurate initial
estimates is expected to converge in the majority of cases and a fall back method is needed
for non-convergent situations. An implementation similar to that described in chapter 3
would be suitable.

In the absence of chemical reactions it is possible to make a number of simplifications.
The elemental feed becomes the component feed bi = zi, the formula matrix is the identity
matrix A = I , and the reduced chemical potential can be replaced by the fugacity ln f̂j
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for each phase. The matrix in equation 4.64 becomes
∑F

j=1 βjMj X −t −q

XT 0 s1 s2

−tT sT1 Cx Ω

−qT sT2 Ω Ψ




λ

∆β

∆T

∆P

 =


u1

u2

u3

u4

 (4.66)

with

u1 =
F∑

j=1

βjMj ln f̂

u2,j =
C∑
i=1

xi,j ln f̂ ∀j

u3 = rT −
F∑

j=1

βje
T
j Mj ln f̂

u4 = rP −
F∑

j=1

βjγ
T
j Mj ln f̂

t =
F∑

j=1

βjMjej

q =
F∑

j=1

βjMjγj

(4.67)

The other terms remain unchanged. This is again a symmetric matrix for any specification
given in table 4.2

Again an ideal solution approximation, as described in section 1.3, can be arrived at
by assuming the composition derivatives of the fugacity coefficient are equal to zero. It is
then possible to reduce the size of the system of equations to be solved from C + F + 2 to
F + 2 for (V, U) and (V, S) based flash specifications and to F + 1 for (V, T ), (P,H) and
(P, S) based specifications.

4.4 Non-PT based thermodynamics formulations

It is common to solve the EoS at a specified pressure. However the EoS is often a
function for the Helmholtz energy with the natural variables of temperature and volume. A
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formulation which takes advantage of the natural variables instead of solving the EoS for
volume at a given pressure may prove advantageous.

The resulting vol-RAND method using the (n, T, V ) based thermodynamics can be
used to solve both the (V, T ) and (P, T ) based phase split calculations. It can in principle be
applied to the other four types of flash specifications discussed in this work: (P,H), (P, S),
(U, V ), and (V, S), as is described in appendix C. Furthermore, we present a generalisation
in section 4.4.2, showing that other formulations using (n, P,H), (n, P, S), (n, U, V ),
and (n, V, S) based thermodynamics are also possible. the generalised formulation is
particularly useful for flash specifications using the same set of variables. We present here
only its derivation and no test has been made so far.

4.4.1 Vol-RAND formulation

Instead of expressing the Gibbs energy using the pressure, temperature and molar amounts
of all components in all phases, we express the Helmholtz energy using the volume,
temperature and molar amounts and minimise it:

minA(n, T, V ) =
C∑
i=1

F∑
j=1

ni,jµi,j − PV (4.68)

subject to the elemental balance constraints

C∑
i=1

Al,i

(
F∑

j=1

ni,j

)
− b̂l = 0, l = 1, 2, ..., E (4.69)

the volume balance
F∑

j=1

Vj − V spec = 0, j = 1, 2, ..., F (4.70)

and the inequality constraints

ni,j ≥ 0 i = 1, 2, ..., C, j = 1, 2, ..., F (4.71)
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The Lagrangian for the constrained minimisation is

L(n,V , λ̂, P eq) =
C∑
i=1

F∑
j=1

ni,jµi,j −
F∑

j=1

VjPj −
E∑
l=1

λ̂

(
C∑
i=1

Al,i

(
F∑

j=1

ni,j

)
− bl

)
−

P eq

(
V spec −

F∑
j=1

Vj

)
(4.72)

Where λ̂ and P eq are the Lagrange multipliers, these are equivalent to the equilibrium
elemental potentials and the equilibrium pressure. The stationarity equations are:

∂L
∂ni,j

= µi,j −
E∑
l=1

λ̂lAl,i = 0, ∀i, j (4.73)

∂L
∂λl

= −
C∑
i=1

Al,i

(
F∑

j=1

ni,j

)
+ b̂l = 0, ∀l (4.74)

∂L
∂Vj

= −Pj + P eq = 0, ∀j (4.75)

∂L
∂P eq

= V spec −
F∑

j=1

Vj = 0 (4.76)

Where the equilibrium equations are 4.73 and 4.75. The composition derivative of the
Helmholtz energy is the chemical potential(

∂Aj

∂ni,j

)
V,T,nk,j

= µi,j

and the volume derivative is the negative phase pressure(
∂Aj

∂Vj

)
T,nj

= −Pj

For convenience we will refer to the derivatives of the Helmholtz energy using the following
terminology:

Ani,j =

(
∂Aj

∂ni

)
T,nj

= µi
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and the same for all other used derivatives of the Helmholtz energy. Carrying out linearisa-
tion around the equilibrium equations (4.73, and 4.75) we arrive at

An,j +An,n,j∆nj +An,V,j∆V +An,T,j∆T −AT λ̂ = 0 (4.77)

AV,j +AT
j ∆nj + AV,V,j + AV,T,j∆T − P eq = 0, ∀j (4.78)

where
An,n,j =

∂µj

∂nj

is a matrix of size C × C. The composition derivative of the chemical potential at
constant volume and temperature An,n,j is non-singular everywhere except at the spinodal.
Therefore the update to the molar amount of each component in each phase can be
immediately isolated as

∆nj = A−1
n,n,j

(
AT λ̂−An,j −An,V,j∆Vj −An,T,j∆T

)
(4.79)

Since the Helmholtz energy is a homogeneous function of degree one in the molar amount
of each component and the volume (and its temperature derivative is also a homogeneous
function of degree one) it derivatives satisfy:

AT
n,jnj + AV,jVj = Aj (4.80)

AT
n,T,jnj + AV,T,jV = AT,j = −Sj (4.81)

An,n,jnj +An,V,jVj = 0 (4.82)

and
AT

n,V,jnj + AV,V,jVj = 0 (4.83)

From equation 4.81 we can show that

A−1
n,n,jAn,V,j = −nj

Vj
= −ρj

Substituting this into equation 4.79 we obtain:

∆nj = A−1
n,n,j

(
AT λ̂−An,j −An,T,j∆T

)
+ ρj∆Vj (4.84)
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This composition correction can then be substituted into equation 4.78 to find:

AV,j − ρT
j

(
AT λ̂−An,j

)
+
(
AT

n,V,jρj + AV,V,j

)
∆Vj

−
(
ρT
j An,T,j + AV,T,j

)
∆T + P eq = 0, ∀j (4.85)

From equation 4.82 it is clear that the third term of equation 4.85 is equal to zero. From
equation 4.81 we can replace the fourth term with the entropy over the volume:

ρT
j AT λ̂+

Sj

Vj
∆T = ρT

j µj + AV,j + P eq (4.86)

Linearising around equation 4.74 we obtain

A
(

F∑
j=1

(∆nj)

)
= 0 (4.87)

given an initial estimate that meets the material balance. Substituting in equation 4.84
leads to:

A
(

F∑
j=1

A−1
n,n,j

)
AT λ̂+AR∆V −A

(
F∑

j=1

A−1
n,n,jAn,T,j

)
∆T = A

(
F∑

j=1

A−1
n,n,jµj

)
(4.88)

Here we have used R = (ρ1,ρ2, ...,ρF ). The E equations 4.88 together with the F
equations 4.86 relate the E + F + 2 variables

(
λ̂,V , T, P eq

)
. This leaves the usual 2

degrees of freedom.
Using this formulation it is possible to construct either isothermal isobaric (P, T ) or

isothermal isochoric (V, T ) flash as a minimisation with the objective functions Q =

A+V P eq and Q = A respectively. To carry out (V, T ) flash one of the phase volumes can
be set as dependent using equation 4.76. It is also possible to arrive at a symmetric system
of equations if the energy (enthalpy, entropy or internal energy) of the mixture is known
instead of the temperature and used as a constraint in a similar manner to that carried out in
section 4.3 (using similar simplifications). The system of equations is given in appendix C.

For non-reactive systems equation 4.86 can be simplified to

ρT
j λ̂+

Sj

Vj
∆T = ρT

j µj + AV,j + P eq (4.89)
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and equation 4.88 to(
F∑

j=1

A−1
n,n,j

)
λ̂+R∆V −

F∑
j=1

A−1
n,n,jAn,T,j∆T =

F∑
j=1

A−1
n,n,jµj (4.90)

In some cases it may be convenient to use:

An,n,j =
∂µj

∂nj

=
1

V

∂µj

∂nj

(4.91)

This may be advantageous if one specification is that one phase is incipient (i.e. that its
phase fraction is zero).

A similar implementation can be used for vol-RAND at a given (P, T ) specification as
was used for modified RAND. Given the volume and molar amount of each component in
each phase, one iteration would proceed as

1. Calculate the molar density of each component in each phase

ρi,j =
ni,j

Vj

and collect the density vectors into a matrix

R = (ρ1,ρ2, ...,ρF )

2. Use a suitable EoS to evaluate the chemical potential and the necessary derivatives

µj =
∂Aj

∂nj

, An,n,j =
∂µj

∂nj

, Pj =
∂Aj

∂Vj

3. Form the system of equations(∑F
j=1A

−1
n,n,j R

RT 0

)(
λ̂

∆V

)
=

( ∑F
j=1 A

−1
n,n,jµj

ρT
j µj + AV,j + P eq ∀j

)

4. Solve for the equilibrium chemical potentials and the change in the phase volumes

5. Calculate the update to the molar amount of each component in each phase

∆nj = A−1
n,n,j

(
λ̂− µj

)
+ ρj∆Vj
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6. Take the step with a suitable step length modifier to avoid violation of the inequality
constraint (i.e. no component can become negative in any phase). It is also necessary
to ensure that the volume specification for a phase does not decrease below the
minimum possible volume for the phase.

7. Re-evaluate the Helmholtz energy from the EoS and check for a reduction in a
suitable objective function

Q =
F∑

j=1

Aj +
F∑

j=1

VjP
eq

If there is an increase in the objective function then the step length can be reduced,
and the step repeated.

This procedure will be quadratically convergent provided with a suitable initial estimate.
Unfortunately there is no simplifying ideal solution approximation with the volume and
temperature specified. Successive substitution cannot be easily formulated. This is only
possible for the ideal gas which is of little interest to the multiphase case.

For the case where (V, T ) is specified instead of (P, T ) a very similar implementation
can be used. The general matrix required for the (V, T ), (V, S) and (V, U) specifications is
given in appendix C. This can be used for the (V, T ) specification where the temperature is
known (and the row and column corresponding to the temperature change can be removed).

4.4.2 Generalisation to other state functions

There are a number of differences between modified RAND and vol-RAND, the most
obvious of which is that vol-RAND uses a thermodynamic model solved at a given (V, T )

while modified RAND uses a thermodynamic model solved at a given (P, T ). With
vol-RAND it is possible to pose both the (V, T ) and (P, T ) phase split calculations as
minimisations while for modified RAND it is possible only for (P, T ). In the case of other
specifications (including (V, T )) it is necessary to introduce non-linear constraints. An
alternative method to solve the remaining flash specifications ((P,H), (P, S), (V, S) and
(V, U)) would be to solve the EoS at the flash specification (i.e. for (P,H) flash solve
the EoS at a given pressure and enthalpy (n, H, P )). This would then allow for each of
the flash specifications described in table 4.1 to be posed as unconstrained minimisations.
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Starting from a general state function:

M̂
(
n, b̃, ĉ

)
(4.92)

where M̂ is a homogeneous function of degree one in its extensive properties, n are the
mole numbers of each component, b̃ a vector of independent extensive variables, with
intensive conjugates â, and the remaining intensive variables ĉ. The possible variables for
â, b̃ and ĉ are given in table 4.3

Table 4.3 Flash specifications and their extensive variables, the intensive conjugate and any remain-
ing intensive variables

Flash specification b̃ â ĉ

(P, T ) - - P , T
(V, T ) V P T
(P,H) H T P
(P, S) S 1/T P
(V, S) V , S P , 1/T -
(V, U) V , U P , T -

If we assume there are C variables of n, F phases, andN additional extensive variables
b̃, the equilibrium conditions for this state function are

M̂n,j − λ = 0, j = 1, 2, ..., F (4.93a)

M̂b̃l,j
− âl = 0 j = 1, 2, ..., F, l = 1, 2, ..., N (4.93b)

Note that λ represents Lagrange multipliers at this point rather than specifically either
reduced chemical potentials or chemical potentials. We use:

M̂n,j

to represent the partial derivative (
∂M̂j

∂ni,j

)
b̃,ĉ,nk

, ∀i
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with b̃, ĉ, and nk ̸=i kept constant for phase j. Following the modified RAND methodology
we linearise around the equilibrium equations:

M̂n,j + M̂n,n,j∆nj +
N∑
l=1

M̂n,b̃l,j
∆b̃l,j − λ = 0 ∀j (4.94)

M̂b̃l,j
+ M̂T

b̃l,n,j
∆nj +

N∑
k=1

M̂b̃l,b̃k,j
∆b̃k,j − âl = 0 ∀j, l (4.95)

for convenience we omit the linearisation of the additional intensive properties (ĉ). Assum-
ing that the matrix of second derivatives of n is non-singular (generally true if N > 0), the
composition correction is immediately isolated as:

∆nj =
(
M̂n,n,j

)−1
(
λ− M̂n,j −

N∑
l=1

M̂n,b̃l,j
∆b̃l,j

)
(4.96)

It is possible to include reactions in this formulation, however for convenience and clarity
these will be omitted. The material balance is therefore given as:

F∑
j=1

nj − z = 0 (4.97)

then following linearisation we find:

F∑
j=1

∆nj = 0 (4.98)

given an initial estimate which is equal to the feed amount. Substituting in equation 4.96
to equation 4.98 we obtain:

F∑
j=1

(
M̂n,n,j

)−1

λ−
N∑
l=1

F∑
j=1

M̂−1
n,n,jM̂n,b̃l,j

∆b̃l,j =
F∑

j=1

(
M̂n,n,j

)−1

M̂n,j (4.99)
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Substituting equation 4.96 into equation 4.95 we find for each extensive variable and phase:

M̂b̃l,j
+ M̂T

n,b̃l,j
M̂−1

n,n,j

(
λ− M̂n,j

)
+

N∑
k=1

(
M̂b̃l,b̃k,j

−
F∑

m=1

M̂T
n,b̃l,m

M̂−1
n,n,mM̂n,b̃k,m

)
∆b̃k,j − âl = 0 (4.100)

The C +F ×N equations 4.100 and 4.99 relate the C +F ×N variables λ, b̃. The update
to the molar amount of each component in each phase can be found from equation 4.96.

If we consider the case where there is only a single extensive variable b̃j then, since M̂
is a homogeneous function of degree one we can define

M̂n,n,jnj + M̂n,b̃b̃j = 0, ∀j (4.101)

From this we can find
M̂−1

n,n,jM̂n,j = −nj

b̃j
, ∀j (4.102)

and
M̂T

n,b̃,j
nj + M̂b̃,b̃,j b̃j = 0, ∀l, j (4.103)

The two equations 4.102 and 4.103 can be used to simplify equations 4.100 and 4.99 to:

M̂b̃,j + M̂T
n,b̃,j

M̂−1
n,n,j

(
λ− M̂n,j

)
− â = 0 ∀j (4.104)

and
F∑

j=1

(
M̂n,n,j

)−1

λ+
F∑

j=1

nj

b̃j
∆b̃j =

F∑
j=1

(
M̂n,n,j

)−1

M̂n,j (4.105)

With the composition correction (equation 4.96) reduced to:

∆nj = M̂−1
n,n,j

(
λ− M̂n,j

)
+

nj

b̃j
∆b̃j, ∀j (4.106)

We can then arrive at a simpler system of equations using equations 4.105 and 4.104:(∑F
j=1 M̂

−1
n,n,j R̂

R̂T 0

)(
λ

∆b̃

)
=

(∑F
j=1 M̂

−1
n,n,jM̂n,j

u2

)
(4.107)

where
R̂ =

(
n1

b̃1
,
n2

b̃2
, ...,

nF

b̃F

)
(4.108)
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and

u2,j =

(
nj

b̃j

)T

M̂n,j + â ∀j

The correction to the linearly dependent variables is found from equation 4.106. If we
do not know the value of the conjugated intensive property â but instead the sum of the
extensive property b̃spec =

∑F
j=1 b̃j then it is possible to set one phase as dependent for the

given variable:

∆b̃F = −
F−1∑
j=1

∆b̃j + b̃spec −
F∑

j=1

b̃j (4.109)

where given an initial estimate which is at b̃spec the equation is reduced to

∆b̃F = −
F−1∑
j=1

∆b̃j (4.110)

Substituting the relevant row and column in equation 4.107 reduces the matrix size by 1 to
C + F − 1.

The reason that this generalisation is not suitable for the modified RAND formulation
is that the M̂n,n,j matrix is singular (Gibbs-Duhem equation) at a specified (P, T ). One
alternative to the given formulation for modified RAND is to define one or more component
as an independent extensive variable ni,j = b̃i,j and using relation 4.110. In fact if all of
the components are defined in this way then the conventional isothermal flash framework
is obtained.

We here describe the molar amounts of each component as seperate from the inde-
pendent extensive variables. This is for convenience only and it is possible to treat any
of the extensive variables (i.e. volume, energy or molar amounts of a component) as an
independent extensive variable or vice versa with the volume or energy defined in the
same manner as a component. All that is necessary for this derivation is that one extensive
variable is defined using equation 4.110 to avoid a singular matrix M̂n,n.

Other than the vol-RAND implementation which fits this framework one possible
implementation of the general RAND formulation is to solve the thermodynamics at a
given (P,H), as was done by Brantferger et al. [17] and Sun et al. [178]. This would then
simplify the (P,H) flash implementation to an unconstrained maximisation of the entropy.
This implementation has not been tested as part of this work. The state function for (P,H)
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flash is the negative entropy, as given in equation 3.1. We know from table 1.2 that(
∂S

∂n

)
H,P

= −µ

T
, and

(
∂S

∂H

)
n,P

=
1

T

The entropy is a homogeneous function of degree 1 in the enthalpy and molar amount of
each component (similar to the Helmholtz energy but replacing volume with enthalpy, and
temperature with pressure). Therefore we can replace equation 4.101 and 4.103 with

Sn,n,jnj + Sn,H,jHj = 0 (4.111)

and
ST

n,H,jnj + SH,H,jHj = 0, ∀j (4.112)

Allowing us to find the molar inverse enthalpy

S−1
n,n,jSn,H,j = −nj

Hj

(4.113)

Applying equation 4.96 to the (P,H) flash we find

∆nj = −S−1
n,n,j

(
λ− µj

T

)
+

nj

Hj

∆Hj (4.114)

and to equation 4.105 to find the C equations:

−
F∑

j=1

S−1
n,n,jλ+

F∑
j=1

nj

Hj

∆Hj = −
F∑

j=1

S−1
n,n,jSn,j (4.115)

and the remaining F equations from 4.104:(
nj

Hj

)T

λ =

(
nj

Hj

)T
µj

Tj
− SH,j +

1

T ∗ (4.116)

Giving the system of equation:

(
−∑F

j=1 S
−1
n,n,j R̂

R̂ 0

)(
λ

∆H

)
=

 −∑F
j=1 S

−1
n,n,j

µ
T(

nj

Hj

)T
µ
T
− SH,j +

1
T

∀j

 (4.117)

with R̂ =
(

n1

H1
, n2

H2
, ..., nF

HF

)
. Solving for λ and the change in phase enthalpy ∆Hj would

then allow for the change in molar amounts of all components in all phases to be found
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from equation 4.114. Alternatively if the enthalpy of the mixture is known but not the
temperature then one phase can be set as dependent through equation 4.110, the new system
of equations is then solved to find the new phase enthalpies and pressure at a given (P,H)

specification. In such a scenario the entropy can be monitored to ensure it is increasing at
each step to guarantee convergence.

4.5 Results

There are a number of different phase split calculations considered in this chapter. The
results will be split to reflect this. First the isothermal flash methods using modified RAND
and vol-RAND will be compared to the conventional isothermal flash method (section
4.5.1). The procedure correction for modified RAND will be presented in section 4.5.2
with a comparison made to the conventional isothermal flash method. Finally two examples
will be presented for state function based flash specifications using the modified RAND
framework in section 4.5.3. The examples used are described in appendix B.

4.5.1 Comparison of methods for phase split calculation

The first check is on the rate of convergence of the proposed method. The maximum
deviation in the fugacity between a component in two phases is plotted against the iteration
number in figure 4.1 for example three. The rate of convergence is approximately the same
for all of the second order methods. The rate of convergence for successive substitution is
linear, as expected. The solution has a vapour phase fraction of β = 0.9169 using the SRK
EoS.

Not only is the rate of convergence for the conventional method and the modified
RAND method the same but the update to the molar amounts of the components in each
phase is the same, other than due to round-off errors. The same second order information
is available to both methods. The vol-RAND method has slightly different non-linearities
as it is carried out at a specified volume and temperature, and therefore co-solves the EoS,
though often the rate of convergence is almost identical. A similar plot is given in figure
4.2 where the convergence for each of the methods is plotted for a mixture of two, and
then three phases. The initial estimate is from stability analysis followed by a two-phase
VLE phase split calculation after which a near pure water phase is introduced and then a
three-phase split calculation.



4.5 Results 111

0 2 4 6 8 10 12 14 16 18 20

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Iteration

M
ax

im
um

de
vi

at
io

n
in

fu
ga

ci
ty

Successive substitution
Conventional method
Modified RAND
Vol-RAND

Fig. 4.1 Plot showing the convergence of isothermal flash using various implementations for a
7-component mixture (example three) at 10 bar and 160K. All implementations used two steps of
successive substitution followed by the chosen method. The initial estimate was generated from the
Wilson K-factor approximation.
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Fig. 4.2 Plot showing the convergence of example one at 510K and 50 bar. Note that each
method has two segments, corresponding to the two-phase solution and the three-phase solution,
respectively. The initial stability analysis introduces a vapour phase to the feed. The two-phase
solution converges at βv = 0.549 and βl = 0.451, after which a water phase is introduced by
stability analysis and the solution finally converges at βv = 0.150, βl = 0.516 and βw = 0.334.
The first two steps following stability analysis are successive substitution for all methods and for
both two-phase and three-phase solutions. For the three second order methods the water phase was
introduced after 6 iterations, while for successive substitution it was introduced after 13 iterations.
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At two-phase equilibrium the molar phase fractions are βv = 0.549, βl = 0.451 and
at three-phase equilibrium the molar phase fractions are βv = 0.150, βl = 0.516, and
βw = 0.334. Again for all of the second order methods tested the rate of convergence
is almost identical, and successive substitution is once again linearly convergent. After
introducing each new phase the first two steps taken use successive substitution and so
are the same for each method. Since the update to the modified RAND is identical to the
conventional method it is expected that the convergence of both methods will be the same,
though minor differences due to round-off are encountered.

The computational cost of each method is compared in table 4.4. For this a 17-
component mixture containing water, carbon dioxide, and hydrogen sulphide was used
(example 8). Each of the methods were implemented with FORTRAN using the LAPACK
library for factorisation, solving systems of equations, and inversion, otherwise compiler
optimisation options were not used. A flash calculation was carried out at 370K and 2 bar
using three different thermodynamic models. This involved: starting with the feed phase;
introducing a vapour phase following stability analysis; solving the phase split calculation;
introducing a water rich phase from stability analysis; and finally solving the phase split
calculation again. The CPU time required for the second order phase split calculations
was recorded for each of the models (not including stability analysis). The computational
cost of one iteration is presented in table 4.4 where each method is compared to using the
conventional method with SRK for two phases.

Table 4.4 Computational cost of isothermal flash using the conventional method, modified RAND
and vol-RAND for a 17 component mixture (example 3). The cost is given for one iteration relative
to one iteration of the two-phase split calculation with SRK.

Equation of state Two-phase flash
Conventional method Modified RAND Vol-RAND

SRK 1 2.03 2.00
CPA1 2.47 4.05 2.11
CPA2 4.63 6.62 2.38

Three-phase flash

SRK 2.98 2.89 2.88
CPA1 5.41 5.40 3.08
CPA2 8.65 8.45 3.50

The solution molar phase fractions for SRK are βv = 0.6633, βl = 0.1101, and
βw = 0.2265, for CPA1 βv = 0.7188, βl = 0.1080, and βw = 0.1732, and for CPA2 βv =
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0.7187, βl = 0.1081, and βw = 0.1732. CPA1 considered only the water as associating
(two association sites) while CPA2 considered both water and hydrogen sulphide as
associating and carbon dioxide as solvating (five association sites). As the number of
association sites increases the complexity of the model increases. For reservoir fluid-water
systems, it is generally sufficient to consider just the self-association of water molecules
by use of CPA1 [199], cross association (CPA2) can be needed for an accurate description
of the carbon dioxide or hydrogen sulphide rich phases [186].

When using pressure based thermodynamics there is a significant additional cost when
using a more complex EoS. However if the vol-RAND method is used, where the EoS is
co-solved with the equilibrium equations the additional cost of CPA is relatively small.
This is clear from table 4.4 where the vol-RAND method is only slightly slower when
using CPA compared to SRK, for two phases vol-RAND with CPA1 takes almost the
same time as modified RAND with SRK this is also true for three phases. This is because
the association equations must only be solved once at each iteration when the volume
is specified, whereas they must be repeatedly solved if the pressure is specified. The
difference in computational cost is particularly clear if there are multiple associating
components (CPA2), with vol-RAND taking less than half the computational time of
modified RAND. For the cubics (SRK) the benefit of using a volume based formulation is
minor. As both vol-RAND and modified RAND share a similar structure (F inversions of
size C and one factorisation of size F +C) their computational cost is almost the same for
SRK where the evaluation of the density root is relatively simple.

As the number of phases increases, the cost of the modified RAND method will
decrease relative to the cost for the conventional method. This is because the O(n3) terms
scale better with the modified RAND method where there are F inversions of size C and
one factorisation of size F +C. This is compared to the conventional approach where there
is a single factorisation of size C × (F − 1). For two phases the conventional approach is
to be preferred, for three phases both methods will be about the same and for four or more
phases the modified RAND approach is preferred. Example six at 120K and 1 bar can have
up to four phases in equilibrium. This was flashed and the CPU time for the second order
phase split calculation recorded for the two-phase, three-phase and four-phase calculations.
Example six as described in the appendix was then modified with the molar amount of the
ethane component split between multiple identical components, this allows for the same
flash to be carried out (with identical results) but with a larger system of equations. The
results for up to 100 components are presented in figure 4.3.
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Fig. 4.3 Ratio of CPU time for the RAND method against the conventional method. The RAND
method scales better as the number of phases increases.
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The results in figure 4.3 are not smooth. This is likely due to some optimisation carried
out by the compiler which is better for some methods than others. However the trends
found follow the expectation that as the number of phases increases, the relative cost of the
modified RAND method decreases. For two phases the modified RAND method is always
more computationally demanding.

4.5.2 Procedure correction

None of the examples considered insofar have utilised the correction to ensure a descent
direction, however such a correction is vital if the method is to be used for large scale
simulation where a robust implementation is necessary. Moreover it is necessary that
the correction does not significantly hinder the rate of convergence. For two-phase flash
the current state of the art is to use a restricted step method with an ideal solution based
correction factor, equation 4.47. For multiphase flash there is no obvious ideal correction
factor. Michelsen [110] recommended the use of a perturbed decomposition routine
followed by a suitable line search algorithm. This avoids repeated factorisations of the
large multiphase Hessian when compared to the restricted step approach, however can have
adverse affects on the rate of convergence [55]. In this work a trust region type update was
used for the conventional approach with more than two phases without ideal scaling using
the Hessian described by Michelsen [110]. This method requires more decompositions
of the large C(F − 1) matrix than using a perturbed decomposition routine, however can
result in fewer outer loop iterations (which are compared here). A similar method using the
K factors to improve the scaling of the Hessian is presented by Petitfrere and Nichita [144].
These methods are compared to the correction to the modified RAND method presented in
section 4.2.2. This correction only modifies the derivative properties of the phase which is
not positive.

Although it is rare for one phase to be unstable (i.e. for the Hessian of the Gibbs energy
of that phase to be indefinite) during flash calculations, it is possible with poor initialisation,
or if the mixture is close to the critical point. Example three with a temperature of 202.997K
and pressure of 58.7bar is very close to the critical point. The procedure correction for
the modified RAND framework is compared to the restricted step using the ideal solution
update step at these conditions. Following stability analysis of the feed mixture a trial
phase at a minimum in the tangent plane distance is identified. Two steps of successive
substitution are taken before switching to the second order method with the phase fraction
and maximum difference between component fugacities shown in figure 4.4.
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Fig. 4.4 Comparison of the convergence of a near critical 7-component natural gas mixture, example
three, using the correction to the modified RAND method presented here (dashed) and an restricted
step implementation using an ideal solution diagonal correction (solid). The error is the maximum
absolute difference between the fugacity of a components in the two phases.

After two steps of successive substitution, the incipient phase has a phase fraction of
β = 0.008. The direction of the step is evaluated using equation 4.31. This is found as

F∑
j=1

C∑
i=1

∆ni,j ln f̂i,j = 4× 10−6

Since this is greater than 0, a line search alone will not yield a decrease in the Gibbs energy.
Correction to the modified RAND step is necessary. The minimum absolute eigenvalue for
the Hessian of the two-phase mixture, equation 4.45, is −1× 10−7.

In this case the phase present in the greater amount is indefinite. The smallest eigenvalue
of the Q matrix is λmin = −0.0121. Using this with a value of d = 0.01 we find α̂ = 0.021

from equation 4.40. The change to the equilibrium chemical potential and the change in
the flow of each component in the incipient phase, before and after correction, is shown in
table 4.5.

Before the modified RAND step is corrected, the change in the molar amounts of
each component indicates that the phase present in a smaller amount should be removed
(returning to the trivial solution). Following correction of the modified RAND step the
phase fraction increases from β = 0.008 to β = 0.271, the final solution phase fraction is
β = 0.573.



118 Modified RAND Framework for Phase Split Calculations

Table 4.5 Equilibrium chemical potential and change in the incipient phase flow before and after
correction of the modified RAND step.

Component λ ∆n
methane 3.6095 3.6095 -0.5553 0.2502
ethane -1.6647 -1.6564 -0.0138 0.0062
propane -4.3428 -4.3376 -0.0034 0.0015
n-butane -6.1390 -6.1444 -0.0020 0.0009
n-pentane -8.1262 -8.1488 -0.0010 0.0005
n-hexane -10.5054 -10.5507 -0.0003 0.0002
nitrogen 0.2717 0.2608 -0.0089 0.0040

In the presented example, figure 4.4, which has been described in detail the use of the
correction to the modified RAND method requires less iterations than the use of an ideal
solution correction to the two-phase Hessian. Figure 4.5 shows the convergence for both
the conventional method (as described in this section using trust region for multiphase split
calculation) and for the modified RAND method.
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Fig. 4.5 Heat map of second order iterations to converge phase split calculation for example 6 in
four phase region.

The plots in figure 4.5 have different maximum and minimum values. The modified
RAND method does not exceed 20 iterations, whereas the conventional method required a
maximum of 28 iterations. Over the presented area the modified RAND method used an
average of 9.2 iterations while the conventional method used 10.3 iterations (these number
are relatively large due to them being the sum of two-, three- and four-phase phase split
calculations in some regions) . It is often necessary to use a correction step in the presented
example due to difficulties with multiphase mixtures. After each phase was introduced
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from stability analysis, two steps of successive substitution were used to improve the
initial estimate. In the presented region the RAND correction is better than the trust region
implementation.

As well as complex multiphase mixtures, the presented correction is suitable for
mixtures close to in the critical region. The mixture given in figure 4.6 is close to the
tri-critical point of example eight.
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Fig. 4.6 Number of RAND iterations to obtain convergence close to the tri-critical point for mixture
of methane, ethane and n-octane, example 3. Three phase contained region inside of the black line
and single phase region present to the left hand side.

Example eight is modelled with 0 kij using SRK where the predicted tri-critical point
is at molar compositions of C8 = 0.64%, C2 = 21.8% at a temperature of 225.5K, and a
pressure of 69.5bar [116]. The given composition is C8 = 1%, and C2 = 21.8% leading
to a small, nearly critical, three-phase region. The number of iterations for the modified
RAND approach (where the modified RAND step is often corrected) is given in figure
4.6. Even in this complex region the number of iterations does not exceed 39. In the same
region the number of iterations using the conventional approach (ideal solution restricted
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step for two-phases and the trust region implementation described above) can be as high as
100 with the same convergence criteria.

4.5.3 State function based flash specification

Flash calculation with state function based specifications are more complex to solve
than the conventional isothermal flash. We adopt the solution strategy recommended by
[115] where a Newton approach is used to handle the majority of cases and a Q-function
maximisation is used as a fall back method. Michelsen [115] demonstrated the strategy
only for two-phase cases using the conventional flash formulation. Here, we apply the
modified RAND framework, with additional constraints to multiphase flash given a V, U
specification. The solution strategy adapted to the modified RAND formulation is as
follows:

1. The initial estimate is generated using the Wilson K-factor approximation

ϕ̂i,v = 1, ϕ̂i,l =
Pc,i

P
ln

(
5.373(1 + ωi)

(
1− Tc,i

T

))
(4.118)

The temperature and pressure are found by solving the Wilson equation with its
temperature and pressure derivatives to meet the specified constraints.

2. The ideal solution approximation is used with the modified RAND method for two
steps to improve the initial estimate. The system of equations to be solved, equation
4.66 is reduced in size from C + F + 2 to F + 2.

3. The full modified RAND, equation 4.66, is used to converge the system of equations
until the deviation from specified constraints and fugacity of each component differed
by less than 10−10.

4. Once converged stability analysis is used to check if an additional phase can be
introduced. If a new phase can be introduced then the composition from stability
analysis is used in zero amount and returned to step 2.

5. If the total number of iterations (where each decomposition of the full modified
RAND matrix (equation 4.66) is counted as one iteration) exceeds 10 × F then
Q-function maximisation [115] is used to find the solution. This is also used when
the pressure or temperature are oscillating to extremely large or negative values. The
Q-function maximisation uses isothermal modified RAND to solve the phase split
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calculation and carries out stability analysis to identify the global minimum in the
Gibbs energy.

For example three a window of specifications between 100K< T < 300K and 1bar< P <

100bar was scanned. At each (P, T ) specification the solution to the flash problem was
found using isothermal modified RAND. At the solution the internal energy and volume of
the mixture was recorded. The problem was then re-initialised with the (U, V ) specification
and the solution strategy given above carried out. The number of iterations was recorded,
with each decomposition of the full modified RAND matrix (equation 4.66) counted as an
iteration (not the ideal solution simplification). These iterations are plotted on a heat map
with the phase envelope in figure 4.7.
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Fig. 4.7 Modified RAND iterations to solve the (U, V ) flash problem for example three, a 7-
component natural gas mixture. One iteration is counted as the factorisation of the full modified
RAND matrix.

The given range of temperatures and pressures corresponds to an approximate region
of 0.0366L/mol< V < 25L/mol and −1950K< U/R < −290K. The computational
cost of the (U, V ) flash was 1.7 times the cost for the isothermal flash (including cases
where Q-function maximisation was necessary). A switch to Q-function maximisation was
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necessary in 1% of cases. It is clear from the figure that over the majority of the phase
envelope the number of iterations necessary to solve the (U, V ) flash using the modified
RAND matrix is quite small, with problems encountered close to the critical point. In
some cases close to the critical point three phases were introduced in error before one
being removed, often this required a switch to Q-function maximisation.

To demonstrate the multiphase capabilities of the modified RAND approach the (U, V )

flash was used for a more complex five-component mixture (example six). The phase
envelope and number of iterations to solve the (U, V ) flash problem are presented in figure
4.8.
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Fig. 4.8 Number of iterations to solve the UV flash phase split calculation for a complex 5-
component mixture, (example six) with up to 4 phases where the three liquids are either methane
rich, hydrogen sulphide rich or carbon dioxide rich.

For example six there are difficulties in the LLE region at low temperatures and high
pressures. This is in part due to the difficulty to match the volume with (U, V ) flash often
leading to temperatures outwith the bounds of the ideal gas heat capacity equation, or
leading to poor initial estimates which need more iterations to converge. Only 3% of cases
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required a switch to Q-function maximisation. The total computational time taken for
(U, V ) flash was 2 times the time taken for (P, T ) flash.

Even in the most complex 4 phase region the method is reasonably robust. Figure 4.9
shows the number of iterations necessary in this region and the dotted region shows the
approximate region where Q-function maximisation was necessary. The limit of iterations
was set at 30 before switching to Q-function maximisation for this figure. In much of the
dotted region a switch was made because the pressure or temperature were oscillating to
very large or small values.
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Fig. 4.9 Phase envelope for a complex 5-component mixture with 4 phases (example six), showing
the number of iterations to obtain convergence in the 4 phase region. Dotted region shows
approximate region where Q-function maximisation was necessary.

Even in the four phase region convergence is generally obtained in a reasonable number
of iterations as shown in figure 4.9, with only 8% of cases using the backup Q-function
maximisation. The total cost of (U, V ) flash was only 2.3 times that of (P, T ) flash in this
region. The intermediate solutions for three-phase and four-phase examples are presented
in table 4.6.
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Table 4.6 (U, V ) flash specifications and intermediate solutions in T (K) and P (bar) for five
component mixture, example six. Also compares the number of iterations to the (P, T ) specification
at the solution conditions.

Conditions K-Wilson 2-phase 3-phase 4-phase Iterations
U
R (K) V ( L

mol ) T P T P T P T P (U, V ) (P, T )

-1492.7 6.939 132.5 0.91 122.0 0.93 127.2 0.97 130 1 11 11
-1408.9 7.802 144.5 0.97 137.3 0.98 139.2 0.99 140 1 13 13
-1471.7 2.322 151.1 2.95 133.3 2.85 139.1 2.96 140 3 14 11
-1691.9 0.360 162.9 9.90 144.4 7.06 150 8.5 3-phase 7 6

The initial estimate generated by the Wilson K-factor approximation is often in close
agreement with the final temperature of the mixture. The largest deviation from the final
temperature for the conditions presented in table 4.6 was 13K and 1.5bar. The intermediate
solutions may move further from the final mixture temperature as the non-idealities are
taken into account. Improved initial estimates would be available if implemented in a
reservoir simulator (e.g. from previous time steps).

Examples using the general framework using thermodynamic models solved at various
specifications, as described in section 4.4.2 are not included. The vol-RAND method has
been implemented and tested, however other methods have not yet been tested and only
the derivation is shown.

4.6 Conclusion

In this chapter we have fully derived two new RAND-based formulations named modified
RAND and vol-RAND. Modified RAND solves for the equilibrium elemental potentials
and molar phase amounts, while vol-RAND co-solves a pressure explicit EoS with the
equilibrium equations for the elemental potentials and phase volumes. Modified RAND
uses thermodynamics at a specified (P, T ) while vol-RAND uses thermodynamics at
a specified (V, T ). A generalisation to the other flash specifications has been given
with a possible implementation for (P,H) based thermodynamics discussed, though not
implemented as part of this work.

One important advantage of the RAND based formulations is their simple structured
implementation, with all components in all phases treated in the same manner. No terms
tend towards infinity as the phase boundary is approached and it is possible to introduce
phases directly from stability analysis with a zero amount though a few steps of successive
substitution are preferred. Both modified RAND and vol-RAND show the same quadratic
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convergence rates as the conventional second order minimisation method. In terms of
the O(n3) operations, modified RAND scales better with the number of phases than the
conventional method. Modified RAND is slower than the conventional method for two
phases, similar in speed for three-phase flash, and faster for four-phase flash. For complex
EoS’s like the non-cubic CPA with an association term, vol-RAND is advantageous,
especially in multiphase calculations.

The modified RAND formulation has been extended from only (P, T ) flash to five other
state function based flash specifications. Only the (P, T ) specifications is a minimisation
where an objective function (the Gibbs energy) can be checked at each step. The other
specifications can be solved by Newton’s method using a common Jacobian matrix. In the
majority of cases, using a suitable initialisation, it is possible to find the solution rapidly. A
switch to Q-function maximisation may be necessary in a small number of cases.

Using the modified RAND method for isothermal flash in the close to critical region
may generate an ascent direction in the Gibbs energy. A method to correct the direction
has been presented. This correction applies only to the unstable phases while not changing
the properties of the matrices for the other phases. The method can be used without an
additional factorisation while maintaining the excellent convergence properties of the
second order modified RAND method. This has been presented for a close to critical
two-phase mixture, a complex multiphase mixture, and a three component mixture close
to the tri-critical point.





Chapter 5

EoS Based Thermal Reservoir
Simulation

The final aim of this work is to develop an EoS based, fully implicit, thermal reservoir
simulator by upgrading an existing isothermal compositional simulator. Thermal reservoir
simulation has been an area of interest for a long time, with early attempts at simulators
from Shutler [172] in one dimension and extended to two dimensions by Shutler [173].
Coats [37, 38] proposed a model coupling thermal and compositional simulation for fully
implicit three-dimensional reservoir simulation for the purpose of steam injection. Often
the aqueous phase is treated in a simplified manner, with gas components excluded, or
included using simple K-factor correlations [34].

It is common during reservoir simulation to treat the aqueous phase as a pure component.
This is done in both the thermal simulator CMG STARS and in the modern INTERSECT
simulator. CMG STARS only allows for a simple ideal solution approximation of the
fluid properties without a more accurate EoS. These assumptions can lead to a number of
inaccuracies during simulation.

Even when EoS’s are incorporated into a thermal reservoir simulator it is common
to only use the vdW1f mixing rules, though some recent work has attempted to include
more complex models such as CPA [122] or PC-SAFT [119] (generally neglecting the
association term). An alternative to the non-cubic EoS’s is the excess Gibbs energy mixing
rules used with PR or SRK in the Huron-Vidal framework [79]. This model has a similar
computational cost as the vdW1f mixing rules once the temperature dependent terms are
set up, whereas CPA and PC-SAFT can be an order of magnitude more expensive than the
vdW1f mixing rules depending on the number of associating components. Some recent
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work has been carried out to include the solubility of components in the aqueous phase
(e.g. [171] using the CMG STARS simulator for DME co-solvent SAGD).

Brantferger et al. [17] developed a thermal simulator using an EoS to describe all of
the phases in equilibrium. They also use the internal energy as a primary variable instead
of temperature, this leads to the isenthalpic flash specification which is solved in their work
by directly maximising the entropy. This avoids problems with variable switching which is
otherwise necessary when the number of phases is greater than the number of components.
Petitfrere [143] developed a reservoir simulator for simulation of steam injection with
extra-heavy oil using the PR EoS [135] with the vdW1f mixing rules.

In this work a compositional thermal simulator has been developed with the option to
use more complex EoS’s. The more complex thermodynamic models given in chapter 2
are incorporated into the reservoir simulator. A comparison between the vdW1f mixing
rules and the HV model using NRTLHV is made in section 5.2. The modified RAND
implementation was used to solve the phase split calculation. The conventional method for
phase split calculation was also used to verify that the results obtained were correct.

5.1 Compositional Reservoir Simulator (COSI)

COSI is a compositional, isothermal, fully implicit reservoir simulator. It was originally
developed by the Danish National Laboratory, the Technical University of Denmark and
COWIconsult. It can be used as a black oil or compositional simulator, though the black
oil model is not described here. The mass conservation and saturation constraint are used
as the primary set of equations. The primary variables are the oil phase pressure and
the mass flows of each component. The phases are modelled using the SRK or PR EoS.
The numerical formulation relies on an integral finite difference method. The volume
discretised equations are solved using a fully implicit method. A brief description of the
original simulator is given below, summarised from the manual (COSI-Formulations and
Basic Algorithsm v1.0).

5.1.1 COSI description

Though the COSI simulator can handle two porous media which communicate through
exchange functions (for fractured reservoirs) the description given here is for only a
single media. Given F flowing phases of C components the mass conservation for each
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component inside the porous media is given by:

∂

∂t

(
φ

F∑
j=1

χi,j ρ̂jSj

)
+∇ ·

(
F∑

j=1

χi,j ρ̂juj

)
+ qi = 0, ∀i (5.1)

where χ is the component mass fraction defined as

χi,j =
MMini,j∑C

k=1MMknk,j

(5.2)

MMi is the molecular weight of component i in g/mol. The phase mass density is defined
as

ρ̂j =

∑C
i=1 ni,jMMi

Vj
(5.3)

and S is the saturation defined as

Sj =
Vj∑F

m=1 Vm
(5.4)

Diffusion can be included however was neglected in this work. The first term on the LHS
of equation 5.1 is the accumulation term, the second is due to the advective flux across the
boundaries and the third the source/sink terms. In all tested examples it was assumed that
there was no flow of components at the reservoir boundary, therefore the source/sink terms
were only due to the wells. The flow in the porous media is modelled using Darcy’s law

uj = −krj
µj

k(∇Φ), ∀j (5.5)

where ∇Φ is the potential due to gravity and pressure. As well as the component conser-
vation, the saturation constraint is used to define the system of equations

F∑
j=1

Sj − 1 = 0 (5.6)

To solve the PDEs for the mass conservation a numerical model must be used. COSI
uses the integral finite difference method. The total domain is discretised into a number
of smaller sub domains NV . The mass balance (equation 5.1) and saturation constraint
(equation 5.6) must then be satisfied in each control volume. Integrating the mass conser-
vation equation over the cell volume for each cell and making use of divergence theorem
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we arrive at

d

dt

∫
Vk

φ

F∑
j=1

(χi,j ρ̂S)dV +

∫
Ak

F∑
j=1

(χi,j ρ̂uj)dA−
∫
Vk

qidV = 0 (5.7)

It is necessary to use volume average and surface average quantities. The accumulation is
described for each cell and the average flux is taken at the cell boundary between cell k
and cell l. The average interface velocity is defined as

uj,kl =
1

Lkl

(kkr,jµ̂j)
(
(Pk − Pl)j + gn∇

(
ρ̂jĤ

)
kl

)
(5.8)

with Ĥ representing the height of the cell

∇
(
ρ̂jĤ

)
kl
=

(Vkρ̂j + Vlρ̂j)(Ĥk − Ĥl)

Vk + Vl
(5.9)

For the evaluation of the component flux, the interface mobility krj/µ̂j , density ρ̂j , and
mass concentration χi,j were defined using the upstream cell average using the current
time step values. The mass conservation equations can be written in a compact form with

d

dt
(ζi,k) = ψi,k (5.10)

where ζi,k is the accumulation and ψi,k is the flux of component i in cell k. Then using a
discrete time step:

ζn+1
i,k − ζni,k +∆tψn+1

i,k = 0 (5.11)

where the flux is evaluated at time step (n+ 1). The system of equations to be solved at
each time step is then

Ψ̂(y) = 0 (5.12)

where y is the vector of primary variables (y = (m, P )T ) of the mass flow m and the oil
pressure P . The set of equations Ψ̂ is defined by equation 5.11 and equation 5.6.

Ψ̂k =

(ζn+1 − ζn)i,k −∆tψn+1
i,k ∀i∑F

j=1 S
n+1
j,k − 1

= 0 (5.13)
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This system of equations is then solved using Newton’s method

J∆y + Ψ̂ = 0 (5.14)

An initial time step is set then subsequent time steps are evaluated based on the truncation
error (and a specified tolerance) and the number of Newton iterations necessary to solve
the system of equations.

The oleic and vapour phase densities and compositions are found using an EoS. COSI
can use either SRK or PR. The isothermal phase split calculation is solved by use of the
Rachford-Rice equations and successive substitution. The Wilson K-factor initial estimate
is used for the phase split calculation. Two-sided stability analysis (starting from the liquid
like and vapour like Wilson K-factor estimates) is used if only a single phase is found from
the phase split calculation. Stability analysis skipping of Rasmussen et al. [149] is used for
the two-phase flash. The dominant eigenvalue method is used for acceleration of both the
phase split and stability analysis calculation. The aqueous phase is a pure water component
with a set density. The viscosity of the oleic liquid and vapour phase was found using the
Lorenz-Bray-Clark (LBC) correlation [100]. The water phase viscosity is set to a constant
value. The porosity of each cell is calculated from the pressure and rock compressibility

φk = φ0
k + P

dφ

dP

The phase permeabilities are determined using interpolation from tables. If there are three
phases in equilibrium the oil phase relative permeability is determined as

kro =
kro,wkro,g
kro,cw

(5.15)

where kr is the relative permeability and kro,cw is the relative permeability of the oil at
connate water saturation. The relative permeability of the aqueous and vapour phase are
set as the values from the oil-water relative permeability table and the oil-gas relative
permeability table respectively.

5.1.2 Integration of multiphase flash and thermal effects to COSI

To incorporate thermal effects into COSI it was considered necessary to first replace the
original treatment of water as a pure phase and to then introduce an additional partial
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differential equation (for the energy balance) and variable. Temperature was chosen as the
additional primary variable.

The energy balance is described by:

∂

∂t

(
F∑

j=1

Uj + Ur

)
+∇ ·

(
F∑

j=1

ξ̂jρjuj

)
+∇ · (κ∇T ) + qH = 0 (5.16)

with κ the combined thermal conductivity of the fluid and rock. ξ̂ is defined as the specific
mass enthalpy

ξ̂j =
Hj∑C

k=1MMknk,j

(5.17)

Integrating the energy conservation equation over the cell volume, making use of diver-
gence theorem once again, we arrive at

d

dt

∫
Vk

F∑
j=1

Uj + UrdV +

∫
Ak

F∑
j=1

(ξ̂i,j ρ̂uj)dA+

∫
Ak

κ(∇T )dA−
∫
Vk

qHdV = 0 (5.18)

The specific mass enthalpy at the interface was defined using the upstream value. The
interface heat capacity κkl was defined using a harmonic mean value

κkl =
2

1
κk

+ 1
κl

(5.19)

The energy conservation equations can be written in a compact form with

d

dt
(ζ̂k) = ψ̂k (5.20)

where ζ̂k is the accumulation of energy in cell k and ψ̂k the flux into and out of the cell
(including source/sink terms). The system of equations is then

Ψ̂(y) = 0 (5.21)
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with y the primary variables (y = (m, P, T )T ) of the mass flow (m), the oil pressure (P )
and the temperature (T ). The set of equations is defined as:

Ψ̂k =


(ζn+1 − ζn)i,k −∆tψn+1

i,k ∀i
(ζ̂n+1 − ζ̂n)k −∆tψ̂n+1

k∑F
j=1 S

n+1
j,k − 1

= 0 (5.22)

This is once again solved using Newton’s method. The original solver used a block based
ILU0 with the TFQMR [58] Krylov space method. This was found to struggle in some
cases and was replaced with an ILU2 preconditioner with the orthomin [190] method. The
orthomin method with an ILU2 preconditioner was also found to reduce the computational
time required for the tested examples.

As well as adding the energy balance it was necessary to add multiphase flash to the
original COSI simulator. The isothermal flash is often a large portion of the cost of the full
reservoir simulation and it is necessary to use an efficient flash algorithm to reduce its cost
as much as possible. The original flash in COSI was replaced with:

1. If no previous information is available then go to step 5. If previous information is
available then find an initial estimate of the molar amounts of each component in
each phase as

ni,j = ziθ̂i,j ∀i, j (5.23)

where θ̂i,j was stored from the previous timestep as

θ̂i,j =
ni,j

zi
∀i, j (5.24)

2. If there is more than one phase then solve the phase split calculation using successive
substitution for two iterations followed by the modified RAND method described
in chapter 4 until the solution is found, remove phases as necessary. If a phase is
removed then carry out stability analysis at step 5.

3. Check the change in temperature, pressure and composition since a full stability
analysis was last carried out. If there has been a large change then stability analysis
will be carried out this time. The parameters used were based on those of Rasmussen
et al. [149]:

|zi − zi,old| ≥
λold
10
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|P − Pold| ≥
λoldP

10

|T − Told| ≥ 10λold

If any of these inequalities holds then stability analysis will be carried out. The λold
used here is the minimum eigenvalue of the scaled Hessian of all of the equilibrium
phases:

Hi,j = δi,j +
√
xixj

(
∂ ln ϕ̂i

∂xj

)
If the smallest eigenvalue was greater than 0.4 then 0.4 was used for λold, this is an
extra precaution used because the shadow region method has not been extensively
tested for multiphase flash. This is found at no additional cost as it is evaluated
during stability analysis (when checking along the direction of the eigenvector
corresponding to the minimum eigenvalue for a new, close to critical trial phase as
described by Michelsen [109]).

4. If the previous step found one or more trial shadow phases (i.e. a phase with a
positive minimum in the tangent plane distance) then use the previous estimate
and carry out stability analysis to find a new minimum. If the new minimum is
negative then solve the phase split calculation as described before. The shadow
phase approach described above is general for more than two phases and any number
of potential trial phases are possible.

5. If necessary from previous steps, due to a change in conditions or the removal
of a phase, then carry out full stability analysis. If the current estimate has more
than one phase then continue to stability analysis in step 6. If the initial estimate
is only single phase then use the Wilson K-factor with the modifications for the
aqueous phase as described in chapter 3 section 3.2.5 to find initial estimates for the
three phase fugacity coefficients. Solve the ideal solution problem using multiphase
Rachford-Rice, and then fully solve the phase split calculation.

6. For stability analysis the trial phases used are initialised as a trial phase based on
selected pure components (lightest hydrocarbon, heaviest hydrocarbon, water and a
selection of other components), an ideal gas trial phase, and a Wilson K-factor liquid
trial phase. If any negative tangent plane distances are found then carry out a phase
split calculation. If any positive minima are found then record the composition as a
shadow phase. Finally carry out a search along the eigenvector corresponding to the
minimum eigenvalue of the scaled Hessian of the phase Gibbs energy (record the
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minimum eigenvalue as it is used with the stability analysis skipping parameters). If
stability analysis is carried out then update the values of zi,old, Pold, Told, and λold
for the stability analysis skipping.

7. Output the results of the flash.

The multiphase stability analysis skipping is not investigated in detail in this work. One
drawback is that shadow region where a positive minimum in the TPD can be identified can
be very small for the appearance of additional liquid phases. For this reason an upper limit
was set on λold of 0.4, additionally it is possible to check the stability of some components
prone to forming additional phases (e.g. CO2) even when all others are skipped. For water
there is often a relatively large shadow phase region.

The density of each phase is evaluated using the EoS (including the aqueous phase).
The enthalpy of each phase is found from the residual contribution from the EoS and the
ideal gas contribution, using the ideal gas heat capacity correlation:

CIG
p

R
= C1 + C2T + C3T

2 + C4T
3 (5.25)

A reference temperature of 300K is used for the ideal gas enthalpy.
The viscosity of the oleic liquid and vapour phase is again found using the LBC

correlation. For simplicity, the aqueous phase is assumed to be pure water in the viscosity
modelling with the pressure effect neglected. The correlation used for the water/aqueous
phase is from DIPPR:

µ̂ = exp(C1 + C2/T + C3 ln(T ) + C4T
C5) (5.26)

The parameters used are:

C1 = −52.843, C2 = 3703.6 C3 = 5.866, C4 = −5.879× 10−29, C5 = 10

The relative permeability models remain unchanged from the original formulation. Tem-
perature dependent models have not been included. If there are more than three phases
in equilibrium it is assumed that the oil saturation is found as the summation of all the
oleic phases for the purpose of finding the relative permeability, with the same relative
permeability used for all oleic phases (though each had a different viscosity).

The thermal conductivity of the oil is set as a constant at 0.14 W/(m K). The thermal
conductivity of the vapour is 0.05W/(m K). The thermal conductivity of the rock is 3.17
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W/(m K). The thermal conductivity of the aqueous phase is based on the correlation from
DIPPR:

κi = C1 + C2T + C3T
2 + C4T

3 (5.27)

with

C1 = −0.432, C2 = 0.0057255, C3 = −8.078× 10−6, C4 = 1.861× 10−9

The mixed thermal conductivity is found from the correlation of Anand et al. [5] as used
by CMG STARS:

κ = (1−
√
Sw + So)κg−r +

√
Sw + SoκL−r (5.28)

where the mixed liquid rock thermal conductivity is described as

κL−r = κLa
b (5.29)

with

a = κr/κL, b = 0.28− 0.757 log10 φ− 0.057 log10 a, κL =
Soκo + Swκw
So + Sw

and the mixed gas rock thermal conductivity found as

κg−r = κgc
d (5.30)

with
c = κr/κg, b = 0.28− 0.757 log10 φ− 0.057 log10 c

The loss of energy to the overburden and under-burden is found using the correlation of
Vinsome and Westerveld [191]:

Q = κrA

(
T n − T 0

0.5
√
ηt

− p

)
(5.31)

where T n represents the temperature at the current time step, and T 0 the initial temperature,
with

p =

η∆t(Tn−T 0)
0.5

√
ηt

+ τn−1 − (0.5
√
ηt)3(Tn−Tn−1)

η∆t

3(0.5
√
ηt)2 + ηδt
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q =
p
√
ηt− (T n − T 0) + 0.25ηt(Tn−Tn−1)

ηδt

0.5ηt

τn = 0.5(T n − T 0)
√
ηt+ 0.25pηt+ 2q(0.5

√
ηt)3

and
η = κr/Cp,r

The heat capacity of the rock is set at a constant of 2347310 J/(m3 K).
The internal energy of each control volume is found as

U =
F∑

j=1

Hj + Ur −
F∑

j=1

VjP (5.32)

Other contributions to the internal energy are ignored.
The source and sink terms used are based on a specified bottom hole pressure. At

the given pressure the flux of fluid across the sandface and into (or out of) the well was
evaluated along with its derivatives and added to the source and sink terms in the applicable
reservoir cells. If the well rate is specified rather than the bottom hole pressure then the
well is fully solved at each Newton iteration.

All of the derivative properties, except for those from the LBC correlation, are de-
termined analytically to minimise the required computational time. (C + 2) forward
difference evaluations are used to find the numerical derivatives to the LBC correlation for
each oleic and vapour phase (C component mass flow, one pressure and one temperature
derivative).

The original convergence criteria for COSI is that the truncation error is below a certain
threshold and

1−
F∑

j=1

Sj < 0.005 ∀NV (5.33)

To this an additional requirement of√∑NRHS

i=1 RHS2
i

NV
< 1 (5.34)

was found necessary to ensure that the internal energy equations are solved to a suitable
tolerance. Following 30 Newton iterations without convergence the step is repeated with
a reduced time step. The maximum allowable time step is set to 30 days for the given
example.
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For the Jacobian the mass and energy balance derivatives were scaled by the control
volume of each cell, with units of kg/m3 for equation 5.1 and MJ/m3 for equation 5.16.
The pressure derivatives were found in bar and the temperature derivatives in Kelvin.

5.2 Results

The results from this work are preliminary and have not been investigated in detail. They
are presented here to demonstrate that the original COSI code has been developed from
having a two-phase flash with a pure water phase using only SRK and PR for the vapour and
oil phase to a fully compositional (including aqueous phase) simulator which can include
an energy balance and be used with more complex mixing rules for the thermodynamic
model. This is demonstrated here for a simple reservoir model with a relatively complex
fluid description utilising two thermodynamic models. Some more complex features have
been tested though the reliability of the results is not clear (e.g. a four-phase mixture has
been tested to verify that the derivative properties are correct and the simulation can run
but a full run with reliable results has not been obtained). Some elements of the reservoir
simulation must be improved before more complex models are considered, this is discussed
more in the conclusions.

The reservoir model is based on the one described by Petitfrere [143]. The reservoir
description is given in table 5.1

Table 5.1 Reservoir description

Property Value

Cell dimension 15 × 15 × 15
Number of cells 30 × 30 × 1

Porosity 0.3
Cell x-Permeability 300× 150mD, 300× 15, 000mD, and 300× 150mD
Cell y-Permeability 300× 150mD, 300× 15, 000mD, and 300× 150mD

Initial pressure 30 bar
Initial temperature 298.15K

Connate water saturation 0.2

For this simulation an eight component mixture (including water) was used. This
ranged from ethane and carbon dioxide to C36. No oil pseudo-components were used, well
defined components were chosen so that binary parameter regressed in chapter 2 could be
used. The fluid properties are described in table 5.2.
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Table 5.2 Reservoir fluid properties

Component Initial amount (%) Tc (K) Pc (bar) ω MM

CO2 0.025 304.21 73.83 0.2236 44.01
C2 0.025 305.32 48.72 0.0995 30.07
C3 2.51 369.83 42.48 0.1523 44.096
C6 2.56 507.6 30.25 0.3013 86.177
C10 28.85 617.7 21.1 0.4923 142.285
C20 28.85 768 11.6 0.90688 282
C36 37.18 874 6.8 1.526 506
H2O N/A 647.13 220.55 0.345 18.015
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Fig. 5.1 Relative permeability curves for water with oil and oil with gas.

The molar amount of the water is not specified, instead it is evaluated based on the
connate water saturation at the initial reservoir condition. To find the molar amount an
estimate was taken for the split between water and oil, the amount of water in the mixture
was then iteratively updated until the saturation based on the amount of water was the
same as the connate water saturation. Newton iteration was used with bisection to find
the required amount of water to reach the connate water saturation at the initial time. The
amount of water differed depending on the thermodynamic model used and as such is not
a single value. Furthermore when tested on a 3D model (not described here) the ratio of
water to oil differs depending on the depth and thermodynamic model used. The connate
water saturation was set at 0.2 with the relative permeability given in figure 5.1.

Since a thermal simulation was considered it was necessary to use a correlation for
the ideal gas heat capacity. The correlation from DIPPR was used to generate pseudo
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data which was then fitted to a more simple polynomial, this removes the requirement to
evaluate the hyperbolic sine and cosine functions. The parameters for the ideal gas heat
capacity equation are given in table 5.3.

Table 5.3 Ideal gas heat capacity parameters

Component C1 C2 ×102 (K−1) C3 ×105 (K−2) C4 ×109 (K−3)

CO2 1.952 1.193 -1.319 6.075
C2 0.639 3.119 -1.100 0.144
C3 -1.353 4.172 -2.853 9.444
C6 -3.807 8.626 -6.251 20.195
C10 -6.949 14.494 -10.672 33.125
C20 -12.762 28.903 -23.009 82.235
C36 -13.892 46.175 -30.876 87.082
H2O 4.031 -0.083 0.327 -1.572

Two models were used for this reservoir fluid. The first was PR78 with the vdW1f
mixing rules using only a kij . The second was PR78 with the HV NRTLHV mixing rules,
reduced to the vdW1f mixing rules for a number of binary pairs. The binary parameters
for the vdW1f mixing rules are given in table 5.4. The binary parameters for the NRTLHV

mixing rule are given in tables 5.5 and 5.6, all cells labelled as kij in table 5.5 use the
vdW1f mixing rule parameters from table 5.4.

Table 5.4 kij parameters for 8-component mixture

Components CO2 C2 C3 C6 C10 C20 C36 H2O

CO2 0 0.12 0.12 0.12 0.104 0.077 0.059 0.175
C2 0.12 0 0 0 0.01 -0.008 0.029 0.455
C3 0.12 0 0 0 0.003 -0.007 0.012 0.509
C6 0.12 0 0 0 0 0 0 0.5
C10 0.104 0.01 0.003 0 0 0 0 0.45
C20 0.077 -0.008 -0.007 0 0 0 0 0.45
C36 0.059 0.029 0.012 0 0 0 0 0.45
H2O 0.175 0.455 0.509 0.5 0.45 0.45 0.45 0

The injection fluid is 3.3̇% of each ethane, propane and carbon dioxide and 90 % water.
The injection temperature was 525K (superheated vapour). The injection pressure is 10
bars greater than the reservoir pressure (40 bar) and the production pressure 2 bars lower
than the reservoir pressure (28 bar). The simulation was allowed to run for 10 years.
The computational cost of the two methods is very similar. The additional cost of NRTL
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Table 5.5 Energy parameters for NRTLHV mixing rule Aji/R (K)

Components CO2 C2 C3 C6 C10 C20 C36 H2O

CO2 0 kij kij kij kij kij -2040 -730
C2 kij 0 kij kij kij kij kij -600
C3 kij kij 0 kij kij kij kij 2500
C6 kij kij kij 0 kij kij kij 450
C10 kij kij kij kij 0 kij kij 900
C20 kij kij kij kij kij 0 kij kij
C36 390 kij kij kij kij kij 0 kij
H2O 2500 3040 2730 1630 2090 kij kij 0

Table 5.6 Non-randomndess parameters for NRTLHV mixing rule α

Components CO2 C2 C3 C6 C10 C20 C36 H2O

CO2 0 0 0 0 0 0 0.32 0.08
C2 0 0 0 0 0 0 0 0.08
C3 0 0 0 0 0 0 0 0.28
C6 0 0 0 0 0 0 0 0.12
C10 0 0 0 0 0 0 0 0.12
C20 0 0 0 0 0 0 0 0
C36 0.32 0 0 0 0 0 0 0
H2O 0.08 0.08 0.28 0.12 0.12 0 0 0
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over the vdW1f mixing rules is small once the temperature dependent terms have been
calculated which is necessary only once per grid block and time step (since the temperature
is specified). The temperature profile for the two simulations is shown in figure 5.2 at 1
year, figure 5.3 at 4 years, figure 5.4 at 7 years and figure 5.5 at 10 years.
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Fig. 5.2 Temperature profile for thermal reservoir simulation after 1 year and the temperature
difference between the two thermodynamic models used in units of Kelvin.

The colours represent the same temperature on each plot, however for the temperature
difference plot the range of the colour is changed depending on the maximum and minimum
deviations. The largest difference in the temperature occurs after 7 years where the use
of PR with HV has some cells close to the front which are 50K less than PR with vdW1f.
This indicates that the temperature front of the vdW1f model is ahead of the model using
PR with HV. Differences in the temperature can also be found at the the fronts travelling
along the y-direction and the front moving in the x-direction. The shape of the temperature
front is driven primarily by the fluid flow. The conductive contribution to the energy flux is
relatively small in comparison to the advective term. Similar plots for the saturation of the
oil in the reservoir are given in figures 5.6 to 5.9.

A relatively sharp displacement front is visible in figure 5.6 however becomes more
disperse in figures 5.7 and 5.8. The front is moving ahead of the thermal front in this case.
This is in part due to the use of the LBC correlation which is not accurate for heavier
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Fig. 5.3 Temperature profile for thermal reservoir simulation after 4 years and the temperature
difference between the two thermodynamic models used in units of Kelvin.
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Fig. 5.4 Temperature profile for thermal reservoir simulation after 7 years and the temperature
difference between the two thermodynamic models used in units of Kelvin.
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Fig. 5.5 Temperature profile for thermal reservoir simulation after 10 years and the temperature
difference between the two thermodynamic models used in units of Kelvin.
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Fig. 5.6 Oil saturation profile for thermal reservoir simulation after 1 year and the difference
between the two thermodynamic models used.
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Fig. 5.7 Oil saturation profile for thermal reservoir simulation after 4 years and the difference
between the two thermodynamic models used.
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Fig. 5.8 Oil saturation profile for thermal reservoir simulation after 7 years and the difference
between the two thermodynamic models used.
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Fig. 5.9 Oil saturation profile for thermal reservoir simulation after 10 years and the difference
between the two thermodynamic models used.

mixtures. There are relatively large differences between the results obtained using the
two thermodynamic models at the fronts. However the size of the swept region is similar
with both models. How the different models affect the production and injection of each
component is presented in figure 5.10.

The injection and production profiles when using the two models are very similar. The
production of the components which are not injected (figure 5.10b) are almost identical
for the two models up until water breakthrough. This is likely due to both models using
the PR EoS, therefore the density of the mixtures will be very similar. It is not until
breakthrough that slight differences are encountered. The PR HV mixing rules predicts
1.3% more cumulative production of C36 after 10 years while requiring only 98.4 % as
much injection fluid. Between approximately 2000-2700 days there is an increased rate
of water production which then drops off after 2700 days to a steady state. This is the
time between the initial water breakthrough into the well and the time when there is steam
breakthrough as shown on figures 5.4 and 5.5.

A second simulation was run using the same reservoir grid and fluid but with an initial
pressure of 100 bar. The injection fluid is at 110bar with a temperature of 590K (fully
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Fig. 5.10 Production and injection of each component and totals. Solid line represents the use of
the PR with HV thermodynamic model while the dashed line represent PR with the vdW1f mixing
rules.
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vapour) and the production pressure is 98 bar. The same plots as described before are
presented for this simulation.
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Fig. 5.11 Temperature profile for thermal reservoir simulation after 1 year and the temperature
difference between the two thermodynamic models used in units of Kelvin.

One notable difference between the simulation at 30 bar and the simulation at 100
bar is that at 100 bar the differences between the two EoS models are less pronounced in
the production and injection curves (figure 5.19) than at 30 bar (figure 5.10). However
the differences between the saturation plots and the temperature profiles is actually larger
(note that the maximum and minimum are further apart at 100 bar than at 30 bar). The
breakthrough of water is earlier at 100 bar than at 30 bar. This can be observed both in
the saturation plots where the displacement front moves faster and in the water production
plot where water breakthrough occurs at around 1400 days at 30 bar and at 1200 days
at 100 bar. This is in part due to the increased mass flow rate into the reservoir from the
injection well due to the increased density of the injected vapour. The overall production
of hydrocarbon components is not much different between the two simulations in spite of
the increased injection rate in the second example.
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Fig. 5.12 Temperature profile for thermal reservoir simulation after 4 years and the temperature
difference between the two thermodynamic models used in units of Kelvin.
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Fig. 5.13 Temperature profile for thermal reservoir simulation after 7 years and the temperature
difference between the two thermodynamic models used in units of Kelvin.
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Fig. 5.14 Temperature profile for thermal reservoir simulation after 10 years and the temperature
difference between the two thermodynamic models used in units of Kelvin.
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Fig. 5.15 Oil saturation profile for thermal reservoir simulation after 1 year and the difference
between the two thermodynamic models used.
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Fig. 5.16 Oil saturation profile for thermal reservoir simulation after 4 years and the difference
between the two thermodynamic models used.
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Fig. 5.17 Oil saturation profile for thermal reservoir simulation after 7 years and the difference
between the two thermodynamic models used.
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Fig. 5.18 Oil saturation profile for thermal reservoir simulation after 10 years and the difference
between the two thermodynamic models used.

5.3 Conclusions

The simulator developed is based on COSI. COSI is a compositional isothermal simulator
with only SRK or PR available and could only carry out two-phase flash with the water
treated as a pure phase. The simulator has been extended to a fully compositional simulator
with a compositional treatment of an aqueous, vapour and any number of oleic phases. An
energy balance has been added to account for thermal effects. Conductive and advective
heat flux have been included. The thermal conductivity can be found using correlations
from DIPPR or given set values with non-linear mixing of the thermal conductivity of the
fluid with the rock included. The ideal gas heat capacity can be found using a number of
simple correlations including that given in DIPPR, though often a simple polynomial is
preferred to the DIPPR correlation since the DIPPR correlation can be computationally
demanding. The original thermodynamic routines have been replaced with a general
interface which can utilise any suitable thermodynamic model and is currently able to use
PR and SRK with the vdW1f mixing rules, and HV with NRTLHV mixing rules. CPA
has also been tested though reliable results have not yet been obtained. The original flash
routine utilising only successive substitution has been replaced with the modified RAND
implementation and multiphase Rachford-Rice, the conventional multiphase flash has also
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Fig. 5.19 Production and injection of each component and totals. Solid line represents the use of
the PR with HV thermodynamic model while the dashed line represent PR with the vdW1f mixing
rules.
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been added (though was only used to check the results from modified RAND). A robust
stability analysis has been included along with multiphase stability analysis skipping. The
numerical solver has been replaced with an ILU2 pre-conditioner using either orthomin or
GMRES (with orthomin found to be better for the tested examples).

Though it is possible to run 3D cases using the simulator, only a simple 2D case has
been presented here as volume translation has not yet been incorporated. Using just the
PR or SRK EoS without correcting the density of the aqueous phase can lead to incorrect
predictions that the aqueous phase is less dense than the oleic phase. The simple case was
demonstrated using both the PR with vdW1f mixing rules and PR with HV and NRTLHV

mixing rules. Differences in the overall injection and production of 2% were found using
the simple test case. Though these differences may not appear significant the additional
cost of the NRTLHV model is very minor compared to using the vdW1f mixing rules alone.
For the tested examples the use of the NRTLHV model required 7.5% more CPU time than
the use of vdW1f mixing rules (when the simulation was carried out on a single thread).

Further work is necessary to make the simulator more stable and to make the code
run in parallel. More viscosity correlations are necessary to attempt to model a heavy oil
simulation where the LBC correlation may not be suitable. It is suspected that the poor
reliability of results when using CPA is due to implementation issues with the denisty
root solver. This needs to be improved or volume-based thermodynamic methods such
as vol-RAND used to mitigate the problems. For thermal simulation it is often desired to
use (PH) flash instead of (PT ) flash. This should be added as an option to ensure that
problems are not encountered with narrow boiling fluids and when there are more phases
than components. The well models should be updated to include additional options, such
as steam trap control. Before reliable results can be obtained for 3D simulation a volume
translation must be included when using the PR or SRK EoS.



Chapter 6

Conclusions and Future Work

This chapter aims to summarise some of the results from this work and to present possible
future directions for development. To summarise the work that has been carried out
we have: carried out a model comparison to select the suitable thermodynamic models
for the simulation of production of heavy oil; developed a robust and rapid isobaric
isenthalpic flash algorithm, with modifications for calculations involving water; developed
new methods for phase split calculation, with the framework extended to include both
chemical reactions and non-isothermal phase split calculations; developed a method to
co-solve the EoS with the equilibrium equations; and added a thermal calculation capability
to an existing isothermal compositional reservoir simulator.

In the chapter 2 of this thesis it was necessary to develop a robust regression tool which
could be used with any of the tested thermodynamic models. Using the developed tool, 17
models were compared for 45 binary mixtures consisting of 31 pure components. Of the
tested models it was found that the commonly used cubic EoS with the vdW1f mixing rules
were excellent for all binary pairs when using two binary interaction parameters except
for binary pairs including water. If the equilibrium of the aqueous phases is considered
important to the work the the more flexible Huron-Vidal model using the NRTLHV activity
coefficient model was found to be best along with the cubic plus association EoS when
including the solvation components into the aqueous phases. The PC-SAFT EoS was also
reviewed, however with the pure component correlations used for C20 plus it was found
to give poor saturation point results. The zero pressure mixing rule MHV1 and MHV2
were found to be suitable for nearly symmetric pairs and pairs including water, however
struggled for pairs of hydrocarbons with CO2 and highly asymmetric hydrocarbon pairs.
The recommended models for use are NRTLHV which can be reduced to the vdW1f mixing



156 Conclusions and Future Work

rules for select pairs. CPA is also suitable though the additional complexity of the model
and associated computational cost to solve may be a concern for reservoir simulation.

For future work with the regression tool developed it is possible to include more binary
pairs or thermodynamic models in the comparison. It may be desired in future work
to develop some temperature dependent binary interaction parameters over the range of
temeratures of interest to heavy oil reservoir simulation. Some new parameter sets could
also be tested for the PC-SAFT EoS for which there is still ongoing work to find suitable
pure component parameter correlations.

There are two major issues with the flash calculations used for thermal recovery. The
first is how to treat the energy balance and the second is how to solve phase split calculation
involving multiple phases (up to four fluid phases are possible during heavy oil recovery).

One possibility to avoid a number of issues with the energy balance is to solve the
isenthalpic flash equilibrium problem. This is analysed in detail in chapter 3. The con-
ventional second order approach to solving state function based flash specifications is
extended from two-phase to multiphase problems. The resulting framework is used in
an algorithm with both first order and second order implementations. The algorithm is
further tailored to mixtures containing water, and some improved steps proposed to avoid
violation of the inequality constraint in flash calculations using the equilibrium K-value
equations. The presented algorithm, both in its general form and for mixtures containing
water, is then compared to isothermal flash and Q-function maximisation for a number
of mixtures. It is found to have only a moderate computational cost penalty compared to
isothermal flash (<15%). A case where there are more phases than components is also
tested and the presented algorithm shown to be suitable.

A new multiphase flash framework is proposed in chapter 4. This is based on similar
work carried out for chemical reaction equilibria, and the resulting methods are derived
assuming that chemical reactions are involved though the results presented are only for
phase equilibria calculations. The modified RAND framework is well structured with
all components in all phases treated in the same way, this leads to a well structured
implementation where errors can be easily avoided. The modified RAND framework is
then developed to consider corrections to the Newton step when it is ascending in the
Gibbs energy, and to extend the method from isothermal isobaric phase split calculations to
a range of other state function based phase split calculations. A method similar to modified
RAND is developed to co-solve the pressure explicit EoS with the equilibrium equations.
Both modified RAND and vol-RAND are compared to the conventional isothermal flash.
It is shown that vol-RAND is well suited to complex EoS’s, such as CPA or PC-SAFT. The
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modified RAND formulation is shown to have excellent second order convergence. The
structure of the modified RAND formulation means that its computational cost scales better
than the conventional method as the number of phases is increased. For two phases the
conventional approach is preferred, while for three phases both methods perform similarly,
for four or more phases modified RAND is less computationally demanding.

A significant amount of work has been carried out to develop phase split calculations.
Further work is necessary to further develop the vol-RAND methodology to make it
robust enough for implementation in simulation tools. This area is of particular interest
for the use of new, more complex EoS’s which are often prohibitively computationally
demanding. However when co-solved with the phase equilibrium equations, the additional
computational overhead is shown to be very small. While the modified RAND and vol-
RAND method have been developed for state function based flash calculations it may be
desireable to carry out each of these state function based calculations by solving the EoS
at the given state function variables. This leads to a simple minimisation without nonlinear
constraints. A derivation for this has been given in chapter 4 though testing of the method
has not yet been carried out and significantly more work is necessary to arrive at a final
solution.

The results from chapters 2 and 4 were then incorporated into a newly developed
thermal, multiphase, EoS based reservoir simulator as described in chapter 5. The energy
balance equation is added along with the advective and conductive flux of energy between
the grid-blocks. The loss of energy to the overburden and under-burden is taken into
account. A nonlinear mixing model for the thermal conductivity of the fluid and rock is
added. The initial two-phase flash is replaced with a multiphase flash implementation
utilising a general thermodynamic input which has been demonstrated for the vdW1f
mixing rules and the Huron-Vidal model in a simple test case.

Though the reservoir simulator has been demonstrated for a simple test case, further
work is still necessary to obtain reliable results. It would be desirable to include an
isenthalpic flash instead of isothermal flash, which can struggle for narrow-boiling fluids.
The EoS’s currently used in the simulator also require some minor improvements. Future
work may aim to include a volume translation in the cubic EoS’s and to improve the
reliability of the density solver in CPA. Alternatively implementation of a volume based
phase split calculation would avoid the difficulties encountered with CPA. The simulation
results given so far are preliminary, and to conclude which models are best suited to thermal
simulation would require more complex reservoir models, and fluid descriptions.
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Appendix A

Tabulated model comparison results
and binary interaction parameters for
chapter 2

This appendix will present the optimum binary interaction parameters for the binary
pairs investigated in this work. The parameters have not been tested for multicomponent
mixtures. The meaning of BIP1 2 and 3 changes depending on the model used. For
the vdW mixing rules with SRK and PR BIP1 is the kij from equation 2.2a and BIP2
is the lij from equation 2.1b. For CPA BIP1 is the kij and if present BIP2 is the cross
association volume for solvating pairs (note this was not regressed but set to a given value
when solvation is possible). For PC-SAFT BIP1 is the kij from equation 2.19. For the gE

models using NRTL or NRTLHV the BIP1, BIP2, and BIP3 are Cji

R
, Cij

R
(units of K) and

α̃ji respectively.
The asterisk in each table for each binary pair represents the model with the minimum

objective function for each binary pair.The reported deviations are the mean absolute
deviation for the model, the model with the asterisk may not correspond to the model with
the smallest deviation. This is because data points which cannot be represented by a model
are discarded.

Table A.1 Binary parameters and deviations for ethane binary pairs

ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C10 PR vdW 0.01 0.0 N/A 2.72 0.91

Continued on next page
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Table A.1 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C10 PR vdW 0.0 0.01 N/A 4.18 0.90
C10 PR vdW 0.01 0.0 N/A 2.72 0.91
C10 PR MHV1 40 -350 0.52 7.45 0.77
C10 PR MHV2 120 -320 0.52 11.60 0.81
C10 PR HV NRTL -360 400 0.16 5.42 0.93
C10 PR HV NRTLHV -900 250 0.08 3.00 0.87
C10 SRK vdW 0.001 0.0 N/A 2.98 0.75
C10 SRK vdW 0.0 -0.002 N/A 2.85 0.75
C10* SRK vdW 0.007 0.002 N/A 2.57 0.74
C10 SRK MHV1 40 -360 0.52 7.31 0.68
C10 SRK MHV2 140 -340 0.52 11.56 0.71
C10 SRK HV NRTL 200 -170 0.2 3.34 0.75
C10 SRK HV NRTLHV -500 120 0.0 2.78 0.74
C10 PC-SAFT 0.007 N/A N/A 3.45 0.63

C12 PR vdW 0.008 0.0 N/A 2.39 N/A
C12 PR vdW 0.0 -0.004 N/A 3.17 N/A
C12 PR vdW 0.014 0.005 N/A 1.91 N/A
C12 PR MHV1 130 -410 0.52 7.51 N/A
C12 PR MHV2 190 -290 0.44 17.67 N/A
C12 PR HV NRTL 370 -180 0.48 3.47 N/A
C12 PR HV NRTLHV 280 0 0.28 2.28 N/A
C12 SRK vdW 0.008 0.0 N/A 2.37 N/A
C12 SRK vdW 0.0 -0.004 N/A 3.16 N/A
C12* SRK vdW 0.011 0.003 N/A 2.06 N/A
C12 SRK MHV1 40 -340 0.8 6.97 N/A
C12 SRK MHV2 230 -320 0.52 17.49 N/A
C12 SRK HV NRTL 360 -180 0.56 2.88 N/A
C12 SRK HV NRTLHV 200 0 0.32 2.32 N/A
C12 PC-SAFT 0.009 N/A N/A 1.88 N/A

C16 PR vdW 0.01 0.0 N/A 4.65 N/A
C16 PR vdW 0.0 0.004 N/A 5.06 N/A
C16* PR vdW 0.022 0.015 N/A 3.77 N/A
C16 PR MHV1 260 -600 0.52 16.23 N/A
C16 PR MHV2 400 -640 0.52 29.87 N/A
C16 PR HV NRTL 750 -280 0.48 5.81 N/A
C16 PR HV NRTLHV -1780 290 0.04 5.40 N/A
C16 SRK vdW 0.003 0.0 N/A 5.02 N/A

Continued on next page
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Table A.1 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C16 SRK vdW 0.0 0.002 N/A 5.15 N/A
C16 SRK vdW 0.016 0.009 N/A 3.66 N/A
C16 SRK MHV1 20 -500 0.52 23.68 N/A
C16 SRK MHV2 60 -500 0.52 36.46 N/A
C16 SRK HV NRTL 370 -310 0.12 7.69 N/A
C16 SRK HV NRTLHV -500 130 0.44 4.72 N/A
C12 PC-SAFT 0.004 N/A N/A 6.67 N/A

C20 PR vdW -0.008 0.0 N/A 6.91 N/A
C20 PR vdW 0.0 0.012 N/A 4.47 N/A
C20* PR vdW 0.016 0.025 N/A 3.81 N/A
C20 PR MHV1 280 -770 0.52 16.11 N/A
C20 PR MHV2 570 -830 0.52 36.00 N/A
C20 PR HV NRTL 820 -320 0.52 6.43 N/A
C20 PR HV NRTLHV -1420 210 0.12 6.69 N/A
C20 SRK vdW -0.009 0.0 N/A 7.02 N/A
C20 SRK vdW 0.0 0.013 N/A 4.84 N/A
C20 SRK vdW 0.009 0.016 N/A 3.98 N/A
C20 SRK MHV1 320 -790 0.52 16.91 N/A
C20 SRK MHV2 700 -870 0.52 36.10 N/A
C20 SRK HV NRTL 800 -360 0.48 6.18 N/A
C20 SRK HV NRTLHV -700 130 0.4 5.54 N/A
C20 PC-SAFT -0.002 N/A N/A 6.9 N/A

C22 PR vdW -0.013 0.0 N/A 10.31 N/A
C22 PR vdW 0.0 0.013 N/A 4.99 N/A
C22 PR vdW 0.022 0.022 N/A 2.72 N/A
C22 PR MHV1 220 -710 0.52 10.54 N/A
C22 PR MHV2 540 -720 0.52 48.56 N/A
C22 PR HV 1020 -290 0.52 5.02 N/A
C22 PR HVmod -800 200 0.52 2.8 N/A
C22 SRK vdW -0.016 0.0 N/A 10.69 N/A
C22 SRK vdW 0.0 0.012 N/A 5.77 N/A
C22* SRK vdW 0.021 0.02 N/A 2.35 N/A
C22 SRK MHV1 300 -740 0.52 10.76 N/A
C22 SRK MHV2 530 -740 0.52 49.66 N/A
C22 SRK HV NRTL 960 -310 0.52 4.78 N/A
C22 SRK HV NRTLHV -960 180 0.52 3.03 N/A
C22 PC-SAFT 0.006 N/A N/A 2.57 N/A

Continued on next page
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Table A.1 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C24 PR vdW -0.004 0.0 N/A 16.44 N/A
C24 PR vdW 0.0 0.017 N/A 10.34 N/A
C24 PR vdW 0.022 0.024 N/A 5.32 N/A
C24 PR MHV1 510 -830 0.52 12.17 N/A
C24 PR MHV2 700 -950 0.52 43.04 N/A
C24 PR HV NRTL 1450 -250 0.52 9.24 N/A
C24* PR HV NRTLHV -1620 200 0.12 4.83 N/A
C24 SRK vdW 0.009 0.0 N/A 15.93 N/A
C24 SRK vdW 0.0 0.014 N/A 10.90 N/A
C24 SRK vdW 0.022 0.021 N/A 4.07 N/A
C24 SRK MHV1 550 -850 0.52 12.55 N/A
C24 SRK MHV2 690 -960 0.52 43.67 N/A
C24 SRK HV NRTL 1170 -330 0.52 11.58 N/A
C24 SRK HV NRTLHV -1190 -20 0.32 8.41 N/A
C24 PC-SAFT 0.001 N/A N/A 5.16 N/A

C28 PR vdW -0.023 0.0 N/A 21.5 0.05
C28 PR vdW 0.0 0.027 N/A 8.46 0.05
C28 PR vdW 0.023 0.034 N/A 4.66 0.04
C28 PR MHV1 60 -950 0.52 21.05 0.06
C28 PR MHV2 680 -1060 0.52 58.33 0.05
C28 PR HV NRTL 1680 -370 0.52 9.2 0.04
C28 PR HV NRTLHV -1850 200 0.16 8.1 0.04
C28 SRK vdW -0.022 0.0 N/A 19.56 0.04
C28 SRK vdW 0.0 0.024 N/A 8.53 0.05
C28* SRK vdW 0.028 0.031 N/A 4.14 0.04
C28 SRK MHV1 70 -960 0.52 26.63 0.07
C28 SRK MHV2 700 -1070 0.52 58.83 0.06
C28 SRK HV NRTL 1290 -410 0.52 13.04 0.04
C28 SRK HV NRTLHV -1480 170 0.24 7.60 0.03
C28 PC-SAFT 0.001 N/A N/A 4.84 0.12

C36 PR vdW 0.029 0.0 N/A 27.23 N/A
C36 PR vdW 0.0 0.049 N/A 15.57 N/A
C36 PR vdW 0.023 0.039 N/A 6.69 N/A
C36 PR MHV1 60 -1170 0.52 22.65 N/A
C36 PR MHV2 940 -1320 0.52 44.98 N/A
C36 PR HV NRTL 2100 -650 0.52 15.97 N/A
C36 PR HV NRTLHV -2400 190 0.16 9.05 N/A

Continued on next page
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Table A.1 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C36 SRK vdW 0.039 0.0 N/A 24.6 N/A
C36 SRK vdW 0.0 0.048 N/A 18.65 N/A
C36* SRK vdW 0.03 0.035 N/A 5.69 N/A
C36 SRK MHV1 100 -1190 0.52 23.01 N/A
C36 SRK MHV2 980 -1330 0.52 44.66 N/A
C36 SRK HV NRTL 1990 -430 0.52 9.88 N/A
C36 SRK HV NRTLHV -2000 170 0.2 7.81 N/A
C36 PC-SAFT -0.001 N/A N/A 3.72 N/A

C44 PR & vdW -0.158 0.0 N/A 10.78 N/A
C44 PR & vdW 0.0 0.032 N/A 6.54 N/A
C44 PR & vdW -0.05 0.022 N/A 4.33 N/A
C44 PR & MHV1 -90 -1030 0.52 18.90 N/A
C44 PR & MHV2 -50 1490 0.28 49.37 N/A
C44 PR & HV NRTL -340 130 0.04 2.68 N/A
C44 PR & HV NRTLHV -1360 160 0.52 9.07 N/A
C44 SRK vdW -0.15 0.0 N/A 10.45 N/A
C44 SRK vdW 0.0 0.029 N/A 4.93 N/A
C44 SRK vdW -0.044 0.021 N/A 3.67 N/A
C44 SRK MHV1 -90 -1030 0.52 18.47 N/A
C44 SRK MHV2 20 1390 0.36 48.76 N/A
C44* SRK HV NRTL -700 480 0 2.53 N/A
C44 SRK HV NRTLHV -1370 160 0.52 8.91 N/A
C44 PC-SAFT -0.001 N/A N/A 2.69 N/A

Table A.2 Binary parameters and deviations for propane binary pairs

ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C10 PR vdW 0.003 0 N/A 2.33 0.24
C10 PR vdW 0 -0.001 N/A 2.44 0.23
C10 PR vdW 0.015 0.014 N/A 1.95 0.17
C10 PR MHV1 -60 -180 0.24 3.28 0.16
C10 PR MHV2 -1000 840 0 5.01 0.33
C10 PR HV NRTL 180 -120 0.4 2.83 0.28
C10 PR HV NRTLHV 320 -60 0.16 2.25 0.24
C10 SRK vdW 0.001 0 N/A 2.22 0.28
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C10 SRK vdW 0 0.001 N/A 2.26 0.27
C10 SRK vdW 0.005 0.005 N/A 2.07 0.27
C10 SRK MHV1 -20 -220 0.4 3.16 0.25
C10 SRK MHV2 0 -160 0.24 5.05 0.39
C10 SRK HV NRTL 100 -80 0.44 2.54 0.27
C10 SRK HV NRTLHV -1100 370 0 3.23 0.34
C10* PC-SAFT 0.003 N/A N/A 1.93 0.38

C12 PR vdW 0.042 0 N/A 2.42 1.30
C12 PR vdW 0 -0.032 N/A 4.55 1.39
C12 PR vdW 0.037 -0.004 N/A 2.41 1.32
C12 PR MHV1 190 -350 0.52 2.82 1.33
C12 PR MHV2 190 -270 0.48 6.61 1.36
C12 PR HV NRTL 530 -170 0.52 2.90 1.39
C12* PR HV NRTLHV -1900 570 0 2.37 1.37
C12 SRK vdW 0.045 0 N/A 2.52 1.57
C12 SRK vdW 0 -0.034 N/A 4.73 1.67
C12 SRK vdW 0.036 -0.007 N/A 2.59 1.61
C12 SRK MHV1 290 -430 0.4 3.06 1.53
C12 SRK MHV2 170 -260 0.52 6.75 1.37
C12 SRK HV NRTL 530 -180 0.52 2.86 1.59
C12 SRK HV NRTLHV -470 270 0.36 2.36 1.57
C12 PC-SAFT 0.025 N/A N/A 4.4 1.63

C14 PR vdW 0.007 0 N/A 1.97 N/A
C14 PR vdW 0 0.021 N/A 2.03 N/A
C14 PR vdW 0.008 0.016 N/A 1.91 N/A
C14 PR MHV1 210 -690 0.28 3.06 N/A
C14 PR MHV2 400 -580 0.44 3.30 N/A
C14 PR HV NRTL -680 450 0.52 3.49 N/A
C14* PR HV NRTLHV -2130 500 0.08 2.74 N/A
C14 SRK vdW 0.005 0 N/A 1.78 N/A
C14 SRK vdW 0 0.039 N/A 2.74 N/A
C14 SRK vdW 0.004 0.046 N/A 2.82 N/A
C14 SRK MHV1 -110 -480 0.52 3.42 N/A
C14 SRK MHV2 380 -590 0.44 3.54 N/A
C14 SRK HV NRTL -620 460 0.52 3.26 N/A
C14 SRK HV NRTLHV -860 200 0.36 2.96 N/A
C14 PC-SAFT -0.008 N/A N/A 3.83 N/A
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C20 PR vdW -0.007 0 N/A 3.70 N/A
C20 PR vdW 0 0.008 N/A 2.78 N/A
C20 PR vdW 0.013 0.017 N/A 1.76 N/A
C20 PR MHV1 50 -460 0.52 4.87 N/A
C20 PR MHV2 -310 880 0.28 11.08 N/A
C20 PR HV NRTL 750 -260 0.52 2.96 N/A
C20 PR HV NRTLHV -2490 460 0.04 2.56 N/A
C20 SRK vdW -0.007 0 N/A 3.57 N/A
C20 SRK vdW 0 0.005 N/A 2.57 N/A
C20 SRK vdW 0.01 0.014 N/A 1.62 N/A
C20 SRK MHV1 -70 -370 0.8 4.93 N/A
C20 SRK MHV2 -320 940 0.28 11.9 N/A
C20 SRK HV NRTL 600 -200 0.68 2.65 N/A
C20 SRK HV NRTLHV -590 200 0.56 2.30 N/A
C20* PC-SAFT 0.003 N/A N/A 1.53 N/A

C32 PR vdW 0.014 0 N/A 4.08 N/A
C32 PR vdW 0 0.059 N/A 3.16 N/A
C32 PR vdW 0.013 0.035 N/A 1.55 N/A
C32 PR MHV1 680 -1010 0.51 4.55 N/A
C32 PR MHV2 840 -1170 0.51 23.81 N/A
C32 PR HV NRTL 1860 -550 0.48 1.85 N/A
C32 PR HV NRTLHV -2280 310 0.04 1.31 N/A
C32 SRK vdW 0.032 0 N/A 2.40 N/A
C32 SRK vdW 0 0.069 N/A 4.19 N/A
C32 SRK vdW 0.023 0.031 N/A 1.39 N/A
C32 SRK MHV1 4400 -700 0.68 12.23 N/A
C32 SRK MHV2 3830 -690 0.92 10.89 N/A
C32 SRK HV NRTL 1580 -270 0.64 1.59 N/A
C32* SRK HV NRTLHV 1900 -20 0.04 1.30 N/A
C32 PC-SAFT -0.016 N/A N/A 8.7 N/A

C36 PR vdW 0.028 0 N/A 4.8 N/A
C36 PR vdW 0 0.056 N/A 2.25 N/A
C36 PR vdW 0.0 0.056 N/A 2.25 N/A
C36 PR MHV1 810 -1100 0.51 4.84 N/A
C36 PR MHV2 1000 -1340 0.51 2.63 N/A
C36* PR HV NRTL 2140 -840 0.39 2.37 N/A
C36 PR HV NRTLHV -2810 310 0.04 1.92 N/A
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C36 SRK vdW 0.028 0 N/A 3.84 N/A
C36 SRK vdW 0 0.066 N/A 2.84 N/A
C36 SRK vdW 0.012 0.048 N/A 1.97 N/A
C36 SRK MHV1 160 -1200 0.48 9.62 N/A
C36 SRK MHV2 1090 -1410 0.52 19.70 N/A
C36 SRK HV NRTL -2620 1000 0.2 7.48 N/A
C36 SRK HV NRTLHV -3260 2300 0.52 7.13 N/A
C36 PC-SAFT -0.023 N/A N/A 9.21 N/A

C38 PR vdW 0.019 0 N/A 4.54 N/A
C38 PR vdW 0 0.076 N/A 3.13 N/A
C38 PR vdW 0.014 0.027 N/A 2.53 N/A
C38 PR MHV1 770 -1120 0.51 10.14 N/A
C38 PR MHV2 990 -1370 0.51 28.59 N/A
C38 PR HV NRTL 2280 -680 0.42 1.93 N/A
C38 PR HV NRTLHV -2620 310 0.04 1.61 N/A
C38 SRK vdW 0.033 0 N/A 3.83 N/A
C38 SRK vdW 0 0.088 N/A 4.25 N/A
C38 SRK vdW 0.021 0.048 N/A 1.48 N/A
C38 SRK MHV1 140 -800 0.76 4.62 N/A
C38 SRK MHV2 4180 -770 0.92 11.43 N/A
C38 SRK HV NRTL 2210 -630 0.44 2.21 N/A
C38* SRK HV NRTLHV -1330 210 0.48 1.17 N/A
C38 PC-SAFT -0.016 N/A N/A 10.89 N/A

C40 PR vdW 0.031 0 N/A 6.74 N/A
C40 PR vdW 0 0.088 N/A 5.41 N/A
C40 PR vdW 0.014 0.06 N/A 3.91 N/A
C40 PR MHV1 760 -1130 0.51 5.94 N/A
C40 PR MHV2 1050 -1490 0.51 28.97 N/A
C40 PR HV NRTL 2460 -640 0.42 4.55 N/A
C40 PR HV NRTLHV -2550 310 0.05 3.81 N/A
C40 SRK vdW 0.038 0 N/A 5.65 N/A
C40 SRK vdW 0 0.103 N/A 5.89 N/A
C40 SRK vdW 0.027 0.052 N/A 3.71 N/A
C40 SRK MHV1 -150 -830 0.76 5.91 N/A
C40 SRK MHV2 4550 -890 0.88 10.5 N/A
C40 SRK HV NRTL 2420 -510 0.44 4.59 N/A
C40* SRK HV NRTLHV -1580 220 0.4 3.48 N/A
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C40 PC-SAFT -0.019 N/A N/A 13.44 N/A

C44 PR vdW 0.021 0 N/A 6.58 N/A
C44 PR vdW 0 0.078 N/A 5.08 N/A
C44* PR vdW 0.012 0.064 N/A 1.89 N/A
C44 PR MHV1 910 -1280 0.47 6.57 N/A
C44 PR MHV2 1150 -1460 0.51 34.1 N/A
C44 PR HV 270 -730 0.4 17.22 N/A
C44 PR HVmod -2680 300 0.06 2.12 N/A
C44 SRK vdW 0.036 0 N/A 6.46 N/A
C44 SRK vdW 0 0.122 N/A 5.42 N/A
C44 SRK vdW 0.029 0.043 N/A 3.90 N/A
C44 SRK MHV1 600 -1160 0.52 6.78 N/A
C44 SRK MHV2 4750 -1200 0.56 35.77 N/A
C44 SRK HV 2720 -380 0.44 2.98 N/A
C44 SRK HVmod 2730 10 0.04 2.19 N/A
C44 PC-SAFT -0.012 N/A N/A 12.0 N/A

C46 PR vdW 0.005 0 N/A 15.82 N/A
C46 PR vdW 0 0.089 N/A 5.49 N/A
C46 PR vdW -0.005 0.099 N/A 6.04 N/A
C46 PR MHV1 900 -1270 0.5 7.31 N/A
C46 PR MHV2 1170 -1550 0.51 36.62 N/A
C46 PR HV NRTL 27000 -1000 0.39 6.32 N/A
C46* PR HV NRTLHV -3300 120 0.28 5.75 N/A
C46 SRK vdW 0.031 0 N/A 11.98 N/A
C46 SRK vdW 0 0.117 N/A 6.75 N/A
C46 SRK vdW -0.007 0.128 N/A 7.22 N/A
C46 SRK MHV1 880 -1410 0.44 8.95 N/A
C46 SRK MHV2 4560 -850 0.92 11.94 N/A
C46 SRK HV NRTL 4020 -2010 0.2 6.92 N/A
C46 SRK HV NRTLHV -2370 230 0.2 5.92 N/A
C46 PC-SAFT -0.017 N/A N/A 15.55 N/A

C54 PR vdW 0.022 0 N/A 8.65 N/A
C54 PR vdW 0 0.118 N/A 4.48 N/A
C54 PR vdW 0.012 0.086 N/A 2.6 N/A
C54 PR MHV1 740 -1410 0.47 8.53 N/A
C54 PR MHV2 1360 -1790 0.51 38.91 N/A
C54 PR HV NRTL 3040 -760 0.44 6.73 N/A
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C54 PR HV NRTLHV -3370 310 0.05 3.25 N/A
C54 SRK vdW 0.038 0 N/A 10.38 N/A
C54 SRK vdW 0 0.155 N/A 5.44 N/A
C54 SRK vdW 0.024 0.101 N/A 2.36 N/A
C54 SRK MHV1 1160 -1800 0.36 10.57 N/A
C54 SRK MHV2 4120 -940 0.92 13.93 N/A
C54 SRK HV NRTL -5440 200 0.4 4.57 N/A
C54* SRK HV NRTLHV 3620 20 0.04 3.26 N/A
C54 PC-SAFT -0.01 N/A N/A 7.2 N/A

C60 PR vdW 0.019 0 N/A 22.42 N/A
C60 PR vdW 0 0.09 N/A 11.18 N/A
C60* PR vdW 0.011 0.072 N/A 6.41 N/A
C60 PR MHV1 1200 -1410 0.5 20.81 N/A
C60 PR MHV2 1260 -1720 0.51 57.31 N/A
C60 PR HV 3150 -580 0.45 16.14 N/A
C60 PR HVmod -3710 290 0.07 8.74 N/A
C60 SRK vdW 0.039 0 N/A 28.15 N/A
C60 SRK vdW 0 0.116 N/A 18.93 N/A
C60 SRK vdW 0.028 0.072 N/A 7.9 N/A
C60 SRK MHV1 7320 -1370 0.52 27.91 N/A
C60 SRK MHV2 4730 -940 0.92 36.95 N/A
C60 SRK HV -5880 -660 0.2 8.84 N/A
C60 SRK HVmod -7990 6740 0.28 6 N/A
C60 PC-SAFT -0.005 N/A N/A 11.86 N/A

Table A.3 Binary parameters and deviations for carbon dioxide binary pairs

ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C8 PR vdW 0.123 0 N/A 4.44 0.26
C8 PR vdW 0 -0.101 N/A 14.99 0.35
C8 PR vdW 0.094 -0.02 N/A 5.37 0.12
C8 PR MHV1 -100 60 0.88 5.77 0.54
C8 PR MHV2 -160 310 0.64 7.34 0.71
C8 PR HV NRTL 1140 5100 0.4 4.87 0.64
C8 PR HV NRTLHV -120 310 0.28 2.56 0.49
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C8 SRK vdW 0.128 0 N/A 5.04 0.19
C8 SRK vdW 0 -0.109 N/A 16.09 0.42
C8* SRK vdW 0.111 -0.031 N/A 2.87 0.15
C8 SRK MHV1 -110 60 0.76 5.21 0.42
C8 SRK MHV2 -190 380 0.64 7.21 0.50
C8 SRK HV NRTL 1070 6100 0.44 4.79 0.36
C8 SRK HV NRTLHV -90 300 0.32 2.53 35
C8 PC-SAFT 0.067 N/A N/A 1.93 0.45

C9 PR vdW 0.097 0 N/A 2.05 0.86
C9 PR vdW 0 -0.082 N/A 12.44 0.69
C9 PR vdW 0.097 0.0 N/A 2.05 0.86
C9 PR MHV1 200 -310 0.92 13.0 0.86
C9 PR MHV2 230 -340 0.72 16.56 0.72
C9 PR HV NRTL 1060 4000 0.52 8.25 1.19
C9 PR HV NRTLHV 140 200 0.28 4.77 0.93
C9 SRK vdW 0.109 0 N/A 2.32 0.45
C9 SRK vdW 0 -0.09 N/A 13.35 0.54
C9* SRK vdW 0.101 -0.012 N/A 1.63 0.34
C9 SRK MHV1 270 -400 0.44 11.14 0.86
C9 SRK MHV2 -360 5130 0.24 16.62 1.29
C9 SRK HV NRTL 980 3850 0.56 7.75 0.79
C9 SRK HV NRTLHV -130 230 0.12 4.47 0.52
C9 PC-SAFT 0.044 N/A N/A 3.51 0.96

C10 PR vdW 0.104 0 N/A 3.67 1.4
C10 PR vdW 0 -0.025 N/A 21.43 0.98
C10 PR vdW 0.082 -0.006 N/A 1.92 1.3
C10 PR MHV1 0 -300 0.5 16.52 1.58
C10 PR MHV2 170 -450 0.51 24.58 0.66
C10 PR HV NRTL 970 5500 0.51 14.28 1.7
C10 PR HV NRTLHV -370 290 0.12 6.35 1.25
C10 SRK vdW 0.109 0 N/A 4.64 1.05
C10 SRK vdW 0 -0.036 N/A 21.36 1.03
C10* SRK vdW 0.102 -0.017 N/A 2.78 0.96
C10 SRK MHV1 4080 -390 0.88 24.13 0.94
C10 SRK MHV2 5380 -390 0.8 28.57 1.26
C10 SRK HV NRTL 820 4660 0.52 14.44 0.15
C10 SRK HV NRTLHV -330 250 0.04 6.24 0.91
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C10 PC-SAFT 0.05 N/A N/A 3.38 2.05

C11 PR vdW 0.114 0 N/A 6.52 0.85
C11 PR vdW 0 0.001 N/A 31.58 0.71
C11* PR vdW 0.099 -0.019 N/A 3.93 0.36
C11 PR MHV1 100 -350 0.54 16.36 0.91
C11 PR MHV2 240 -430 0.51 27.35 0.67
C11 PR HV NRTL 1350 -110 0.36 11.64 1.43
C11 PR HV NRTLHV -200 290 0.24 5.7 0.73
C11 SRK vdW 0.114 0 N/A 8.32 0.69
C11 SRK vdW 0 -0.028 N/A 28.28 0.78
C11 SRK vdW 0.11 -0.023 N/A 4.46 0.38
C11 SRK MHV1 260 -400 0.8 18.14 0.65
C11 SRK MHV2 260 -420 0.92 31.49 0.68
C11 SRK HV NRTL 1250 -20 0.44 11.08 0.8
C11 SRK HV NRTLHV 0 250 0.28 5.68 0.61
C11 PC-SAFT 0.061 N/A N/A 4.7 0.84

C12 PR vdW 0.093 0 N/A 3.62 0.24
C12 PR vdW 0 -0.055 N/A 14.84 0.15
C12 PR vdW 0.09 -0.005 N/A 2.8 0.24
C12 PR MHV1 4280 -220 0.47 5.06 0.29
C12 PR MHV2 4270 2130 0.47 10.34 1.94
C12 PR HV NRTL 1970 20 0.34 4.7 0.25
C12 PR HV NRTLHV 870 240 0.45 2.2 0.26
C12 SRK vdW 0.101 0 N/A 2.82 0.25
C12 SRK vdW 0 -0.058 N/A 15.52 0.15
C12 SRK vdW 0.102 -0.004 N/A 2.57 0.25
C12* SRK MHV1 5230 -230 0.44 6.68 0.29
C12 SRK MHV2 -3020 5200 0.04 12.81 0.28
C12 SRK HV NRTL 1850 30 0.36 4.35 0.26
C12 SRK HV NRTLHV 520 220 0.4 3.08 0.26
C12 PC-SAFT 0.062 N/A N/A 4.57 0.26

C15 PR vdW 0.083 0 N/A 10.19 0.41
C15 PR vdW 0 -0.045 N/A 23.4 0.36
C15* PR vdW 0.085 0.006 N/A 10.75 0.40
C15 PR MHV1 5380 -460 0.47 32.0 0.58
C15 PR MHV2 4360 -400 0.55 52.94 0.42
C15 PR HV NRTL 2070 -80 0.3 20.86 1.15
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C15 PR HV NRTLHV 3100 -10 0.0 14.42 0.57
C15 SRK vdW 0.098 0 N/A 9.54 0.38
C15 SRK vdW 0 -0.045 N/A 24.65 0.37
C15 SRK vdW 0.098 0.006 N/A 10.9 0.37
C15 SRK MHV1 290 -470 0.68 23.8 0.61
C15 SRK MHV2 -3000 5030 0.04 42.94 0.46
C15 SRK HV NRTL 1990 -210 0.28 21.15 0.12
C15 SRK HV NRTLHV -860 420 0.4 20.28 0.49
C15 PC-SAFT 0.054 N/A N/A 14.94 0.41

C16 PR vdW 0.084 0 N/A 10.76 N/A
C16 PR vdW 0 0.349 N/A 53.7 N/A
C16 PR vdW 0.082 -0.013 N/A 8.31 N/A
C16 PR MHV1 2920 -310 0.63 23.38 N/A
C16 PR HV NRTL 2960 4700 0.27 16.59 N/A
C16 PR HV NRTLHV 2960 4700 0.27 12.87 N/A
C16 SRK vdW 0.097 0 N/A 11.01 N/A
C16 SRK vdW 0 0.339 N/A 52.64 N/A
C16* SRK vdW 0.097 0.024 N/A 15.47 N/A
C16 SRK MHV1 75500 -420 0.36 29.62 N/A
C16 SRK MHV2 9590 -390 0.32 34.75 N/A
C16 SRK HV NRTL 3000 2700 0.28 17.28 N/A
C16 SRK HV NRTLHV 10100 210 0.16 29.71 N/A
C16 PC-SAFT 0.067 N/A N/A 19.19 N/A

C20 PR vdW 0.077 0 N/A 6.22 N/A
C20 PR vdW 0.078 0.003 N/A 7.52 N/A
C20 PR MHV1 4490 -590 0.55 33.24 N/A
C20 PR MHV2 4520 2910 0.49 41.18 N/A
C20 PR HV NRTL -4410 1270 0.55 23.91 N/A
C20 PR HV NRTLHV 1530 150 0.07 12.13 N/A
C20 SRK vdW 0.091 0 N/A 6.62 N/A
C20* SRK vdW 0.09 -0.002 N/A 6.30 N/A
C20 SRK MHV1 6050 -600 0.56 30.97 N/A
C20 SRK MHV2 6920 4910 0.44 44.57 N/A
C20 SRK HV NRTL -4180 160 0.72 20.83 N/A
C20 SRK HV NRTLHV 8840 240 0.24 13.58 N/A
C20 PC-SAFT 0.052 N/A N/A 7.53 N/A

C24 PR vdW 0.078 0 N/A 14.51 0.07
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C24 PR vdW 0.08 0.017 N/A 9.69 0.08
C24 PR MHV1 1800 -2720 0.09 37.01 0.08
C24 PR MHV2 680 -1370 0.31 48.1 0.05
C24 PR HV NRTL 3960 -580 0.29 31.8 0.08
C24 PR HV NRTLHV -2750 400 0.07 19.53 0.03
C24 SRK vdW 0.089 0 N/A 6.63 0.07
C24* SRK vdW 0.099 0.044 N/A 10.86 0.11
C24 SRK MHV1 6850 -1140 0.44 45.73 0.06
C24 SRK MHV2 6120 -990 0.48 49.13 0.09
C24 SRK HV NRTL -5360 -260 0.8 26.04 0.32
C24 SRK HV NRTLHV -3240 400 0.04 18.29 0.02
C24 PC-SAFT 0.05 N/A N/A 6.29 0.18

C28 PR vdW 0.081 0 N/A 22.7 0.03
C28 PR vdW 0.075 0.019 N/A 9.81 0.02
C28 PR MHV1 4840 -890 0.55 39.48 0.16
C28 PR MHV2 370 -1020 0.55 60.24 0.09
C28 PR HV NRTL -5700 3020 0.54 21.06 0.19
C28 PR HV NRTLHV 3220 110 0.04 16.79 0.03
C28 SRK vdW 0.092 0 N/A 16.3 0.02
C28* SRK vdW 0.095 0.027 N/A 11.09 0.03
C28 SRK MHV1 8280 -1190 0.36 45.87 0.13
C28 SRK MHV2 270 -590 0.92 55.87 0.17
C28 SRK HV NRTL 5160 -320 0.24 33.92 0.39
C28 SRK HV NRTLHV -3410 390 0.04 15.82 0.03
C28 PC-SAFT 0.048 N/A N/A 6.9 0.09

C36 PR vdW 0.059 0 N/A 23.01 N/A
C36* PR vdW 0.068 0.023 N/A 8.16 N/A
C36 PR MHV1 130 -1150 0.44 37.26 N/A
C36 PR MHV2 800 -1310 0.55 63.81 N/A
C36 PR HV NRTL 3840 -310 0.43 38.59 N/A
C36 PR HV NRTLHV -2040 390 0.32 19.74 N/A
C36 SRK vdW 0.08 0 N/A 19.25 N/A
C36 SRK vdW 0.094 0.036 N/A 12.52 N/A
C36 SRK MHV1 90 -1220 0.4 40.31 N/A
C36 SRK MHV2 7430 -1050 0.44 66.31 N/A
C36 SRK HV NTRL 7230 -1030 0.16 42.22 N/A
C36 SRK HV NRTLHV -2240 380 0.28 21.35 N/A
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ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C36 PC-SAFT 0.048 N/A N/A 9.5 N/A

Table A.4 Binary parameters and deviations for water binary pairs

ID2 Model BIP1 BIP2 BIP3 Dev P (%) Dev Y (%)

C1 PR vdW 0.442 0 N/A 100 13.79
C1 PR vdW 0 0.124 N/A 41.40 51.72
C1 PR vdW 0.598 0.368 N/A 41.43 15.41
C1 PR MHV1 -980 3530 0.04 20.83 17.81
C1 PR MHV2 -10 2370 0.04 12.14 22.15
C1 PR HV NRTL -840 3780 0.04 22.23 17.42
C1 PR HV NRTLHV 150 2700 0.12 18.72 16.93
C1 SRK vdW 0.417 0 N/A 100 16.87
C1 SRK vdW 0 0.14 N/A 41.86 50.10
C1 SRK vdW 0.584 0.363 N/A 43.24 19.09
C1 SRK MHV1 -40 2400 0.08 26.12 19.58
C1 SRK MHV2 630 1780 0.08 11.98 25.38
C1 SRK HV NRTL -820 3780 0.04 23.15 16.20
C1 SRK HV NRTLHV 160 2750 0.12 19.68 15.95
C1* CPA 0.003 N/A N/A 25.81 9.88
C1 PC-SAFT -0.075 N/A N/A 25.61 12.39

C2 PR vdW 0.455 0 N/A 99.1 18.12
C2 PR vdW 0 0.318 N/A 100 47.96
C2 PR vdW 0.669 0.318 N/A 53.26 19.68
C2 PR MHV1 1920 2020 0.32 34.47 18.86
C2 PR MHV2 2020 1880 0.28 15.62 27.16
C2 PR HV NRTL 2320 2340 0.24 35.57 18.51
C2 PR HV NRTLHV -600 3040 0.08 14.65 18.51
C2 SRK vdW 0.462 0 N/A 99.1 18.12
C2 SRK vdW 0 0.311 N/A 100 47.75
C2 SRK vdW 0.677 0.37 N/A 55.26 25.23
C2 SRK MHV1 1910 1970 0.32 35.08 21.23
C2 SRK MHV2 2000 1850 0.28 15.44 29.19
C2 SRK HV NTRL 2300 2270 0.24 36.36 21.21
C2 SRK HV NRTLHV -580 2980 0.08 15.13 21.79
C2 CPA 0.164 N/A N/A 34.11 15.54

Continued on next page
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Table A.4 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev 2 in 1 (%) Dev 1 in 2 (%)

C2* PC-SAFT 0.041 N/A N/A 25.21 13.87

C3 PR vdW 0.509 0 N/A 86.76 8.95
C3 PR vdW 0.777 0.529 N/A 49.53 16.75
C3 PR MHV1 2310 2080 0.32 33.76 21.88
C3 PR MHV2 2190 790 0.08 40.60 28.95
C3 PR HV NRTL 3150 3800 0.2 36.77 64.9
C3* PR HV NRTLHV 2500 2730 0.28 33.73 15.52
C3 SRK vdW 0.511 0 N/A 85.18 10.39
C3 SRK vdW 0.828 0.55 N/A 49.69 16.75
C3 SRK MHV1 2300 2030 0.32 33.98 22.54
C3 SRK MHV2 2800 2020 0.44 40.23 46.47
C3 SRK HV NRTL 3230 2690 0.24 36.51 24.69
C3 SRK HV NRTLHV 2460 2700 0.2 34.93 16.39
C3 CPA 0.092 N/A N/A 53.67 8.81
C3 PC-SAFT 0.014 N/A N/A 54.29 8.01

C4 PR vdW 0.497 0 N/A 88.36 19.19
C4 PR vdW 1.19 0.81 N/A 61.94 37.42
C4 PR MHV1 2710 1590 0.24 47.31 33.76
C4 PR MHV2 2840 1570 0.28 37.0 39.4
C4 PR HV NRTL 3970 2280 0.2 51.66 37.56
C4 PR HV NRTLHV 1070 2350 0.16 38.05 31.18
C4 SRK vdW 0.551 0 N/A 99.1 13.5
C4 SRK vdW 1.06 0.71 N/A 62.9 35.4
C4 SRK MHV1 2740 1580 0.24 47.46 35.14
C4 SRK MHV2 2840 1550 0.28 37.74 40.79
C4 SRK HV NTRL 3970 2210 0.2 52.43 39.18
C4 SRK HV NRTLHV 1060 2350 0.16 37.97 31.77
C4* CPA 0.106 N/A N/A 42.25 12.37
C4 PC-SAFT 0.011 N/A N/A 37.96 17.67

C5 PR vdW 0.099 0 N/A 55.38 100
C5 PR vdW 0.2 0.121 N/A 32.48 100
C5 PR MHV1 3310 3640 0.32 27.22 99.14
C5 PR MHV2 3450 20 0.16 27.72 100
C5 PR HV NRTL 4990 2920 0.2 41.38 25.23
C5 PR HV NRTLHV 510 1460 0.12 24.27 100
C5 SRK vdW 0.063 0 N/A 38.96 100
C5 SRK vdW 0.177 0.07 N/A 32.58 100

Continued on next page
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Table A.4 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev 2 in 1 (%) Dev 1 in 2 (%)

C5 SRK MHV1 3340 4080 0.32 25.92 100
C5 SRK MHV2 3400 100 0.16 28.71 100
C5 SRK HV NRTL 5020 2920 0.2 42.61 46.99
C5* SRK HV NRTLHV 490 1470 0.12 24.04 100
C5 CPA 0.094 N/A N/A 47.66 81.83
C5 PC-SAFT -0.059 N/A N/A 61.75 71.57

C6 PR vdW 0.181 0 N/A 52.49 100
C6 PR vdW 0.557 0.371 N/A 44.85 100
C6 PR MHV1 5560 5810 0.24 44.72 100
C6 PR MHV2 6480 4120 0.36 50.91 19.95
C6 PR HV NRTL 6980 6660 0.2 52.87 80.0
C6 PR HV NRTLHV 450 1630 0.12 51.24 100
C6 SRK vdW 0.268 0 N/A 51.08 100
C6 SRK vdW 0.569 0.351 N/A 44.42 100
C6 SRK MHV1 5530 5830 0.24 45.58 100
C6 SRK MHV2 6480 3600 0.36 47.12 79.02
C6 SRK HV NTRL 7370 5770 0.2 54.86 20.0
C6 SRK HV NRTLHV 580 1550 0.12 51.77 100
C6 CPA -0.011 N/A N/A 58.4 82.38
C6* PC-SAFT -0.005 N/A N/A 47.36 39.82

Bz PR vdW 0.279 0 N/A 98.51 57.02
Bz PR vdW 1.179 0.99 N/A 44.99 63.71
Bz PR MHV1 2060 1460 0.32 34.72 62.08
Bz PR MHV2 2140 420 0.08 35.01 71.24
Bz PR HV NRTL 2940 1630 0.16 46.05 67.55
Bz PR HV NRTLHV 1880 2010 0.28 32.71 59.53
Bz SRK vdW 0.282 0 N/A 97.93 60.09
Bz SRK vdW 1.171 0.979 N/A 45.0 65.44
Bz SRK MHV1 2080 1450 0.32 34.19 62.9
Bz SRK MHV2 2730 -190 0.04 36.06 74.35
Bz SRK HV NRTL 3200 1910 0.2 48.47 62.05
Bz SRK HV NRTLHV 1890 2050 0.28 38.33 58.21
Bz CPA -0.014 N/A N/A 37.3 68.78
Bz CPA solvation 0.033 0.079 N/A 34.94 50.18
Bz PC-SAFT 0.001 N/A N/A 43.94 65.59

Tol PR vdW 0.297 0 N/A 100 44.34
Tol PR vdW 1.433 1.203 N/A 35.74 74.64

Continued on next page
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Table A.4 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev 2 in 1 (%) Dev 1 in 2 (%)

Tol PR MHV1 2560 1720 0.4 43.05 48.31
Tol PR MHV2 2510 1520 0.28 27.7 59.93
Tol PR HV NRTL 4230 1960 0.2 75.33 35.62
Tol* PR HV NRTLHV 2350 2120 0.28 26.13 41.17
Tol SRK vdW 0.323 0 N/A 100 46.17
Tol SRK vdW 1.46 1.22 N/A 36.39 73.16
Tol SRK MHV1 2580 1720 0.4 42.26 48.11
Tol SRK MHV2 2510 1510 0.28 28.95 58.5
Tol SRK HV NTRL 4240 1950 0.2 75.86 33.48
Tol SRK HV NRTLHV 2310 2060 0.28 25.92 42.76
Tol CPA -0.027 N/A N/A 30.41 64.83
Tol CPA solvation 0.009 0.06 N/A 38.5 33.43
Tol PC-SAFT -0.006 N/A N/A 72.9 28.4

C2Bz PR vdW 0.312 0 N/A 100 27.23
C2Bz PR vdW 1.136 1.061 N/A 94.43 0.0954
C2Bz PR MHV1 3260 5040 0.24 13.32 62.25
C2Bz PR MHV2 8070 -4230 0.04 26.77 95.44
C2Bz PR HV NRTL 4790 7500 0.16 28.88 91.25
C2Bz PR HV NRTLHV -830 2480 0.16 31.26 24.08
C2Bz SRK vdW 0.336 0 N/A 100 35.98
C2Bz SRK vdW 1.173 1.087 N/A 93.56 9.74
C2Bz SRK MHV1 3290 5020 0.24 28.89 91.45
C2Bz SRK MHV2 8150 -4270 0.04 28.98 95.5
C2Bz SRK HV NTRL 4870 8500 0.16 28.9 93.69
C2Bz SRK HV NRTLHV -830 2480 0.16 31.78 24.01
C2Bz CPA -0.083 N/A N/A 13.32 62.25
C2Bz* CPA solvation -0.054 0.051 N/A 11.47 22.71
C2Bz PC-SAFT -0.084 N/A N/A 18.35 53.49

CO2 PR vdW 0.175 0 N/A 86.24 9.54
CO2 PR vdW 0.245 0.174 N/A 48.83 11.15
CO2 PR MHV1 -1130 3000 0.04 17.0 20.02
CO2 PR MHV2 670 1140 0.2 8.33 12.47
CO2 PR HV NRTL -1050 3240 0.04 18.6 22.07
CO2* PR HV NRTLHV -790 2500 0.08 10.47 11.43
CO2 SRK vdW 0.158 0 N/A 84.38 13.31
CO2 SRK vdW 0.233 0.169 N/A 51.26 16.58
CO2 SRK MHV1 -1150 3030 0.04 12.76 42.93
CO2 SRK MHV2 680 1110 0.2 11.81 27.54

Continued on next page
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Table A.4 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev 2 in 1 (%) Dev 1 in 2 (%)

CO2 SRK HV NRTL -1040 3220 0.04 12.94 45.49
CO2 SRK HV NRTLHV -790 2490 0.08 11.62 30.29
CO2 CPA -0.009 N/A N/A 15.03 38.91
CO2 CPA solvation 0.097 0.1836 N/A 23.37 18.36
CO2 PC-SAFT -0.017 N/A N/A 14.06 37.63

H2S PR vdW 0.016 0 N/A 49.32 41.65
H2S PR vdW 0.3 0.214 N/A 30.45 27.33
H2S PR MHV1 560 920 0.32 16.46 22.21
H2S PR MHV2 480 730 0.04 6.81 23.37
H2S PR HV NRTL 530 1140 0.2 16.77 23.63
H2S* PR HV NRTLHV -1710 2790 0.04 6.17 22.19
H2S SRK vdW 0.004 0 N/A 49.04 44.8
H2S SRK vdW 0.28 0.202 N/A 32.16 29.65
H2S SRK MHV1 510 900 0.28 16.27 25.97
H2S SRK MHV2 510 690 0.04 6.51 27.04
H2S SRK HV NTRL 680 1080 0.28 17.11 25.64
H2S SRK HV NRTLHV -1790 2900 0.04 5.96 26.11
H2S CPA -0.022 0.0299 108.78 10.3 42.28
H2S CPA solvation 0.097 0.0624 108.67 8.93 35.87
H2S PC-SAFT -0.014 N/A N/A 9.85 36.85

Table A.5 Binary parameters and deviations for water binary pairs

ID2 Model BIP1 BIP2 BIP3 Dev 2 in 1 (%) Dev 1 in 2 (%) Dev P (%) Dev Y (%)

C10 PR vdW 0.319 0 N/A 100 8.59 20.71 49.14
C10 PR vdW 0.479 0.212 N/A 98.66 21.26 15.51 26.02
C10 PR MHV1 7330 -840 0.12 81.47 38.3 11.8 40.19
C10 PR MHV2 8750 -2940 0.12 39.22 39.56 60.2 65.3
C10 PR HV NRTL 10410 -3810 0.04 100 44.81 11.82 41.26
C10 PR HV NRTLHV 900 2090 0.12 95.83 39.71 8.86 28.16
C10 SRK vdW 0.354 0 N/A 99.45 8.99 20.71 49.14
C10 SRK vdW 0.504 0.188 N/A 98.57 19.71 15.69 28.05
C10 SRK MHV1 8100 -840 0.12 90.04 41.59 13.87 35.74
C10 SRK MHV2 5960 -600 0.16 86.4 36.76 12.5 33.78
C10 SRK HV NRTL 10460 -600 0.08 92.54 40.03 12.33 35.35
C10 SRK HV NRTLHV 130 2140 0.12 92.5 50.15 7.89 21.66

Continued on next page
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Table A.5 – continued from previous page

ID2 Model BIP1 BIP2 BIP3 Dev 2 in 1 (%) Dev 1 in 2 (%) Dev P (%) Dev Y (%)

C10* CPA -0.243 N/A N/A 27.37 30.24 13.02 21.73
C10 PC-SAFT -0.09 N/A N/A 13.77 31.28 30.39 25.33

C12 PR vdW 0.474 0 N/A 91.61 53.3 9.73 5.58
C12 PR vdW 1.34 1.253 N/A 51.15 65.73 30.99 17.72
C12 PR MHV1 12580 -3990 0.08 29.58 5.42 47.74 17.04
C12 PR MHV2 10000 -3010 0.12 49.19 17.71 53.01 17.26
C12 PR HV NRTL 13570 -1200 0.12 63.52 34.36 53.13 14.07
C12 PR HV NRTLHV 270 2080 0.12 97.68 3.75 12.18 37.51
C12 SRK vdW 0.502 0 N/A 92.74 53.61 11.26 6.74
C12 SRK vdW 1.309 1.244 N/A 46.83 65.26 31.88 14.67
C12 SRK MHV1 12520 -3990 0.08 38.95 32.32 46.97 17.21
C12 SRK MHV2 9500 -2850 0.12 35.09 28.74 48.98 16.2
C12 SRK HV NTRL 13530 -1230 0.12 58.67 34.38 52.95 14.2
C12 SRK HV NRTLHV 860 2000 0.16 93.45 45.1 7.58 13.61
C12* CPA -0.239 N/A N/A 37.2 38.0 9.8 4.17
C12 PC-SAFT -0.083 N/A N/A 43.79 35.96 19.05 25.48



Appendix B

Description of examples used for flash
calculations

A number of different mixtures were used to demonstrate the robustness and compare the
computational cost of isenthalpic flash with isothermal flash. For examples 1,2,4,5 and 7
the ideal gas heat capacity equation for each component is:

Cp

R
= C1 + C2 × T + C3 × T 2 + C4 × T 3

For examples 3 the ideal gas heat capacity equation for each component is:

Cp

R
= C1 + C2 × T + C3 × T 2 + C4 × T−2

For example 6 the ideal gas heat capacity equation for each component was taken from the
DIPPR database using the equation

Cp = C1 + C2

(
C3

T sinh
(
C3

T

))2

+ C4

(
C5

T cosh
(
C5

T

))2

with units of J/(kmol K). The parameters used are from the DIPPR database.
Example 1,4,5 and 7 were modelled using the PR equation of state and examples 3 and

6 used the SRK equation of state.
Example 1 is a mixture of a heavy oil with water based on the real example described

by [81] with the properties reported in tables B.1 and ideal gas parameters in table B.2.
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Example 2 is an ideal solution example using correlations from [155] for the oleic
phase fugacity of the form

ϕo
i =

C1,i

P
× exp

(
C2,i

T − C3,i

)
with parameters reported in table B.3. The ideal gas heat capacity parameters are given in
table B.4. For the residual enthalpy a correlation was used for the enthalpy of vaporisation.
This was of the form

Hvap

R
= C1 × (1− Tr)

(C2+C3Tr+C4T 2
r )

where Tr = T/Tc. If Tr ≥ 1 then the enthalpy of vaporisation was set equal to zero. The
parameters used are reported in table B.5.

The critical properties and ideal gas heat capacity parameters for examples 3,4,5 and
6 are given in tables B.6 - B.14. Note that though the same components are often given,
their ideal gas heat capacity correlation parameters may differ, often these parameters
were fitted pseudo-experimental data generated from the correlation from DIPPR for each
component in each mixture. Example 6 uses the correlation from DIPPR directly, though
its computational cost is not trivial. For example 8 both SRK and CPA was used to model
the mixture. The critical properties are given in table B.15 with the SRK binary parameters
given in table B.16 and the CPA parameters in table B.17. For CPA water was always
considered as associating with a 4C scheme with ϵ/R = 2003K.248 and β = 0.0692.
In CPA1 model only water was considered as associating. In CPA2 model hydrogen
sulphide was assumed to have a 3B scheme with the pure component parameters modified
so that Γ = 1590.102K, b = 0.0292l/mol and c1 = 0.50222 with ϵ/R = 654.271K

and β = 0.05832. For CPA2 the cross association of water with hydrogen sulphide was
given the values of kij = 0.0991, βcross = 0.0299 and ϵcross = 1308.4K based on the
values from [187]. The solvation of carbon dioxide in water was with binary parameters
of kij = 0.1145, βcross = 0.0162 and ϵcross = 1708K based on values from [186]. For
example 9 the properties are given in table B.18.



199

Table B.1 Parameters for example 1, a 20 component heavy oil with water

Component zi Pc (bar) Tc (K) ω water kij

water 0.5 220.549 647.15 0.345 0
propane 0.0054 42.478 369.85 0.152 0.51
i-butane 0.005 36.48 408.15 0.177 0.5
n-butane 0.0228 37.962 425.05 0.2 0.5
i-pentane 0.0263 33.798 460.35 0.228 0.5
n-pentane 0.0349 33.701 469.75 0.252 0.5
hexane 0.0734 30.102 507.45 0.299 0.5
M-cyclo C5 0.0185 37.845 532.85 0.23 0.5
benzene 0.0083 48.953 562.05 0.21 0.5
cyclo C6 0.0109 40.748 553.55 0.212 0.5
M-cyclo C6 0.0049 34.715 572.25 0.235 0.5
toluene 0.0026 41.079 591.75 0.264 0.5
C2-benzene 0.00068 36.087 617.15 0.304 0.5
m & p-xylene 0.0012 35.26 616.55 0.324 0.5
o-xylene 0.00042 37.321 630.35 0.31 0.5
C7-C23 0.0569 16.989 713.95 0.87 0.48
C24-C31 0.0569 14.513 816.55 1.129 0.44
C32-C38 0.0569 14.693 893.95 1.281 0.42
C39-C49 0.0569 15.775 976.55 1.361 0.4
C50-C80 0.0569 18.009 1123.75 1.207 0.38
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Table B.2 Ideal gas heat capacity parameters for example 1

Component C1 C2 × 102 (K−1) C3 × 105 (K−2) C4 × 109 (K−3)
water 3.952 -0.030 0.217 -0.868
propane -0.506 3.707 -2.036 4.836
i-butane -1.592 5.357 -3.352 9.090
n-butane -0.320 4.833 2.709 6.469
i-pentane -1.608 6.399 3.875 10.940
n-pentane -0.876 6.050 -3.329 7.556
hexane -2.303 7.861 -4.997 13.540
M-cyclo C5 -6.833 8.099 -5.025 12.600
benzene -6.045 6.805 -5.333 16.840
cyclo C6 -3.426 5.704 -0.509 -10.720
M-cyclo C6 -8.341 9.807 -5.795 12.890
toluene -4.798 7.221 -5.036 14.480
C2-benzene -6.203 9.029 -6.634 20.090
m & p-xylene -4.912 8.261 -5.578 15.620
o-xylene -2.779 7.615 -4.851 12.790
C7-C23 -0.022 3.118 -1.420 1.232
C24-C31 0.015 4.792 -2.107 1.243
C32-C38 0.121 5.870 -2.332 -0.547
C39-C49 0.011 6.887 -2.365 -3.694
C50-C80 0.047 8.563 -1.885 -12.587

Table B.3 Oleic phase fugacity correlation parameters for example 2, a 7 component ideal solution
mixture

Component zi C1 × 10−3 (bar) C2 (K) C3 (K)
water 0.5 119 -3816.4 46.13
methane 0.1 5.45 -879.8 7.16
ethane 0.05 8.46 -1511.4 17.16
n-butane 0.02 8.59 -2154.9 34.42
n-hexane 0.05 10.1 -2697.6 48.78
n-decane 0.05 12 -3456.8 78.67
n-eicosane 0.23 18.9 -4680.5 141.1
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Table B.4 Ideal gas heat capacity parameters for example 2

Component C1 C2 × 103 (K−1) C3 × 106 (K−2) C4 × 109 (K−3)
water 3.89 0.017 1.71 -0.647
methane 2.43 4.87 4.440 -3.02
ethane 0.712 20.7 -7.210 0.477
n-butane -0.646 49.8 -29.4 7.61
n-hexane -3.05 81.6 -53.9 15.2
n-decane -5.92 139 -95.9 27
n-eicosane -8.94 267 -191 59.3

Table B.5 Enthalpy of vaporisation correlation parameters for example 2

Component Tc (K) C1 × 103 (K) C2 C3 C4

water 647.15 6.26 0.32 -0.212 0.258
methane 190.56 1.23 0.261 -0.147 0.222
ethane 305.32 2.54 0.606 -0.555 0.328
n-butane 425.1 4.36 0.834 -0.823 0.396
n-hexane 507.6 5.36 0.39 0 0
n-decane 617.7 7.95 0.398 0 0
n-eicosane 768 15.5 0.504 0.33 -0.422

Table B.6 Properties of example 3, a 7 component natural gas mixture

Component zi Pc (bar) Tc (K) ω nitrogen kij

methane 0.943 45.99 190.564 0.0115 0.02
ethane 0.027 48.72 305.32 0.0995 0.06
propane 0.0074 42.479 369.83 0.1523 0.08
n-butane 0.0049 37.96 425.12 0.2002 0.08
n-pentane 0.0027 33.7 469.7 0.2515 0.08
n-hexane 0.001 30.25 507.6 0.3013 0.08
nitrogen 0.014 34 126.2 0.0377 0

Table B.7 Ideal gas heat capacity of example 3

Component C1 C2 × 102 (K−1) C3 × 105 (K−2) C4 (K
2)

methane 1.702 0.9081 -0.2164 0
ethane 1.131 1.9225 -0.5561 0
propane 1.213 2.8785 -0.8824 0
n-butane 1.935 3.6915 -1.1402 0
n-pentane 2.464 4.535 -1.411 0
n-hexane 3.025 5.372 -1.679 0
nitrogen 3.631 -0.0649 0.0801 -949.1
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Table B.8 Parameters for example 4, C1 with C4

Component zi Pc (bar) Tc (K) ω
methane 0.99 45.99 190.564 0.0115
n-butane 0.01 37.96 425.12 0.2002

Table B.9 Ideal gas heat capacity parameters for example 4. Parameter C4 is equal to zero for both
components

Component C1 C2 × 102 (K−1) C3 × 105 (K−2)
methane 1.702 0.9081 -0.2164
n-butane 1.935 3.6915 -1.1402

Table B.10 Properties of example 5, a 5-component mixture of water with oil

Component zi Pc (bar) Tc (K) ω water kij

Water 0.5 220.89 647.3 0.344 0
PC1 0.15 48.82 305.556 0.098 0.719
PC2 0.1 19.65 638.889 0.535 0.460
PC3 0.1 10.2 788.889 0.891 0.268
PC4 0.15 7.72 838.889 1.085 0.24166

Table B.11 Ideal gas heat capacity parameters for example 5

Component C1 C2 × 104 (K−1) C3 × 107 (K−2) C4 × 1010 (K−3)
Water 3.873 2.294 12.689 -4.325
PC1 -0.421 6.933 0.612 0
PC2 -0.0486 0.790 0.06507 0
PC3 -0.734 13.147 1.696 0
PC4 -0.541 9.681 1.251 0

Table B.12 Properties of 5 component mixture, example 6

Component zi Pc (bar) Tc (K) ω CO2 kij H2S kij

methane 0.66 45.99 190.56 0.0115 0.12 0.08
ethane 0.03 48.72 305.32 0.0995 0.15 0.07
propane 0.01 42.479 369.83 0.1523 0.15 0.07
CO2 0.05 73.37 304.12 0.225 0.0 0.12
H2S 0.25 90.0 373.1 0.10 0.12 0.0

Table B.13 Properties of 2 component mixture, example 7

Component zi Pc (bar) Tc (K) ω water kij
n-butane 0.5 37.96 425.1 0.2002 0.535
water 0.5 220.64 647.29 0.345 0
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Table B.14 Ideal gas heat capacity parameters for example 7

Component C1 C2 × 104 (K−1) C3 × 107 (K−2) C4 × 1010 (K−3)
Water 3.873 2.294 12.689 -4.325
n-butane 0.059 39.8 0133.2 -3.394

Table B.15 Properties of 17 component mixture, example 8 for 17 component mixture

Component zi Pc (bar) Tc (K) ω
water 0.5 220.549 647.15 0.345
methane 0.03125 45.99 190.56 0 0.0115
ethane 0.03125 48.72 305.32 0.09949
propane 0.03125 42.48 369.83 0.1523
i-butane 0.03125 36.48 408.15 0.177
n-butane 0.03125 37.962 425.05 0.2
i-pentane 0.03125 33.798 460.35 0.228
n-pentane 0.03125 33.701 469.75 0.252
n-hexane 0.03125 30.25 507.6 0.3013
benzene 0.03125 48.97949175 562.16 0.21
n-heptane 0.03125 27.4 540.2 0.3495
n-decane 0.03125 21.1 617.7 0.4923
n-hexadecane 0.03125 14 723 0.7174
n-eicosane 0.03125 11.6 768 0.9069
nitrogen 0.03125 33.958 126.192 0.04
hydrogen sulphide 0.03125 89.4 373.2 0.081
carbon dioxide 0.03125 73.83 304.21 0.2236

Table B.16 SRK binary interaction parameters for example 8 (kij)

Component water nitrogen hydrogen sulphide carbon dioxide
water 0 0.12 0.016 0.175
nitrogen 0.12 0 0.08 0.08
hydrogen sulphide 0.016 0.08 0 0.12
carbon dioxide 0.175 0.08 0.12 0
methane 0.51 0.02 0.08 0.1
ethane 0.5 0.0.06 0.07 0.1
other hydrocarbons 0.5 0.08 0.06 0.1
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Table B.17 CPA parameters for example 8

Component zi Γ (K) b (l/mol) c1
water 0.5 1017.338 0.014515 0.67359
methane 0.03125 959.028 0.0291 0.44718
ethane 0.03125 1544.548 0.0429 0.58463
propane 0.03125 1896.453 0.057834 0.6307
i-butane 0.03125 2078.622 0.0747 0.7021
n-butane 0.03125 2193.083 0.072081 0.70771
i-pentane 0.03125 2350.6 0.09038 0.7651
n-pentane 0.03125 2405.105 0.091008 0.79858
n-hexane 0.03125 2640.03 0.10789 0.8313
benzene 0.03125 2867.193 0.07499 0.7576
n-heptane 0.03125 2799.762 0.12535 0.9137
n-decane 0.03125 3190.542 0.17865 1.13243
n-hexadecane 0.03125 3855.51 0.2961 1.3728
n-eicosane 0.03125 4161.435 0.374384 1.53669
nitrogen 0.03125 634.07 0.02605 0.49855
hydrogen sulphide 0.03125 1878.146 0.0285 0.60265
carbon dioxide 0.03125 1551.222 0.0272 0.7602

Table B.18 Properties of 3 component mixture, example 9. All kij = 0

Component zi Pc (bar) Tc (K) ω
methane 0.772 45.99 190.56 0.0115
ethane 0.218 48.72 305.32 0.0995
n-octane 0.01 24.90 568.7 0.3996



Appendix C

Vol-RAND equations for state function
based flash specifications

For the (V, T ), and (P, T ) based flash specification the relevant equations from chapter 4
for the vol-RAND implementation are equation 4.84:

∆nj = A−1
n,n,j

(
ATλ−An,j −An,T,j∆T

)
+ ρj∆Vj (C.1)

along with the F equations 4.86:

ρT
j ATλ+

Sj

Vj
∆T = ρT

j µj + AV,j + P ∗ ∀j (C.2)

and the E equations 4.88:

A
(

F∑
j=1

A−1
n,n,j

)
ATλ+AR∆V −A

(
F∑

j=1

A−1
n,n,jAn,T,j

)
∆T = A

(
F∑

j=1

A−1
n,n,jµj

)
(C.3)

Solving for the equilibrium elemental potentials and the change in phase volume allows for
the (V, T ) and (P, T ) flash to be solved as minimisations of suitable objective functions.
For the remaining flash specifications it is necessary to introduce a number of additional
constraints in a similar manner as was done in section 4.3.

S(T, V,n)− Sspec = 0 (C.4a)

U(T, V,n)− U spec = 0 (C.4b)
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and
H(T, V,n)−Hspec ≈ U(T, V,n) + V P spec −Hspec = 0 (C.4c)

and linearise around the variables of (T, V,n):

S − Sspec +
Cv

T
∆T +

F∑
j=1

∂Pj

∂T
∆Vj −

F∑
j=1

(
∂µj

∂T

)T

∆nj = 0 (C.5a)

U − U spec

T
+
Cv

T
∆T +

F∑
j=1

(
∂Pj

∂T
− Pj

T

)
∆Vj − T

F∑
j=1

(
∂

µj

T

∂T

)T

∆nj = 0 (C.5b)

and

U + V P spec −Hspec

T
+
Cv

T
∆T+

F∑
j=1

(
∂Pj

∂T
− Pj − P spec

T

)
∆Vj−T

F∑
j=1

(
∂

µj

T

∂T

)T

∆nj = 0

(C.5c)
It is possible to make a number of simplifications. Following the same logic as in equation
4.59 we can replace

∂
µj

T

∂T

with
1

T
An,T,j

At this point it is necessary to divide the method into the two calculation types, one with a
specified pressure (for (P, T ), (P, S) and (P,H) flash) and one with a specified volume
(for (V, T ), (V, S) and (V, U) flash). In the case of the pressure specification equation
C.5b is not relevant. The third term in equation C.5c can be simplified since at the solution
Pj −P spec = 0. It is then possible to replace equation C.5c and equation C.5a with a single
equation:

rS,H +
Cv

T
∆T −

F∑
j=1

AV,T,j∆Vj −
F∑

j=1

AT
n,T,j∆nj = 0 (C.6)

where rS,H = S − Sspec for the (P, S) flash specification and rS,H = U−V P spec−Hspec

T
for

the (P,H) flash specification. Substituting in the composition correction from equation
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C.1:

−
F∑

j=1

AT
n,T,jA

−1
n,n,jATλ+

F∑
j=1

Sj

Vj
∆Vj+

(
Cv

T
+

F∑
j=1

AT
n,T,jA

−1
n,n,jAn,T,j

)
∆T =

−
F∑

j=1

AT
n,T,jA

−1
n,n,jAn,j − rS,H

(C.7)

When combined with equations C.2 and C.3 we obtain the system of equation (of size
C + F + 1):A

∑F
j=1 A

−1
n,n,jAT AR tv

(AR)T 0 S
V

tTv
(
S
V

)T
Cv,x


 λ

∆V

∆T

 =


A
(∑F

j=1A
−1
n,n,jµj

)
u2,v

−∑F
j=1A

T
n,T,jA

−1
n,n,jAn,j − rS,H


(C.8)

where we have used:

tv = −A
(

F∑
j=1

A−1
n,n,jAn,T,j

)

Cv,x =
Cv

T
+

F∑
j=1

AT
n,T,jA

−1
n,n,jAn,T,j

and
u2,v,j = ρT

j µj + AV,j + P ∗ ∀j

For the remaining specifications (that is (V, T ), (V, U) and (V, S)) we first define the
volume of phase F as:

VF = V spec −
F−1∑
j=1

Vj (C.9)

Following linearisation of C.9 we obtain:

∆VF = −
F−1∑
j=1

∆Vj (C.10)

Substituting this into equation C.5a we find:

S − Sspec +
Cv

T
∆T +

F−1∑
j=1

(
∂Pj

∂T
− ∂PF

∂T

)
∆Vj −

F∑
j=1

(
∂µj

∂T

)T

∆nj = 0 (C.11)
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and into equation C.5b we find:

U − U spec

T
+
Cv

T
∆T +

F−1∑
j=1

(
∂Pj

∂T
− ∂PF

∂T
− Pj − PF

T

)
∆Vj − T

F∑
j=1

(
∂

µj

T

∂T

)T

∆nj = 0

(C.12)
Since PF and Pj are the same at the solution it is possible to arrive at a single equation for
both the (U, V ) and the (V, S) flash specifications:

rS,U +
Cv

T
∆T +

F−1∑
j=1

(AV,T,F − AV,T,j)∆Vj −
F∑

j=1

AT
n,T,j∆nj = 0 (C.13)

where rS,U = S−Sspec for the (V, S) flash specification and rS,U = U−Uspec

T
for the (V, U)

flash specification. Substituting in the composition correction we arrive at:

−
F∑

j=1

AT
n,T,jA

−1
n,n,jATλ+

F−1∑
j=1

(
Sj

Vj
− SF

VF

)
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(
Cv

T
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F∑
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AT
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n,n,jAn,T,j

)
∆T =

−
F∑

j=1

AT
n,T,jA

−1
n,n,jAn,j − rS,H

(C.14)

The resulting system of equations (size C + F ) is then given by:
A
∑F

j=1A
−1
n,n,jAT AR̂ tv(

AR̂
)T

0 S
V
− SF

VF

tTv

(
S
V
− SF

VF

)T
Cv,x


 λ

∆V

∆T

 =


A
(∑F

j=1A
−1
n,n,jµj

)
u3,v

−∑F
j=1A

T
n,T,jA

−1
n,n,jAn,j − rS,U


(C.15)

with
R̂ = (ρ1 − ρF ,ρ2 − ρF , ...,ρF−1 − ρF )

and
u3,v,j = (ρj − ρF )

T µj + AV,j − AV,F ∀j

All other terms remain unchanged. The change in the volume of the remaining phase is
found from equation C.9.
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